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BLOCH CONSTANTS FOR PLANAR HARMONIC MAPPINGS

HUAIHUI CHEN, P. M. GAUTHIER, AND W. HENGARTNER

(Communicated by Albert Baernstein II)

Abstract. We give a lower estimate for the Bloch constant for planar har-
monic mappings which are quasiregular and for those which are open. The
latter includes the classical Bloch theorem for holomorphic functions as a spe-
cial case. Also, for bounded planar harmonic mappings, we obtain results
similar to a theorem of Landau on bounded holomorphic functions.

1

Since confirmation of the Bieberbach Conjecture by Louis de Branges, the out-
standing open problem in classical complex analysis is perhaps that of determining
the precise value of the Bloch constant for holomorphic mappings of the unit disc.
At this time the best lower estimate is in [3]. In this note, we consider the analogous
problem of estimating the Bloch constant for harmonic mappings.

A harmonic mapping is a complex-valued harmonic function defined on a domain
in the complex plane. Harmonic mappings have interesting links with geometric
function theory, minimal surfaces and locally quasiconformal mappings. For a sur-
vey of harmonic mappings in the plane, see [2].

For a continuously differentiable function f(z) = u(z) + iv(z), z = x+ iy, we use
the common notations for its formal derivatives:

fz =
1
2

(fx − ify) , fz =
1
2

(fx + ify) ;

then f is a harmonic mapping if and only if f is twice continuously differentiable
and

∆f = 4fzz = 0.

Let f be a harmonic mapping of a domain G. f is said to be univalent or locally
univalent if f is one-to-one or locally one-to-one on G. It is known [5] that a
harmonic mapping is locally univalent if and only if its Jacobian Jf does not vanish
anywhere. Such a result does not hold in higher dimensions [7]. If G is simply
connected, then f can be written as f = g + h, where g and h are holomorphic on
G. Since fz = h′ and fz = g′,

Jf = uxvy − uyvx = |fz|2 − |fz|2 = |h′|2 − |g′|2.
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For a continuously differentiable function f , denote

Λf = max
0≤θ≤2π

|fz + e−2iθfz| = |fz|+ |fz|,

λf = min
0≤θ≤2π

|fz + e−2iθfz| = ||fz| − |fz||.

Note that |Jf | = Λfλf . A harmonic mapping f is said to be K-quasiregular (K ≥ 1)
on a domain G if Λf ≤ Kλf , or equivalently Λ2

f ≤ K|Jf | or λ2
f ≥ |Jf |/K, holds

everywhere on G (many authors also require Jf ≥ 0).
We denote the unit disc {z : |z| < 1} by D and a disc with center at the origin

and radius r by Dr. A harmonic mapping f = g+h of the unit disc can be expanded
in a series

f(reiθ) =
∞∑

n=−∞
cnr
|n|einθ, 0 ≤ r < 1,

where g(z) =
∑∞
n=1 c−nz

n, h(z) =
∑∞

n=0 cnz
n. We call cn = cn(f) the coefficients

of f . The class of univalent sense preserving harmonic mappings on D normalized
by c0 = 0 and c1 = 1 will be denoted by SH . S0

H will denote the subclass with
c−1 = 0. J. Clunie and T. Sheil-Small proved a distortion theorem and a Koebe
theorem for SH and S0

H : If f ∈ SH , then

|f(z)| ≥ 1
4

(1− |c−1(f)|) |z|
(1 + |z|)2

, for z ∈ D,

and, in particular, DR0 ⊂ f(D) with

R0 =
1
16

(1− |c−1(f)|).

If f ∈ S0
H , then c−1(f) = 0 and the factor 1−|c−1(f)| in the above will be cancelled.

If the assumption of univalence is omitted, the distortion theorem and the Koebe
theorem are no longer true even for holomorphic functions. However, replacing the
univalence condition on the holomorphic function by that of boundedness, Landau
proved a Koebe type theorem giving a lower estimate, depending on the bound of
the function, for a schlicht disc contained in the image and centered at the origin.
In Section 2 of this note, we prove two theorems for bounded harmonic mappings
similar to the Landau theorem for bounded holomorphic functions.

On the other hand, for normalized holomorphic functions without any additional
restriction, there is still the Bloch theorem which asserts the existence of a positive
constant b such that for any normalized holomorphic function f in D the image
f(D) contains a schlicht disc of radius b. By a schlicht disc, we mean a disc which is
the univalent image of some region in D. The Bloch constant is defined as the “best”
such constant, that is, the supremum of such b. It turns out that in the harmonic
case, some extra assumption is required other than the normalization in order that
a Bloch theorem hold. For K-quasiregular harmonic mappings (even in higher
dimension), Bochner [1] had already proved the existence of a Bloch constant, but
gave no estimate. In Section 3, we estimate this Bloch constant in the planar case.
In Section 4, we give examples to show that for general harmonic mappings, and,
in dimension bigger than two, even for univalent harmonic mappings, there is no
Bloch theorem. However, we employ our Bloch theorem for quasiregular mappings
to obtain a Bloch theorem for open planar harmonic mappings. This contains the
classical Bloch theorem for general holomorphic functions.
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2

First, we consider bounded harmonic mappings of the unit disc. The following
Schwarz lemma for harmonic mappings plays a key role in the proofs of our results.

Theorem 1. Let f be a harmonic mapping of the unit disc D such that f(0) = 0
and f(D) ⊂ D. Then

Λf(0) ≤ 4
π
,(1)

Λf(z) ≤ 8
π(1− |z|2)

, for z ∈ D,(2)

|f(z)| ≤ 4
π

arctan |z| ≤ 4
π
|z|, for z ∈ D.(3)

Proof. For 0 ≤ θ ≤ 2π, let uθ = <{eiθf} and let vθ be the harmonic conjugate of uθ
with vθ(0) = 0. Then Fθ = uθ + ivθ is a holomorphic function such that Fθ(0) = 0
and Fθ(D) is contained in the strip |<w| < 1. A conformal mapping F of D onto
the strip with F (0) = 0 is written by

F (z) =
2i
π

log
1 + z

1− z .

By the subordination principle, we have Fθ(Dr) ⊂ F (Dr) for r < 1. This shows
that

<{eiθf(z)} = <{Fθ(z)} ≤ 4
π

arctan |z|, for z ∈ D.

(3) is proved now, since θ may be arbitrary. (1) is just a direct consequence of (3).
For a fixed z′ ∈ D, applying (1) to the function (f((z + z′)/(1 + z′z)) − f(z′))/2,
z ∈ D, we obtain (2) with z = z′. The theorem is proved.

We remark that item (3) of the above theorem was shown (using the same
argument) by E. Heinz [4].

Theorem 2. Let f be a harmonic mapping of the unit disc D such that f(0) = 0,
Jf (0) = 1 and |f(z)| < M for z ∈ D. Then, f is univalent on a disc Dρ0 with

ρ0 =
π3

64mM2
,

and f(Dρ0) contains a schlicht disc DR0 with

R0 =
π

8M
ρ0 =

π4

512mM3
,

where m ≈ 6.85 is the minimum of the function (3− r2)/(r(1− r2)) for 0 < r < 1.

Proof. The function (3− r2)/(r(1− r2)), 0 < r < 1, attains its minimum m ≈ 6.85
at r0 ≈ 0.63. For 0 ≤ θ ≤ 2π, the function

φθ(z) = fz(z)− fz(0) + (fz(z)− fz(0))e−2iθ, z ∈ D,
is harmonic and satisfies

φθ(0) = 0,

|φθ(z)| ≤ Λf (z) + Λf (0) ≤ 4M
π

(
1 +

2
1− |z|2

)
=

4M(3− |z|2)
π(1 − |z|2)
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for z ∈ D, since, by (1) and (2),

Λf (0) ≤ 4M
π
,

Λf (z) ≤ 8M
π(1− |z|2)

, for z ∈ D.

In particular,

|φθ(z)| ≤ m1 =
4M(3− r2

0)
π(1 − r2

0)
, for z ∈ Dr0 .

Now, we apply (3) to the function φθ(r0z)/m1 and obtain

|φθ(z)| ≤ 16M |z|
π2

· (3− r2
0)

r0(1 − r2
0)

=
16mM |z|

π2
, for z ∈ Dr0 .

Note that

1 = Jf (0) ≤ Λf (0)2 ≤ 16M2

π2
,

and so
ρ0 ≤

π

4m
< r0.

Thus

|φθ(z)| ≤ 16mM |z|
π2

, for z ∈ Dρ0 .

To prove the univalence, let z1, z2 ∈ Dρ0 be two distinct points and z2 − z1 =
|z2 − z1|eiθ. We have

|f(z2)− f(z1)| =
∣∣∣∣∣
∫

[z1,z2]

fz(z)dz + fz(z)dz

∣∣∣∣∣
≥
∣∣∣∣∣
∫

[z1,z2]

fz(0)dz + fz(0)dz

∣∣∣∣∣−
∣∣∣∣∣
∫

[z1,z2]

(fz(z)− fz(0))dz + (fz(z)− fz(0))dz

∣∣∣∣∣
≥
∫

[z1,z2]

|fz(0) + fz(0)e−2iθ|ds−
∫

[z1,z2]

|φθ(z)|ds,∫
[z1,z2]

|fz(0) + fz(0)e−2iθ|ds ≥ λf (0)|z2 − z1| =
Jf (0)
Λf (0)

|z2 − z1| ≥
π

4M
|z1 − z2|,∫

[z1,z2]

|φθ(z)|ds < 16mMρ0

π2
|z2 − z1| =

π

4M
|z1 − z2|.

This shows f(z1) 6= f(z2).
In the same way, for any z′ = ρ0e

iθ ∈ ∂Dρ0 , we have

|f(z′)| ≥
∫

[0,z′]

|fz(0) + fz(0)e−2iθ|ds−
∫

[0,z′]

|φθ(z)|ds

≥ λf (0)ρ0 −
16mM
π2

∫ ρ0

0

rdr

≥ π

4M
ρ0 −

8mMρ2
0

π2
=

π

8M
ρ0.

The theorem is proved.

If we replace the normalization Jf (0) = 1 in the above theorem by the stronger
one that fz(0) = 0 and fz(0) = 1, we may obtain a better conclusion.
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Theorem 3. Let f be a harmonic mapping of the unit disc D such that f(0) = 0,
fz(0) = 0, fz(0) = 1, and |f(z)| < M for z ∈ D. Then, f is univalent on a disc
Dρ0 with

ρ0 =
π2

16mM
,

and f(Dρ0) contains a schlicht disc DR0 with

R0 = ρ0/2 =
π2

32mM
,

where m ≈ 6.85 is the number defined earlier.

Proof. The proof is almost the same as above. This time, we have∫
[z1,z2]

|fz(0) + fz(0)e−2iθ|ds ≥ λf (0)|z2 − z1| = |z1 − z2|,

∫
[z1,z2]

|φθ(z)|ds < 16mMρ0

π2
|z2 − z1| = |z1 − z2|,

since the normalization implies λf (0) = Λf(0) = 1. This shows the univalence.
Also,

|f(z′)| ≥ λf (0)ρ0 −
16mM
π2

∫ ρ0

0

rdrρ0 −
8mMρ2

0

π2
=
ρ0

2
.

The theorem is proved.

Remark. The following example shows that the powers M2 and M3 in Theorem 2
are best possible. For M > 4, define

f(z) =
4
M
x− M

4
(x2 − y2) +

M

4
yi, z = x+ iy.

Then, f(0) = 0, Jf (0) = 1, and |f(z)| < M for z ∈ D. It is easy to see that f is
univalent for x < 8/M2, but not univalent in any neighbourhood of a point z with
x = 8/M2. So, the largest disc Dρ0 , in which f is univalent, has radius ρ0 ≤ 8/M2

and the largest schlicht disc DR0 centered at the origin and covered by f(D) has
radius R0 ≤ 16/M3.

Recall that the classical Koebe type theorem of Landau says: Let f be a holo-
morphic function on the unit disc D with f(0) = 0 and f ′(0) = 1. If |f(z)| < M
for z ∈ D, then f is univalent on Dρ0 with

1
2M

< ρ0 =
1

M +
√
M2 − 1

≤ 1
M
,

and f(Dρ0) covers a disc DR0 with

1
4M

< R0 = M

(
1

M +
√
M2 − 1

)2

≤ 1
M
.

Moreover, this result is sharp. Comparing this result for holomorphic functions
with Theorem 3, we see that the power of M in the lower bounds of ρ0 and R0 is
the same for both the holomorphic case and harmonic case, and only the constants
differ.
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3

For K-quasiregular harmonic mappings, we have a theorem like the classical
Bloch theorem for holomorphic functions. That is, we can guarantee the existence of
a schlicht disc in the image, whose radius is bounded below by some constant which
depends on K only, but this schlicht disc may not be centered at the origin. To
this end, we need the following theorem, in which our hypothesis can be considered
as the assumption that the mapping is of bounded Fréchet derivative.

Theorem 4. Let f be a harmonic mapping of the unit disc D such that f(0) = 0,
λf (0) = 1 and Λf (z) ≤ Λ for z ∈ D. Then, f is univalent on a disc Dρ0 with

ρ0 =
π

4(1 + Λ)
,

and f(Dρ0) contains a schlicht disc DR0 with

R0 =
1
2
ρ0 =

π

8(1 + Λ)
.

Proof. Let
F (z) = ψ−1(f(z)), ψ(z) = fz(0)z + fz(0)z.

Then, dF (0) is the identity mapping and ψ is an expansion, so

λF (0) = ΛF (0) = 1,

ΛF (z) ≤ Λf(z) ≤ Λ, for z ∈ D.
As in the proofs of Theorems 2 and 3, for 0 ≤ θ ≤ π, we introduce the harmonic
mappings

φθ(z) = Fz(z)− Fz(0) + (Fz(z)− Fz(0))e−2iθ, z ∈ D.
We have φθ(0) = 0 and

|φθ(z)| ≤ ΛF (z) + ΛF (0) ≤ 1 + Λ, for z ∈ D.
Thus, by Theorem 1,

|φθ(z)| ≤ 4
π

(1 + Λ)|z|, for z ∈ D,

and the inequality is strict for z 6= 0.
To prove the univalence, let z1, z2 be distinct points of Dρ0 and z2 − z1 =

|z2 − z1|eiθ. We have

|F (z2)− F (z1)| =
∣∣∣∣∣
∫

[z1,z2]

Fz(z)dz + Fz(z)dz

∣∣∣∣∣
≥
∣∣∣∣∣
∫

[z1,z2]

Fz(0)dz + Fz(0)dz

∣∣∣∣∣−
∣∣∣∣∣
∫

[z1,z2]

(Fz(z)− Fz(0))dz + (Fz(z)− Fz(0))dz

∣∣∣∣∣
=
∫

[z1,z2]

|Fz(0) + Fz(0)e−2iθ|ds−
∫

[z1,z2]

|φθ(z)|ds,∫
[z1,z2]

|Fz(0) + Fz(0)e−2iθ|ds ≥ λF (0)|z2 − z1| = |z2 − z1|,∫
[z1,z2]

|φθ(z)|ds < 4
π

(1 + Λ)ρ0|z2 − z1| = |z2 − z1|.

This shows F (z1) 6= F (z2).
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In the same way, for any z′ = ρ0e
iθ ∈ ∂Dρ0 , we have

|F (z′)| ≥
∫

[0,z′]

|Fz(0) + Fz(0)e−2iθ|ds−
∫

[0,z′]

|φθ(z)|ds

> λF (0)ρ0 −
4
π

(1 + Λ)
∫ ρ0

0

rdr

= ρ0 −
4
π

(1 + Λ)
ρ2

0

2
=
ρ0

2
.

Consequently, F is univalent on Dρ0 and F (Dρ0) contains DR0 . The conclusion of
the theorem follows since ψ is an affine transformation with λψ = 1.

Theorem 5. Let f be a K-quasiregular harmonic mapping of the unit disc D such
that λf (0) = 1. Then f(D) contains a schlicht disc of radius at least

R1 =
π

8
√

2(1 + 2K)
.

Proof. Without loss of generality, we assume that f is also harmonic on the bound-
ary ∂D. Then there exists a point z0 ∈ D such that

(1− |z|2)λf (z) ≤ (1 − |z0|2)λf (z0) = A ≥ 1, for z ∈ D.

Let φ be a Möbius transformation of D onto itself with φ(0) = z0. Define F (ζ) =
f (φ(ζ)) /A, for ζ ∈ D. Since

(1− |ζ|2)λF (ζ) = (1 − |φ(ζ)|2)λf (φ(ζ))/A,

we have λF (0) = 1, and

(1− |ζ|2)λF (ζ) ≤ 1 for ζ ∈ D.

Let G(ω) =
√

2F (ω/
√

2), for ω ∈ D. Note that G is also K-quasiregular. Thus,
λG(0) = λF (0) = 1, and

ΛG(ω) ≤ KλG(ω) = KλF (ω/
√

2) < 2K, for ω ∈ D.

Now, by the preceding theorem, we see that G is univalent on Dρ0 with ρ0 =
π/(4(1 + 2K)), and G(Dρ0) contains a disc of radius π/(8(1 + 2K)). Consequently,
f(D) contains a schlicht disc of radius at least R1. The theorem is proved.

If the function is normalized by Jf (0) = 1, the radius of the schlicht disc will be
a little smaller.

Theorem 6. Let f be a K-quasiregular harmonic mapping of the unit disc D such
that Jf (0) = 1. Then f(D) contains a schlicht disc of radius at least

R1 =
π

8
√

2
√
K(1 + 2K)

.

Proof. We have

λf (0) ≥
√
Jf (0)√
K

=
1√
K
.

Applying the above theorem to the function f/λf (0) gives the conclusion of the
theorem.
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4

Let x = (x1, · · · , xn), u = (u1, · · · , un) and u = f(x) be a harmonic mapping of
a domain of Rn into Rn. We denote by f ′(x) the matrix (∂xj/∂xk)j,k=1,··· ,n. The
following example shows that there is no Bloch theorem for general (even univalent)
harmonic mappings, with the normalization that f ′(0) is the identity, in dimension
3, and hence in any dimension ≥ 3.

Let I = (−1, 1) and P3 = I×I×I be the cube in R3. For k > 4, define a harmonic
mapping fk by u1 = x1, u2 = x2 and u3 = x3 + kx1x2. Then, fk maps R3 onto
itself injectively, and f ′k(0) is the identity. For u = (u1, u2, u3) ∈ fk(P3), denote by
rk(u) the radius of the largest ball of dimension 3 centered at u and contained in
fk(P3). Let rk = sup{rk(u) : u ∈ fk(P3)}. We claim that rk ≤ 2/

√
k for k > 4.

To prove this claim, for given k > 4 and u′ = (u′1, u′2, u′3) ∈ fk(P3), we distinguish
two different cases: (1) |u′1| ≥ 1/

√
k or |u′2| ≥ 1/

√
k; (2) |u′1|, |u′2| < 1/

√
k. First

assume |u′1| ≥ 1/
√
k. Let p = {u ∈ R3 : u1 = u′1}. Then, by the definition of fk,

we have

p ∩ fk(P3) = {u ∈ R3 : u1 = u′1,−1 < u2 < 1,−1 + ku′1u2 < u3 < 1 + ku′1u2}.
Since |u′1| ≥ 1/

√
k, |ku′1| ≥

√
k, we see that rk(u′) < 1/

√
k. It also holds for

|u′2| ≥ 1/
√
k. Now, let |u′1|, |u′2| < 1/

√
k. Without loss of generality, assume that

0 ≤ u′1 < 1/
√
k. If u′′ = (1/

√
k, u′2, u

′
3) 6∈ fk(P3), then rk(u′) ≤ 1/

√
k since

|u′ − u′′| = 1/
√
k − u′1 ≤ 1/

√
k. If u′′ ∈ fk(P3), then rk(u′) < 2/

√
k, since

|u′ − u′′| ≤ 1/
√
k, and rk(u′′) < 1/

√
k as just proved. This proves our claim.

Now, we discuss planar harmonic mappings. It is easy to give examples to show
that neither the normalization fz(0) = 1 nor the normalization Jf (0) = 1 yields
a Bloch theorem for general univalent planar harmonic mappings. The following
example shows that there is no Bloch theorem for harmonic mappings even with
both of these normalizations, that is, fz(0) = 1 and fz(0) = 0. Note that imposing
both of these normalizations is equivalent to requiring that df(0) be the identity
mapping. Let w = u+ iv and z = x+ iy. For k > 1, define fk(z) by

u = x, v =
1
k
eky sin kx.

It is easy to see that for any integer m, fk maps the strip (m− 1)π/k < x < mπ/k
into the strip (m − 1)π/k < u < mπ/k injectively, but maps the straight line
x = mπ/k onto the single point w = mπ/k. If we let Fk(z) = fk(π/(2k) + z), then
(Fk)z(0) = 1 and (Fk)z(0) = 0. It is obvious that Fk(D) contains no disc with
radius bigger than π/(2k).

A mapping of a domain G ⊂ C is said to be open if it maps any open subset of G
to an open set in C. A mapping is said to be light if no continuum (connected closed
set containing more than one point) is mapped to a single point. A non-constant
holomorphic mapping is both open and light. The mappings Fk are neither open
nor light. Now we are going to prove a Bloch theorem for open planar harmonic
mappings with the above normalization. First, we prove the following lemma.

Lemma 1. If a planar harmonic mapping is open, then it is light.

Proof. Let f be an open harmonic mapping of a domain G. We may assume that
fz is not equal to 0 identically. Otherwise, f is holomorphic and, because of the
openness of f , f is not a constant. Hence, f is light. Let a(z) = fz(z)/fz(z). Then
a is a meromorphic function on G since both fz and fz are holomorphic.
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Suppose that f is not light. Then, without loss of generality, we may assume
that there is a continuum E ⊂ G such that f(z) = 0 for z ∈ E. We may choose a
point z0 ∈ E such that fz(z0) 6= 0. Then, a(z0) = eiθ0 , since Jf (z0) = 0. a is not
equal to eiθ0 identically. Otherwise, f(G) will lie in a straight line making an angle
−θ0/2 with the positive real axis, which contradicts the openness. Replacing z0 by
another point very near it, if necessary, we may assume that a′(z0) 6= 0.

There exists a conformal mapping ω of the unit disc D onto a small neighborhood
of z0, such that |a(z)| = 1, > 1 or < 1 (hence, Jf (z) = 0, < 0 or > 0), according
to whether z ∈ ω(I), z ∈ ω(D+) or z ∈ ω(D−), where I = (−1, 1), and D+

and D− denote the upper and lower half discs (excluding the real diameter I).
Then, E ∩ ω(D) ⊂ ω(I) and, consequently, there is a subsegment I ′ of I such that
ω(I ′) ⊂ E, since Jf 6= 0 on ω(D) \ ω(I) and E is a continuum. Without loss of
generality, assume that I ′ = I. Now, F = u + iv = f ◦ ω is an open harmonic
mapping of the unit disc D, and F (z) = 0 for z ∈ I.

Consider the holomorphic function φ(z) = u + iu∗, where u∗ is the harmonic
conjugate of u. φ cannot be a constant because of the openness of F . So, there is
a point z′ ∈ I such that φ′(z′) 6= 0 and a small disc ∆ ⊂ D centered at z′ such
that φ is univalent on ∆. Let ∆ \ I = ∆+

⋃
∆−. Since u = 0 on I, φ(I) lies in the

imaginary axis, and φ is univalent on ∆, we see that φ(∆+) ⊂ L+ and φ(∆−) ⊂ L−,
or, conversely, φ(∆+) ⊂ L− and φ(∆−) ⊂ L+, where L+ and L− denote the right
and left half planes respectively. This means that u(z) > 0 for z ∈ ∆+ and u(z) < 0
for z ∈ ∆−, or, conversely, u(z) < 0 for z ∈ ∆+ and u(z) > 0 for z ∈ ∆−. By using
the same reasoning for the function v, we obtain a small disc ∆1 ⊂ ∆ centered at a
point z′′ ∈ I such that v(z) > 0 for z ∈ ∆+

1 and v(z) < 0 for z ∈ ∆−1 , or, conversely,
v(z) < 0 for z ∈ ∆+

1 and v(z) > 0 for z ∈ ∆−1 , where ∆+
1 and ∆−1 denote the upper

and lower half discs of ∆1. Note that ∆+
1 ⊂ ∆+ and ∆−1 ⊂ ∆−. Now there are 4

different cases. However, in any case, we can conclude that F (∆+) and F (∆−) lie
in two different quadrants respectively. Recall that F (I) = {0}. This shows F is
not open on D. We reach a contradiction, and the lemma is proved.

Before proving our Bloch theorem for open planar harmonic mappings, we need
to introduce the notion of interior transformaton. A continuous mapping of a
domain in the plane is called an interior transformaton in the sense of Stöılow, if
f is both open and light. The famous Stöılow theorem [6] says that an interior
transformaton f is topologically holomorphic, that is, f can be written in the
form f = F ◦ ω, where F is a non-constant holomorphic mapping and ω is a
homeomorphism.

Theorem 7. Let f be an open harmonic mapping of the unit disc D normalized
by fz(0) = 1 and fz(0) = 0. Then f(D) contains a schlicht disc of radius at least

R1 =
π
√

2
16

(7 − 4
√

3) ≈ 0.02.

Proof. According to the above lemma, f is light and, hence, f is an interior trans-
formaton in the sense of Stöılow. By the Stöılow theorem, f can be written in the
form f = F ◦ ω, where F is a non-constant holomorphic mapping F and ω is a
homeomorphism. Let E be the set of zeros of F ′. Then E′ = ω−1(E) is a closed
discrete set in D and f is locally univalent in D \ E′. As we mentioned in Section
1, a harmonic mapping is locally univalent if and only if its Jacobian Jf does not
vanish anywhere. Now, because of the normalization and the continuity of Jf , Jf
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is positive and, consequently, |fz| > |fz| on D \ E′. Then a(z) = fz(z)/fz(z) is a
holomorpic function on D \ E′, and |a(z)| < 1 for z ∈ D \ E′. Hence, the singu-
larities E′ are removable and the strict inequality persists on D by the maximum
principle. Since a(0) = 0 and |a(z)| < 1 for z ∈ D, by the classical Schwarz lemma,
|a(z)| < r for z ∈ Dr, 0 ≤ r < 1. So,

Λf
λf

=
|fz|+ |fz|
|fz| − |fz|

=
1 + |a|
1− |a| ≤

1 + r

1− r = Kr

holds everywhere on Dr \ E′. Because of the continuity, Λf ≤ Krλf holds every-
where on Dr. This shows f is Kr-quasiregular on Dr.

For a fixed r < 1, applying Theorem 5 to the function F (ζ) = f(rζ)/r, ζ ∈ D,
we see that f(Dr) contains a schlicht disc with radius at least

π

8
√

2
· r

1 + 2(1 + r)/(1 − r) ,

which has maximum R1 at r = 2
√

3− 3. This proves the theorem.

Remark. The assumption of “openness” in our Bloch theorem can be weakened a
little to “openness outside a discrete and closed (with respect to D) set E”. The
same proof works. We see from the above proof that if a harmonic mapping is open,
then it is topologically holomorphic. So, we may say that in our Bloch theorem,
we essentially put the assumption that the function is topologically holomorphic.
We have also proved that, if a harmonic mapping is open, then it is light. On the
other hand, there are light harmonic mappings which are not open. The function
defined in the remark after Theorem 3 is such a function. The functions Fk defined
in this section, however, are not light. So, one may expect that lightness together
with the same normalization also yields a Bloch theorem. This is an open question.
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