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We introduce an approach for retrieving effective parameters of metamaterials based on the Bloch-mode

analysis of quasiperiodic composite structures. We demonstrate that, in the case of single-mode propagation,

a complex effective refractive index can be assigned to the structure, being restored by our method with a

high accuracy. We employ both surface and volume averaging of the electromagnetic fields of the dominating

(fundamental) Bloch modes to determine the Bloch and wave impedances, respectively. We discuss how this

method works for several characteristic examples, and demonstrate that this approach can be useful for retrieval

of both material and wave effective parameters of a broad range of metamaterials.

DOI: 10.1103/PhysRevB.86.035127 PACS number(s): 78.20.Ci, 78.67.Pt, 42.25.Bs, 41.20.Jb

I. INTRODUCTION

The study of artificially structured metamaterials (MMs)

attracts attention of scientists and engineers due to their

unprecedented electromagnetic properties. Negative refractive

index, very large or near-zero values of both permittivity and

permeability, and giant optical activity are just a few examples

of the properties which MMs can provide.1 As was established,

it is convenient to describe the MM properties by employing

the concept of effective parameters (EPs), such as refractive

index n, impedance z, permittivity ε, and permeability μ,

provided that these EPs can be introduced.2 The EPs simplify

significantly the description of the MM properties, including

the propagation of electromagnetic waves inside a MM slab

and their reflection and transmission at the MM boundaries.

The state-of-the-art of homogenization infers that retrieved

EPs are of two types:2–4

(i) Material (or local) effective parameters (MEP) εM and

μM . They give the relation of the field vectors D = εMε0E
and B = μMμ0H. The material effective parameters show the

evolution of the wave inside a metamaterial. Material EPs

depend only on the properties of the material (we do not

consider here the problem of the Drude transition layers2).

Specifically, material EPs are important, for example, for the

superlens performance of the slab with negative refractive

index.5 The relations to the refractive index n and wave

impedance zW are

n =
√

εMμM , (1)

zW =
√

μM/εM . (2)

(ii) Wave (or nonlocal) effective parameters (WEP) εW

and μW . They are usually restored from the reflection and

transmission coefficients of a MM slab6 being assigned as the

parameters of the corresponding homogenous slab. Sometimes

this approach leads to violation of locality conditions, and

this situation was actively discussed in the literature.2–4,7–11

The WEP may allow one solving the scattering problem

(reflection/transmission determination) for a MM slab of

another thickness. They often depend on the thickness of the

MM slab (in terms of the number of unit cells, see e.g. Ref. 12),

with only rare exceptions.13

For a homogeneous medium with the structural element

characteristic size a, which is much less than the wavelength

λ, the material and wave EPs are the same. However, in many

practical cases, MM’s unit cell is only a ∼ λ/10 − λ/4 and

material and wave parameters are not equivalent to each other.4

It is obvious that the reflection from a MM slab should depend

on whether the MM slab termination coincides with the border

or with another cross section somewhere in the middle of the

unit cell, so the wave EPs depend on the MM opening cross

section.

The knowledge of the WEP and MEP is needed for

development of metamaterial-based devices. This would be

desirable to obtain both sets of EPs within a similar simple

calculation procedure. The importance of the EPs restoration

is emphasized by a variety of the existing retrieval methods,

which are summarized in Table I.

This paper aims to introduce and discuss in detail an

approach described in Refs. 2 and 37 for retrieving the

wave and material effective parameters. First, we calculate

the dispersion bands of the long enough periodic media by

employing the high-resolution spectral analysis method.38–40

This method is developed for periodic structures (in fact,

quasiperiodic, taking into account a finite size of the structure)

composed of arbitrary unit cells. After defining the dispersion

of the dominating Bloch modes, we introduce a complex

refractive index, which can be attributed to the effective

parameters of the metamaterial with a high accuracy.

Next, we introduce an effective impedance. Following

Refs. 2 and 37, we apply the volume or surface averaging

of the electric and magnetic fields of the dominating Bloch

mode, which leads to the wave or Bloch (input) impedance

EPs retrieval. Having both refractive index and impedance,

we restore effective permittivity and permeability accordingly

to Eqs. (1) and (2), which will be either MEP or WEP,

respectively. However, in contrast to the refractive index

retrieving, the wave impedance retrieving procedure may

encounter problems, especially in application to MMs with the

negative refractive index. Caution should be paid to the fields

computed via direct numerical solution of Maxwell’s equation

035127-11098-0121/2012/86(3)/035127(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.035127


ANDREI ANDRYIEUSKI et al. PHYSICAL REVIEW B 86, 035127 (2012)

TABLE I. Comparison of the EPs restoration methods.

Method (References) Effective parameters type (Comments)

Reflection-transmission [Nicholson-Ross-Weir (NRW)] (3,6,14,15) WEP (Scalar, restored for normal or inclined incidence)

Wave propagation (16,17) WEP (Scalar, restored for normal incidence)

Field averaging (18–22) MEP (Scalar or tensor)

Analytical,semianalytical (4,23–26) MEP (Tensor)

Single interface scattering (27) WEP (Scalar, restored for normal incidence)

Nonlocal dielectric function (28–34) MEP (Nonlocal dielectric function, tensor)

Current driven (35) MEP (Tensor)

Quasimode (36) WEP (Scalar, restored for normal incidence)

by Maxwell’s solvers. For example, in the CST Microwave

Studio, which we used, the returned magnetic field calculated

on a grid is magnetic induction b/μ0 and not magnetic strength

h. Ignoring this fact when restoring the impedance from the

electric and magnetic fields ratio can cause the real part of

impedance to become negative in the region of the negative

refractive index, and correspondingly the negative energy flux

is obtained. Such flux behavior is connected with its definition

through the H field, the fact that was emphasized by Silverinha

et al.28,32

The paper is organized as follows. In Sec. II, we formulate

the general concept and technical details of our approach.

The successful MEP retrieving examples in the case of

homogeneous media and different types of composite MMs

are summarized in Sec. III. In Sec. III, we also present the

examples when the wave impedance retrieval leads to incorrect

interpretation of EPs and, as a consequence, it connects

impedance with the energy flux with wrong flux direction.

Finally, in the concluding Sec. IV, we discuss both advantages

and constraints of the approach introduced here.

II. GENERAL APPROACH

The dispersion analysis is based on the Bloch-mode expan-

sion of the field propagating inside a MM slab. We simulate the

field propagation by the commercial CST Microwave Studio

software41 with the finite-integrals Maxwell solver. We excite

the MM slab, which consists of the periodically arranged

unit cells of the period a = (ax,ay,az), with a plane wave

propagating along the z axis and electric field polarized along

the x axis (see Fig. 1). In principle, the slab may be arbitrarily

FIG. 1. (Color online) Simulation configuration. Wave is nor-

mally incident from vacuum. Wave propagation and metamaterial

stacking direction is along the z axis. Electric field of the plane wave

is polarized along the x axis.

thick, but not less than 3–4 MM monolayers; for that we can

neglect the so-called Drude transition layers.2

We use perfect electric, perfect magnetic, and open bound-

ary conditions for the x, y, and z boundaries, respectively,

and the time-domain solver in calculations. A broadband

Gaussian pulse is used as a field source. Only one simulation

is needed for the whole spectrum calculation. The fields

on different frequencies are calculated through the Fourier

transformations from the time-dependent signals collected

with three-dimensional (3D) field monitors.

Let us consider the plane wave normally incident from

vacuum onto the MM slab. Its electric Ev = Ev0 exp(ik0z)

and magnetic Hv = Hv0 exp(ik0z) fields are connected via

the impedance of the free space Z0 = Ev0/Hv0 =
√

μ0/ε0 ≈
120π Ohm. Here, k0 = ω/c is the wave number of the free

space, and we assume the exp(−iωt) time dependence.

In the general case, several Bloch modes42–45 may be

excited in the slab for each frequency ω, so the overall field

may be represented as a sum

E(r) =
M

∑

m=1

Em(r), (3)

H (r) =
M

∑

m=1

Hm(r), (4)

where m is the Bloch-mode number, M is the total number of

excited modes, and r = (x,y,z). In the desirable case of local

quasihomogeneous MM, there are only two modes in the slab:

one forward and one backward propagating. A larger number

of modes may be excited in the case of MM with strong spatial

dispersion.2

The field profiles of Bloch modes can be represented

as2,42–44

Em(r) =

[

Em,0(r⊥) +
∑

p �=0

Em,p(r⊥)eiGpz

]

eiKmz, (5)

Hm(r) =

[

Hm,0(r⊥) +
∑

p �=0

Hm,p(r⊥)eiGpz

]

eiKmz, (6)

where Km is the Bloch wave number, G = 2π/az, p is an

integer number. We note that the field representation in Eqs. (3)

and (4) is invariant with respect to a transformation Km →
Km + Gp′ and Em,p → Em,p+p′ for an arbitrary integer p′.
Accordingly, we can always select the value of Km such
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that Em,0 is the largest harmonic amplitude, and we use this

convention in the following.

The key feature of the high-resolution spectral analysis

method38,40 is decomposition of the total field obtained in

simulations into a sum of Bloch modes, effectively inverting

Eqs. (3) and (4). The only prior information required for the

application of this method is the number of strongest Bloch

modes excited in the structure (M). Then, through specialized

numerical fitting described in Refs. 38 and 40, we extract wave

numbers Km and field profiles Em(r),Hm(r) of all forward and

backward propagating Bloch modes at each frequency ω. By

monitoring the accuracy of such decomposition in terms of

field matching, we check whether other ignored Bloch modes

have significant excitation amplitudes, and if this is the case,

we increase the number M to take more modes into account

and repeat the whole decomposition procedure.

It is an important advantage of our approach that the

standing wave, which is usually formed inside the slab due

to the multiple reflections from the boundaries and brings

the restrictions to the conventional wave propagation retrieval

method,17 is not an issue in the present case since we can

separate forward and backward propagating Bloch modes. In

the following, we denote the field profiles of the dominant

forward and backward waves as

{E,H }+ ≡ {E,H }m+ , {E,H }− ≡ {E,H }m− , (7)

and the corresponding wave numbers

K+ ≡ Km+ , K− ≡ Km− , (8)

where m+ and m− are the numbers of the dominant forward

and backward Bloch modes, respectively.

If several Bloch modes are excited and propagate in a MM,

such composite cannot be homogenized and no meaningful

EPs can be introduced. The homogeneity of MM and the

influence of the higher-order Bloch modes have been discussed

extensively in Refs. 13, 46, and 47. However, if only one

forward mode can be distinguished by the lowest damping, we

can count it as the dominating one and neglect the presence

of the higher-order modes. As a rule, it is the fundamental

Bloch mode. The numerical criterion of homogeneity from the

Bloch-mode point of view was formulated in Ref. 48. Another

possibility to check the single-mode regime is to calculate

the mismatch δ of the restored sum of forward and backward

propagating fundamental mode fields Ef = E+ + E−, and the

original field E taken directly from numerical simulations

δ =
∫

|E − Ef |2dx dy dz
∫

|E|2dx dy dz
, (9)

where integration is performed over the computation domain.

In all the case studies presented in the following, the mismatch

δ is below 1.5%. So, in this paper we consider the MMs that

have a dominant fundamental mode, and the higher-order

Bloch modes can be neglected. According to the concept

of homogenization, we aim to find effective parameters

for an equivalent homogeneous medium, where the wave

propagation would be essentially the same as in the periodic

structure. After determining the propagation constant K+ of

the fundamental mode, we assign our structured material with

the effective refractive index n = K+/k0.

The second part in restoration is connected with the effec-

tive impedance. We use the fields E+,H+ of the fundamental

Bloch mode in the both Bloch zB and wave zW impedances

restoration. First, we perform field surface averaging at the

(x,y) cross section of the simulated slab:

ESA(z) =
∫

S

E+(x,y,z)dx dy/axay, (10)

HSA(z) =
∫

S

H+(x,y,z)dx dy/axay . (11)

By taking the values of the fields ESA,j = ESA(zj ), HSA,j =
HSA(zj ) at the unit-cell borders zj = jaz, where j is an integer

number, we determine the Bloch impedance4

zB =
ESA,j

Z0HSA,j

. (12)

Note that Bloch impedance zB does not depend on j , which

can be checked by substituting Eqs. (5) and (6) into Eqs. (10)

and (11),

In order to restore wave impedance (zW ), we need to

calculate the volume-averaged fields2 EVA and HVA:

zW =
EVA

Z0HVA

. (13)

Since the wave numbers in the periodically structured and

equivalent homogeneous media are equal, we need to establish

the correspondence of the field amplitudes in front of the

common exp(iK+z) multiplier. Accordingly, we define the

volume-averaged fields by performing integration over a single

unit cell with the multiplier exp(−iK+z) to cancel the phase

evolution:

EVA =
∫ zb+az

zb

ESA(z) exp(−iK+z)dz/az, (14)

HVA =
∫ zb+az

zb

HSA(z) exp(−iK+z)dz/az, (15)

where zb is an arbitrary location inside the structure. We

can also express the averaged fields through the harmonic

amplitudes by substituting Eqs. (5) and (6) into Eqs. (14)

and (15):

EVA =
∫

S

Em+,0(x,y)dx dy/axay, (16)

HVA =
∫

S

Hm+,0(x,y)dx dy/axay . (17)

We see that the volume-averaged fields do not depend on zb,

as their values are defined through the dominant Bloch-wave

harmonic amplitude, which is z independent.

For the extraction of E and H fields from the CST Mi-

crowave Studio simulations, we use electric and magnetic field

monitors. However, the raw microscopic magnetic field that

CST returns is not h(r), but rather b(r)/μ0 as a straightforward

solution of microscopic Maxwell’s equations. As this was

shown by Silveirinha et al.,28,32 the employment of the volume-

averaged magnetic induction BVA(r) instead of HVA(r) can give

an incorrect direction of the Poynting vector for negative-index

metamaterials.
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For the correct determination of the volume-averaged

magnetic field, we employ the definition

HVA =
BVA

μ0

− MVA, (18)

MVA =
∫

V
(r × J)dV

2V
, (19)

where MVA is the volume-averaged magnetization vector

and J is the current density. In principle, the magnetization

can be calculated by a numerical integration routine directly

from the definition. However, we choose another, more

elegant, approach following the findings of Silveirinha for the

transverse-averaged magnetic fields.30 First, we decompose

MVA into two parts: along the direction of propagation (unit

vector ûz) and orthogonal to it:

HVA =
BVA

μ0

− (MVA · ûz)ûz + ûz × (ûz × MVA). (20)

Then, we project the previous expression onto the tangential

plane. Taking into account that the magnetic field has domi-

nating polarization in the tangential plane provides

HVA =
BVA

μ0

+ ûz × (ûz × MVA) ≈
BSA

μ0

. (21)

This equation holds for the long-wavelength limit.28,32 Thus,

in order to calculate the correct values of the wave impedance

(and Poynting vector), one can use volume-averaged numerical

electric field EVA, but surface-averaged numerical magnetic

field BSA:

zW =
EVAμ0

Z0BSA

. (22)

We would like to remark that Eq. (22) makes a bridge

between our approach and that of papers with averaging

field procedures18–20 where effective magnetic functions are

obtained via volume averaging of B fields, but surface

averaging of H fields.

By deriving effective permittivity and permeability from

Eqs. (1) and (2), we find the MEP of the metamaterial. Ac-

cordingly, reversing Eqs. (1) and (2) for the Bloch impedance

(13), we end with the set of metamaterial WEP. Thus,

εM = n/zW , μM = nzW (23)

and

εW = n/zB , μW = nzB . (24)

The latter should be equal to those given by the NRW

method.6 We emphasize that determination of the propagation

constants and impedances is straightforward, does not involve

any inverse functions, and is made on the basis of the same

simulated fields for both wave and Bloch impedances.

We should mention a practical issue important for the

implementation of the proposed approach. Computing fields

by the finite-difference or finite-integral time-domain methods,

we should take into account a phase shift between the electrical

and magnetic fields connected with the staggered Yee mesh.

The electric and magnetic fields are calculated at different

time moments shifted by �t/2, where �t is the simulation

time step. For the case of CST Microwave Studio, which

we are using, the magnetic field phase is always shifted by

�φ = ω�t/2, so we corrected the magnetic field values by

corresponding phase factor exp(iω�t/2).

III. SPECIFIC EXAMPLES OF METAMATERIAL

STRUCTURES

We tested our approach on several examples, starting with

the simplest ones. The unit-cell sketches of the designs are

shown in Fig. 2. We considered (1) homogeneous slab [see

Fig. 2(a)], two cases: lossless and Lorentz dispersion in ε

and μ with negative index of refraction; (2) a set of the

nanospheres with the plasmonic resonances [see Fig. 2(b)]; (3)

split-cube MM that possess magnetic resonance and negative

permeability [see Fig. 2(c)]; (4) wire medium that gives

negative permittivity [see Fig. 2(d)]; (5) negative refractive

index fishnet MM [see Fig. 2(e)]; and (6) split-cube-in-carcass

MM [see Fig. 2(f)]. In all cases, the MM slab consisted of 10

monolayers. For comparison, WEP for three-monolayer-thick

slabs were calculated with the NRW method.6

A. Homogeneous materials

A slab of homogeneous material is the simplest object

to test the retrieval approach since the restored EPs can be

compared with the exact values. A homogeneous slab was

artificially divided into 10 meta-atoms of the size ax = ay =
az = 100 μm. For the case of the homogeneous medium, the

FIG. 2. (Color online) Sketches of the materials designs con-

sidered: homogeneous material (a), plasmonic nanospheres (b),

split-cube MM (c), wire medium (d), fishnet MM (e), and split-cube-

in-carcass MM (f).
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material and wave parameters are identical, so we should only

compare the given constitutive parameters with the retrieved

MEP.

For the homogeneous lossless slab with constant parameters

ε = 4 and μ = 1, the EPs were in a perfect agreement with

the theoretical permittivity and permeability (not shown). The

relative retrieval error was less than 0.2%, which can be

attributed to numerical dispersion effect in finite-difference

numerical simulations.

In another example, we consider the frequency dispersive

permittivity and permeability described by the Lorentz model

ε(ω) = ε∞ + εstat

ω2
0e

ω2
0e − iγeω − ω2

, (25)

μ(ω) = μ∞ + μstat

ω2
0m

ω2
0m − iγmω − ω2

, (26)

where ε∞ =1, εstat =1.7, ω0e = 2π × 198 × 109 s−1, γe =
2π × 1010 s−1, μ∞ =1, μstat =1.3, ω0m = 2π × 202 ×
109 s−1, γm = 2π × 1010 s−1.

The restored effective parameters are in good correspon-

dence with the original EPs (see Fig. 3). The small differences

(a)

(b)

(c)

(d)

FIG. 3. (Color online) Retrieved effective parameters (circles) of

the homogeneous medium with Lorentz dispersion in permittivity

and permeability: refractive index (a), impedance (b), permittivity (c)

and permeability (d), real (black) and imaginary (green/gray) parts.

Results are compared with the original values (solid lines).

are observed only in the resonant region around 200 THz

where losses are high. The retrieval results in Fig. 3 show that

retrieving through the Bloch-mode analysis is applicable to

a range of materials with or without losses with positive and

negative n, ε, and μ.

B. Metamaterial composed of plasmonic nanospheres

Metallic nanospheres possess plasmonic resonances. Being

arranged in the regular structure, the nanospheres with a radius

r ≪ λ make a MM. It is expected that the nanospheres MM

should have the permittivity which is different from the host

permittivity and its permeability should be close to 1 since the

nanospheres are nonmagnetic.

The silver nanospheres of the radius r = 30 nm were placed

in vacuum in the cubic array with the period ax = ay = az =
200 nm. Silver was considered as the Drude metal56 with

the plasma frequency ωp = 1.37 × 1016 s−1 and collision

frequency γc = 8.5 × 1013 s−1 (see Ref. 49). The sketch of

the design is shown in Fig. 2(b).

(a)

(b)

(c)

(d)

FIG. 4. (Color online) Effective parameters of the MM consisting

of plasmonic nanospheres: refractive index (a), impedance (b),

permittivity (c) and permeability (d), real (black) and imaginary

(green/gray) parts. Retrieved results by volume-averaged (circles)

and surface-averaged (triangles) fields are compared with the NRW

method (solid lines).
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Effective refractive indices restored with the NRW method

and our approaches are identical [see Fig. 4(a)] as it was

expected. Bloch impedance zB , retrieved with the field surface

averaging [see Fig. 4(b), triangles] is identical to the one

restored with the NRW method [Fig. 4(b), solid lines].

There is a little difference between wave impedance zW

[see Fig. 4(b), circles] and zB (triangles). They experience

slight oscillations around the value of zW ≃ 1 + 0i. As a

consequence of that, both permittivities exhibit resonances

around 660, 690, and 730 THz [see Fig. 4(c)], but of different

strength. At the same frequencies, the magnetic permeability

shows nonphysical negative imaginary part, so-called antires-

onance behavior that normally would correspond to the gain

in the system. However, material EPs εM and μM , restored via

the volume-averaged fields, are free from the antiresonances

on frequencies up to 700 THz. Small negative values of

Im(εM ) are due to the calculation errors with the staircase

approximation of the spherical shapes.

The permeability Re(μ), which is supposed to be around

1 since the nanospheres are nonmagnetic, is indeed around 1

on frequencies up to 700 THz, but starts to oscillate on higher

frequencies, especially at around 750 THz [see Fig. 4(d)]. It

looks as we have strong magnetism from the nonmagnetic MM

consisting of electric dipoles. In fact, at frequency 750 THz,

the condition for the first Bragg resonance is satisfied, so the

MM can not be considered as homogeneous and can not be

assigned with meaningful effective parameters.2

C. Split-cube metamaterial

We choose a split-cube MM as an example of a magnetic

material with negative permeability in the infrared range.13,50

The sketch of the design, which is a 3D generalization of

the symmetric split-ring resonator,51 is shown in Fig. 2(c).

The cubic unit cell of ax = ay = az = 250 nm consists of the

silver thin-wall structures (Drude metal) embedded in silica

(permittivity 2.25). The geometrical parameters were taken

the same as in Ref. 13.

In line with the previous cases, the refractive indices

retrieved with different methods coincide, showing a resonance

around 160 THz [see Fig. 5(a)]. Bloch and wave impedances

exhibit strong resonance behavior in the area around 160 THz.

A small peak in the impedance restored with the NRW method

only at the frequency 91 THz appears at the Fabry-Perot

resonance of the slab and is a numerical artifact intrinsic

to the S-parameter method [see Fig. 5(b)]. The spurious

peaks in the EPs due to Fabry-Perot resonances can be

avoided with wave propagation methods as it was reported in

Ref. 17.

Effective parameters restored via surface- and volume-

averaged fields expose strong antiresonance behavior for the

effective dielectric permittivity. Such behavior ordinary for

WEP can not be accepted in assigned MEP. The reasons for

very similar appearance of effective parameters revealed by

formulas (2) and (13) we assign to a strong magnetic reso-

nance, which brings domination of magnetic field performance

through BSA denominator and thus to formal equivalence of

effective impedances. However, the full picture of failure of

formula (13) has yet to be understood.

(a)

(b)

(c)

(d)

FIG. 5. (Color online) Effective parameters of the split-cube

magnetic MM: refractive index (a), impedance (b), permittivity

(c) and permeability (d), real (black) and imaginary (green/gray)

parts. Results by volume-averaged (circles) and surface-averaged

(triangles) approaches are compared with the NRW method (solid

lines).

D. Wire-medium structure

Wire medium52 is a well-known example of the negative-

permittivity MM. In the case of the square lattice of perfectly

conducting wires in vacuum, when radius of the wires r

is much less than the unit-cell size r ≪ a, an analytical

expression for the effective permittivity is given in Ref. 53:

εeff(ω) = 1 −
2πc2

a2ω2
(

ln a
2πr

+ 0.5275
) . (27)

We simulated the r = 5-μm-radius wires made from the

perfect electric conductor arranged in a square lattice with

ax = ay = 500 μm in vacuum [see the sketch in Fig. 2(d)].

Comparison of the retrieved and analytical EPs is presented in

Fig. 6.

Due to the rectangular spatial discretization of the round-

shaped wires in the simulations, we see the difference in

the effective impedances retrieved through the field-averaging

procedure (both of them!) and the NRW method. It causes

deviations in effective permittivities. Permittivity retrieved
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(a)

(b)

(c)

(d)

FIG. 6. (Color online) Effective parameters of the wire medium:

refractive index (a), impedance (b), permittivity (c) and perme-

ability (d), real (black) and imaginary (green/gray) parts. Results

by the volume-averaged (circles) and surface-averaged (triangles)

approaches and NRW method (solid line) are compared with the

analytical predictions (stars).

with the NRW method is closer to the analytical results [see

Fig. 6(c)]. What concerns permeability, the NRW method

retrieves paramagnetic Re(μW ) ≈ 1.2 [see Fig. 6(d)], while

the wire medium is expected to be a nonmagnetic MM. Within

the field-averaging approach, the retrieved μW perfectly

coincides with the theoretical prediction, while μM seems to

be more sensitive for the staircase approximation errors.

We should note that because we study wave propagation

perpendicular to the wires, no spatial dispersion effect showed

up during the restoration, and results are physically sensible.

E. Fishnet metamaterial

The fishnet MM (Ref. 49) is one of the most promising

negative-index metamaterials for the optical and infrared

regions. It consists of the metallic double wires extending

in the x and y directions [see the sketch in Fig. 2(e)].

We use the geometrical and material parameters of the

fishnet MM from Ref. 46, except adjusting the period in the z

direction to az = 150 nm. The unit-cell transverse sizes are

(a)

(b)

(c)

(d)

FIG. 7. (Color online) Effective parameters of the fishnet

negative-index MM: refractive index (a), impedance (b), permittivity

(c) and permeability (d), real (black) and imaginary (green/gray)

parts. Results by volume-averaged (circles) and surface-averaged

(triangles) approaches are compared with the NRW method (solid

lines).

ax = ay = 600 nm. Silver layers (silver treated as the Drude

metal) of the thickness 45 nm are separated with the MgF2

dielectric with refractive index n = 1.38 and thickness 30 nm.

This metal-dielectric-metal sandwich is placed in vacuum.

The refractive indices retrieved with our approach and

the NRW method are slightly different [see Fig. 7(a)]. This

is not surprising since the NRW method is applied to a

three-monolayer-thick slab. It is well known that the thin-slab

effective refractive index of the fishnet converges slowly to

the bulk values with the increase of the slab thickness.12,54

Our approach based on field propagation in 10 layers gives

the refractive index close to its bulk values. Bloch and wave

impedances are different as well [see Fig. 7(b)]. We also expect

that the NRW results would converge to ours if 10 layers will

be considered.

Effective parameters obtained by both types of field

averaging are quite close to each other. The feature of the

fishnet behavior is the negative-index region free from the

antiresonances both in ε and μ. The NRW results exhibit

hardly visible antiresonance for Im(ε), which is corrected via

field-averaging procedures.
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F. Split-cube-in-carcass metamaterial

A fishnet MM is an example of a medium with a negative

refractive index. To check that we can assign effective

parameters, which will not show any antiresonances, we

consider another negative-index metamaterial with strong

spatial dispersion, namely, split cube in carcass13,17 [see the

sketch in Fig. 2(f)]. Its remarkable property is extreme fast

convergence of parameters such that its effective refractive

index is the same for the one-layer-thick slab and for the bulk

MM represented by the infinite number of layers. However,

as was shown in Ref. 47, even being 3D cubic symmetric

by design, split cube in carcass is anisotropic in the resonant

region.

The cubic unit cell of ax = ay = az = 250 nm [Fig. 2(f)]

consists of the silver split cube (the same as in [Fig. 2(c)] nested

in the silver carcass, which is a kind of 3D wire medium. The

metallic structures are embedded in silica.

As the effective refractive index of the split cube in carcass

does not depend on the slab thickness, it is not surprising that

(a)

(b)

(c)

(d)

FIG. 8. (Color online) Effective parameters of the split-cube-in-

carcass negative-index MM: refractive index (a), impedance (b),

permittivity (c) and permeability (d), real (black) and imaginary

(green/gray) parts. Results by the volume-averaged (circles) and

surface-averaged (triangles) approaches are compared with the NRW

method (solid lines).

the NRW method and our approach give results coinciding

much better than for the fishnet [see Fig. 8(a)]. Nevertheless,

effective impedances, and therefore permittivities and perme-

abilities provided by all three approaches are different [see

Figs. 8(b)–8(d)].

We should also note that in both cases in the frequency

ranges beyond the resonances, the volume-averaging approach

produces physically sound results. As an illustration, we note

that diamagnetism observed in the Re(μW ) does not remain

in the Re(μM ), which is close to conventional 1 below the

resonant region.

IV. DISCUSSION AND CONCLUSIONS

We have suggested an approach for the extraction of

effective parameters of metamaterials based on the study

of dispersion properties of the Bloch waves propagating

in quasiperiodic structured materials. In all the cases with

single-mode propagation, our approach provides solid results

for the effective refractive indices, which can be attributed to

the bulk refractive indices of the metamaterials irrespectively

of their anisotropy and spatial dispersion. Our spectral analysis

approach is able to retrieve refractive indices for a wide

range of materials and structure geometries, which can be

lossy or lossless, dispersive, possess negative permittivity,

permeability, and refractive index values. The method is simple

and unambiguous, free from the “branch” and Fabry-Perot

problems, which are the issues for the reflection/transmission-

based NRW method. The results provided by the NRW method

are identical to the results obtained by our method in all

considered cases except for the case of the fishnet MM, where

EPs experience poor convergence to the bulk values. The

single-mode propagation of a MM can be checked during

the retrieval process from the fields mismatch monitoring

procedure.

The spectral analysis serves as a platform for further ad-

vance in retrieving EPs. Impedance retrieving is very sensitive

to the conditions of restoration and can lead either to WEP

or MEP. Employing surface-averaged fields of the dominating

Bloch mode, we obtain WEP, which are nearly identical for

those retrieved by the NRW method, but free from spurious

resonances appearing from the Fabry-Perot effects in slabs.

All that is needed for the MEP retrieval according to Refs. 2

and 37 is the volume averaging of the electric and magnetic

fields over the unit cell. Both retrievals (wave and material EPs)

are performed within a single computational cycle because

fields on the unit cells entrance facets or in its volumes are

available, and they can be exported from Maxwell’s solver

arrays. The approach works for MM slabs with thicknesses at

least 3–4 monolayers. Our approach adequately reveals the

typical nonmagnetic behavior of metamaterials away from

the resonance regions, which is problematic for the NRW

method. Therefore, we anticipate that the proposed approach

will become a useful tool for the characterization of both wave

and material effective properties of MMs.

It should be noted that the magnetic microfields returned by

Maxwells solvers are b/μ0 fields, while the volume-averaged

magnetic field HVA must be used. Possible implications of

ignoring this fact can be illustrated through the Poynting vector

calculations (Fig. 9). Here, the fishnet structure from Sec. III D
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FIG. 9. (Color online) z component of the Poynting vector of

the fishnet negative-index MM: volume-averaged Poynting vector

(red line with circles), correctly defined Poynting vector for the

fundamental Bloch harmonic (black line with squares), and flux

calculated through the volume-averaged electric and magnetic fields

of the fundamental Bloch harmonic (orange line with triangles).

is used. Poynting vectors are calculated according to three

formulas:

Sz1 = Re

(∫

V

[e × h∗]dV

)

,

Sz2 = Re[EVA × H∗
SA], (28)

Sz3 = Re[EVA × H∗
VA].

Straightforward calculations of the Poynting vector give us

the negative z component Sz3 (see orange line with triangles

in Fig. 9), which means that vectors k and S are parallel in the

negative-index domain. This is exactly what can happen if the

wrong formulation of the Poynting vector through vector b is

used as it is pointed out in Refs. 28 and 32. The consequences

of this are not only the wrong direction of the flux, but also the

negative value of the Re(z) because flux and impedance are

connected through the expression

Sz3 = Re(ez[EVA × H∗
VA])

= Re(EVAH ∗
VA) = Z0Re(zW )|HVA|2. (29)

However, employment of the volume-averaged electric and

surface-averaged magnetic fields improves the situation (black

line with squares). The Poynting vector Sz2 calculated through

them is very close to the averaged microscopic flux Sz1 (red

line with circles). Such calculations confirm the fact that on the

grid level, microfields b and h differ only by a constant. But,

fields averaged over a macrovolume bear principal differences.

The most intriguing part is the direct comparison be-

tween effective parameters restored with formulas (12), (13),

and (22). In Fig. 10, we plot results for three different

cases of impedance restoration and include also the NRW

restoration data. In fact, the volume-averaged fields provide

the incorrect result (stars), with negative Re(z) and double

antiresonances in Im(ε) and Im(μ). The situation is improved

when the surface-averaged (transverse-averaged) fields are

(a)

(b)

(c)

FIG. 10. (Color online) Effective parameters of the split-cube-

in-carcass negative-index MM: impedance (a), permittivity (b) and

permeability (c), real (black) and imaginary (green/gray) parts.

Results are obtained by formulas (22) (circles), (12) (triangles), (13)

(stars), and the NRW method (solid lines) approaches.

taken (triangles) instead of bulk fields in concordance with

the finding in Ref. 30. There is still one faint “attempt” of

an antiresonance with decreasing of Im(ε). And, there is

completely no antiresonance, when using the formula (21).

The corresponding curves are designated by circles in Fig. 10.

Unfortunately this approach can not be accepted as a universal

retrieving method because in some cases (see split-cube case in

Sec. III C) it fails. More deep analysis in the failure of formula

(22) is needed, but it lies beyond the scope of this paper.

We should admit that a direct extension of our approach

for the experimental characterization of MMs in the optical

range is challenging since there are no such small electric

and magnetic field detectors that could be placed inside the

MM unit cell without noticeable influence on its functionality.

Nevertheless, as the radio and microwave frequency range,

it is possible to record the fields at the spatial points inside

the metamaterial,40 enabling the direct application of our

approach.
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