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We consider a single-impurity atom confined to an optical lattice and immersed in a homogeneous Bose-Einstein

condensate (BEC). Interaction of the impurity with the phonon modes of the BEC leads to the formation of a

stable quasiparticle, the polaron. We use a variational mean-field approach to study dispersion renormalization

and derive equations describing nonequilibrium dynamics of polarons by projecting equations of motion into

mean-field-type wave functions. As a concrete example, we apply our method to study dynamics of impurity

atoms in response to a suddenly applied force and explore the interplay of coherent Bloch oscillations and

incoherent drift. We obtain a nonlinear dependence of the drift velocity on the applied force, including a

sub-Ohmic dependence for small forces for dimensionality d > 1 of the BEC. For the case of heavy impurity

atoms, we derive a closed analytical expression for the drift velocity. Our results show considerable differences

with the commonly used phenomenological Esaki-Tsu model.

DOI: 10.1103/PhysRevA.90.063610 PACS number(s): 67.85.−d, 71.38.Fp, 05.60.Gg

I. INTRODUCTION

The problem of an impurity particle interacting with a

quantum mechanical bath is one of the fundamental paradigms

of modern physics. Such general class of systems, often

referred to as polarons, is relevant to understanding electron

properties in polar semiconductors, organic materials, doped

magnetic Mott insulators, and high-temperature supercon-

ductors (see, e.g., [1–3]). The polaron problem is closely

related to the questions of macroscopic quantum tunneling

[4–6]. In the standard model of high-energy physics, the

way the Higgs field gives mass to various particles is also

often given in terms of polaron-type dressing [7,8]. While

the polaron problems have attracted considerable theoretical

and experimental attention during the last few decades, many

questions, especially addressing nonequilibrium dynamics,

remain unresolved. In this paper, we study theoretically a

polaron system that consists of an impurity atom confined to a

species-selective optical lattice and a homogeneous BEC. The

rich toolbox available in the field of ultracold atoms has already

made possible a detailed experimental study of Fermi polarons

[9–14] and stimulated active theoretical study of both Fermi

[14–18] and Bose polarons [19–33]. First experiments have

also started to explore physics connected to the Bose polaron

[34–38]. Additionally, cold-atomic ensembles are well suited

to the investigation of nonequilibrium phenomena [39–43]

since they are very well isolated from the environment and

their parameters can be tuned dynamically. There is thus

a growing interest in out-of-equilibrium polaron problems

[23,37,37,38,44–49] which remained out of reach in solid-state

systems due to short equilibration times.

We consider the system shown in Fig. 1(a) consisting of

a single-impurity atom, confined to the lowest Bloch band of

an optical lattice (hopping J , lattice constant a), immersed

in a weakly interacting Bose-Einstein condensate (BEC). The

BEC hosts gapless Bogoliubov phonons which can scatter off

the impurity, leading to polaron formation [19,27–30,32,33].

We subject the impurity to a constant force and examine in

detail how the dynamics of the impurity will be affected by its

interaction with the surrounding phonons. This is the central

focus of this article.
While it is well known that an isolated quantum mechanical

particle in a lattice will undergo coherent Bloch oscillations
(BO) when subject to a constant force, it is less obvious that a
composite quasiparticle, i.e. an impurity coupled to a phonon
bath, will display coherent BO. Here, we establish that the
Bose polaron can indeed undergo BO. Next, by calculating the
renormalized shape of the dispersion relation of the polaron,
we show that phonon dressing has a pronounced effect on
BO, which can be observed in experiments by measuring the
real-time dynamics of impurity atoms. Such experiments can
be done using recently developed quantum gas microscopes
with single-atom resolution [50–52], but it should be noted that
single-site resolution in the optical lattice is not a necessary
requirement to observe polaron BO.

Polarons in optical lattices were considered earlier by

Bruderer et al. [23,25], however, in contrast to our work,

they considered the strong-coupling limit of the so-called

“small” polaron where impurity hopping is subdominant to

phonon coupling. This regime was further studied in [26], and

is indeed the traditional approach to lattice polarons [53,54]

in solid-state systems. We use an alternative approach which

is flexible enough to describe both limits of weakly coupled

“large” polarons and heavy impurities, which can both be

achieved in experiments with cold-atomic Bose-Fermi [55–60]

or Bose-Bose [36,61–65] mixtures. Our approach is based

on a variational mean-field (MF) ansatz [66,67], which we

generalized earlier to study spectral properties of unconfined

impurities in Bose gases [33]. By extending this approach

to lattice impurities, we calculate the full nonequilibrium

dynamics of polaron BO. In particular, we find that polaron

formation takes place on a time scale ξ/c set by the BEC (ξ is
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FIG. 1. (Color online) (a) An impurity (blue) is immersed in a homogeneous 3D BEC (red) and constrained to the lowest band of a 1D

optical lattice. Strong interactions with the Bose gas lead to polaron formation and a modified dispersion. (b) Applying a constant force to the

impurity alone results in polaron Bloch oscillations (BO). Although the speed of sound c is never exceeded, BO are superimposed by a constant

drift velocity vd as well as diffusion of the polaron wavepacket.

the healing length, c the speed of sound), and subsequently

we observe pronounced BO [see Fig. 1(b)]. Additionally,

to gain insight into the nature of the coherent polaron

dynamics, we introduce an analytic “adiabatic approximation”

which correctly predicts the predominant characteristics of

the polaron trajectory in the subsonic regime, e.g., overall

shape, and frequency of oscillations. As an added advantage

of our approach, in contrast to the strong-coupling polaron

approximation, we can approach the supersonic regime, near

which we find strong decoherence of the BO in connection

with a large drift velocity vd, i.e., a net polaron current. Such

incoherent transport can only be sustained in the presence

of decoherence mechanisms, and indeed we observe phonon

emission in this regime.

Historically, the study of the interplay between coherent

BO and inelastic scattering (e.g., on phonons) was pioneered

in the solid-state context by Esaki and Tsu [68], who derived

a phenomenological relation between the driving force F

and the net (incoherent) current vd, and proposed a generic

Ohmic regime for weak driving, i.e., vd ∼ F . The precision of

ultracold-atom experiments allowed a detailed verification of

the Esaki-Tsu model in thermal gases [69], and thus triggered

theoretical interest in this topic [70,71]. While all these

works focused on noncondensed gases, Bruderer et al. [23]

considered a one-dimensional (1D) BEC where the phonons

provide an Ohmic bath (see, e.g., [72]) and established a

finite current (i.e., vd �= 0) even for subsonic impurities, with a

current-force relation vd(F ) of a shape similar to that predicted

by Esaki and Tsu.

In this article, we address the question how polaron BO de-

cohere, and in particular how the polaron drift velocity depends

on the driving force, for condensates in arbitrary dimensions

d = 1,2,3, . . . . In the weak-driving regime, we find that the

drift current strongly depends on dimensionality d and deviates

from the Ohmic behavior predicted by the phenomenological

Esaki-Tsu relation. We show that a quantitative description

of polaron drift can be obtained by applying Fermi’s golden

rule to calculate the phonon emission of oscillating impurity

atoms. This analysis correctly reproduces the current-force

relation vd ∼ F d observed in our numerics for weak driving.

The paper is organized as follows. In Sec. II, we introduce

our model and employ the Lee-Low-Pines unitary transforma-

tion to make use of the discrete translational invariance (by

a lattice period) of our problem. Then, in Sec. III we discuss

the ground state of the impurity-Bose system in the presence

of a lattice, and calculate the renormalized polaron dispersion.

We also present the MF phase diagram which shows where

the subsonic to supersonic transition takes place. In Sec. IV,

we discuss polaron BO within the adiabatic approximation.

We also show that direct imaging of real-space impurity

trajectories reveals the renormalized polaron dispersion. How

nonadiabatic corrections modify BO is studied in Sec. V using

a time-dependent variational wave function. In Sec. VI, we

discuss incoherent polaron transport and present numerical as

well as analytical results for its dependence on the driving

force. Finally, in Sec. VII we summarize our results.

II. MODEL

In this section, we present our theoretical model, starting

from the microscopic Hamiltonian in Sec. II A. We subse-

quently simplify the latter by applying Bogoliubov theory for

the BEC as well as nearest-neighbor tight-binding approxima-

tion for the free impurity. Then, we derive the corresponding

impurity-boson interaction, which requires careful treatment

of the two-particle scattering problem in order to derive

correct system parameters. Having established the connection

to microscopic properties, we discuss realistic numbers and

introduce a dimensionless polaron coupling constant. In Sec.

II B, we apply the Lee-Low-Pines transformation to our model,

which is at the heart of our formalism and makes conservation

of the polaron quasimomentum explicit.

Here, as well as in the subsequent three sections, we will

focus on the case of a three-dimensional (3D) BEC (d = 3), but

an analogous analysis can be done for dimensions d = 1,2. We

will discuss the difference in dynamics of systems of different

dimensionality in Sec. VI.

A. Microscopic origin

We start by considering weakly interacting bosons of mass

mB in three spatial dimensions (d = 3) and at zero temperature,

which will be described by the field operator φ̂(r). Next,

we introduce a single impurity of mass mI, which can be

063610-2
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described by a second field operator ψ̂(r). The impurity is

furthermore confined to a deep 3D species-selective optical

lattice which is completely immersed in the surrounding Bose

gas. For concreteness, we assume the lattice to be anisotropic

with substantial tunneling only along tubes in the x direction,

but our analysis can easily be carried over to arbitrary lattice

dimensions. The bosons and impurity interact via a contact

interaction of strength gIB. Since we wish to study transport

properties of the dressed impurity, we will also consider a

constant force F acting on the impurity alone. In experiments

this force can, e.g., be applied using a magnetic field gradient

[73–75]. The microscopic Hamiltonian of this system reads as

(� = 1)

Ĥ =
∫

d3r

{

φ̂†(r)

[

−
∇2

2mB

+
gBB

2
φ̂†(r)φ̂(r)

]

φ̂(r)

+ ψ̂†(r)

[

−
∇2

2mI

+ VI(r) + gIBφ̂†(r)φ̂(r)

]

ψ̂(r)

}

. (1)

Here, VI(r) denotes the optical lattice potential seen by the

impurity and gBB is the boson-boson interaction strength. The

impurity is confined to a single 1D tube, where the optical

potential is assumed to have a form

VI(r) = V0[sin2(k0x) + sin2(k0y) + sin2(k0z)] − Fx, (2)

including a linear potential −Fx describing the constant force

acting on the impurity. Here, k0 = 2π/λ is the optical wave

vector used to create the lattice potential.

1. Free Hamiltonians

We will assume the optical lattice to be sufficiently deep

to employ nearest-neighbor tight-binding approximation. The

operator ĉ
†
j (written in second quantization) creates a particle

at site j . The corresponding Wannier functions can be

approximated by local oscillator wave functions

wj (r) =
(

πℓ2
ho

)−3/4
e−(r−jaex )2/(2ℓ2

ho), (3)

where ℓho = 1/
√

mIω0 is the oscillator length in a microtrap

and ω0 = 2
√

V0Er the corresponding microtrap frequency,

given by the recoil energy Er = k2
0/2mI [76]. This gives rise

to an effective hopping J between lattice sites, such that, after

inclusion of the uniform force, the free impurity Hamiltonian

reads as

ĤI = −J
∑

j

(ĉ
†
j+1ĉj + H.c.) − F

∑

j

jaĉ
†
j ĉj . (4)

Here, we assume that hopping of the impurity along y

and z directions is negligible Jy,z ≪ J . Note that within

this approximation, the resulting model possesses rotational

symmetry around the lattice direction ex .

In the absence of the impurity, bosons condense and form

a BEC. In the spirit of Refs. [23,25,30], we will assume that

the impurity-boson interaction does not significantly alter the

many-body spectrum of the bath, allowing us to treat the

bosons as an unperturbed homogeneous condensate within

the Bogoliubov approximation [77]. Consequently, the BEC is

fully characterized by the speed of sound c, the healing length

ξ , and its density n0. The elementary excitations of the system

are gapless (Bogoliubov) phonons âk, the dispersion relation

of which reads as

ωk = ck

√

1 + 1
2
ξ 2k2. (5)

Here, k ∈ R
3 is the 3D phonon momentum (with k denoting

its absolute value), and the free-boson Hamiltonian is given by

ĤB =
∫

d3k ωk â
†
kâk. (6)

In this paper,
∫

d3k =
∫ ∞
−∞ dkxdkydkz denotes the integral

over all momenta from the entire k space.

2. Impurity-boson interaction

In the discussion of the interaction Hamiltonian describing

impurity-boson scattering, we restrict ourselves to the tight-

binding limit. This allows us to expand the impurity field in

terms of Wannier orbitals

ψ̂(r) =
∑

j

ĉjwj (r). (7)

Using this decomposition, Eq. (1) yields the following expres-

sion for the impurity-boson Hamiltonian:

ĤIB = gIB

∑

j

ĉ
†
j ĉj

∫

d3r|wj (r)|2φ̂†(r)φ̂(r), (8)

where we neglected phonon-induced hoppings (the validity of

this approximation will be discussed further in the following).

An important question is how the interaction strength gIB

in the simplified model (8) above relates to the measurable

impurity-boson scattering length aIB. While for unconfined

impurities this relation is usually derived from the Lippmann-

Schwinger equation describing two-particle scattering, it is

more involved for an impurity confined to a lattice. In this

case, the new scattering length aeff
IB has to be distinguished

from its free-space counterpart, and can even be substantially

modified due to lattice effects [78,79]. Furthermore, also the

effective range reff
IB of the interaction between a free boson and

an impurity confined to a lattice can be modified by the lattice.

We can take this effect into account in our model by choosing

a proper extent ℓho of Wannier functions in Eq. (8).

In the following, we will not calculate the numerical relation

between aeff
IB (or reff

IB ) in the lattice and its free-space counterpart

aIB. Instead, we assume that these numbers are known, either

from numerical calculations [78,79] or from an experiment

[80], and work with the effective model (8). In Appendix A,

we discuss in detail how aeff
IB and reff

IB relate to our model

parameters gIB and ℓho, in the tight-binding case.

3. Polaron Hamiltonian

Next, in order to derive a simplified Hamiltonian, we

replace bare bosons φ̂(r) by Bogoliubov phonons âk. In doing

so, we will assume sufficiently weak interactions between the

impurity and the bosons, thus causing negligible quantum

depletion of the condensate. This allows us to neglect two-

phonon processes corresponding to terms such as âkâk′ in

the full Hamiltonian. As shown in [25] and, via a different

approach, in Appendix B of this paper, it is justified for

|gIB|ξ−3 ≪ 4c/ξ. (9)

063610-3
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Under this condition, and provided that phonon-induced

hopping can be neglected, we arrive at a Hamiltonian which is

closely related to the one derived by Fröhlich [81]:

Ĥ =
∫

d3k

{

ωk â
†
kâk +

∑

j

ĉ
†
j ĉje

ikxaj (â
†
k + â−k)Vk

}

+ gIBn0 − J
∑

j

(ĉ
†
j+1ĉj + H.c.) − F

∑

j

jaĉ
†
j ĉj , (10)

as we show in a more detailed calculation in Appendix B.

Here, the phonon-impurity interaction is characterized by

Vk = (2π )−3/2√n0gIB

(

(ξk)2

2 + (ξk)2

)1/4

e−k2ℓ2
ho/4, (11)

where ℓho is the oscillator length in the tight-binding Wannier

function [see Eq. (3)]. The second term in the first line of

Eq. (10) ∼ ĉ
†
j ĉj describes scattering of phonons on an impurity

localized at site j (with amplitude Vk). This term thus breaks

the conservation of total phonon momentum (and number),

and we stress that phonon momenta k can take arbitrary values

∈ R
3, not restricted to the Brillouin zone (BZ) defined by the

impurity lattice.1

Phonon-induced tunneling, which in the nearest-neighbor

case has the form

ĤJ -ph =
∑

j

ĉ
†
j+1ĉje

ikxaj (â
†
k + â−k)V

(1)
k + H.c., (12)

can be neglected when |V (1)
k | ≪ |Vk|. Using the result for V

(1)
k

from Eq. (B19) in Appendix B, this condition reads as in terms

of Wannier functions

|〈wj+1|eik·r |wj 〉| ≪ |〈wj |eik·r |wj 〉|. (13)

It is automatically fulfilled for a sufficiently deep lattice,

or provided that ka ≪ 1 for typical phonon momenta k.

In the latter case, we may expand eik·r ≈ 1 + ik · r in the

overlap above. The zeroth-order term thus vanishes because

of orthogonality of Wannier functions, and the leading-order

term is |〈wj+1|k · r|wj 〉| � ak ≪ 1.

4. Coupling constant and relation to experiments

As we discussed earlier, in contrast to Refs. [23,25] we want

our analysis to be applicable to the case of “large” polarons,

characterized by a phonon cloud with radius exceeding the

impurity lattice spacing ξ > a. Such polarons are typical when

interactions are weak compared to impurity hopping, leading

to a loosely confined phonon cloud. Indeed, it is convenient to

measure the strength of interactions by defining the following

dimensionless coupling constant:

geff =

√

n0g
2
IB

ξc2
, (14)

1When the host BEC atoms are subject to a lattice potential, the

phonon momenta k appearing in Eq. (10) should be restricted to the

BZ. In this paper, we consider only the case when BEC atoms are not

affected by the optical lattice.

which appears naturally in our formalism. It describes the ratio

between characteristic impurity-boson interactions EIB =
gIB

√

n0ξ−3 and typical phonon energies Eph = c/ξ , geff =
EIB/Eph. Let us note that Tempere et al. [30] introduced an

alternative dimensionless coupling constant α = 2
π
m−2

redn0g
2
IB,

where mred = 1/ (1/mI + 1/mB) is the reduced mass. It is

related to our choice by

α =
1

π

[

1 +
mB

mI

]−2

g2
eff. (15)

Because in this expression the impurity mass enters as an

additional parameter, which is not required to calculate geff,

we prefer to use geff instead of α in this work.

For experimentally realized Bose-Bose [36,61,63] or Bose-

Fermi mixtures [60,62], we find that background interaction

strengths are of the order geff ∼ 1, but using Feshbach

resonances values as large as geff = 15 [33] should be within

reach. For standard rubidium BECs, characteristic parameters

are ξ ≈ 1 μm, c ≈ 1 mm/s and for rubidium in optical lattices

one typically has hoppings J � 1 kHz [76].

B. Lee-Low-Pines transformation

To make further progress, we will now simplify the

Hamiltonian (10). To this end, we make use of the Lee-

Low-Pines transformation, making conservation of polaron

quasimomentum explicit, and include the effect of the constant

force F acting on the impurity. To do so, we apply a

time-dependent unitary transformation

ÛB(t) = exp

(

iωBt
∑

j

j ĉ
†
j ĉj

)

, (16)

where ωB = aF denotes the BO frequency of the bare

impurity. In the new basis, the (time-dependent) Hamiltonian

reads as

H̃(t) = Û
†
B(t)ĤÛB(t) − iÛ

†
B(t)∂t ÛB(t), (17)

and we introduce the quasimomentum basis in the usual way

ĉq := (L/a)−1/2
∑

j

eiqaj ĉj , (18)

where L denotes the total length of the impurity lattice and q =
−π/a, . . . ,π/a is the impurity quasimomentum in the BZ. The

transformation (16) allows us to assume periodic boundary

conditions for the Hamiltonian (17), despite the presence of a

constant force F .

In a second step, we apply the Lee-Low-Pines unitary

transformation [82], described by

ÛLLP = eiŜ, Ŝ =
∫

d3k kx â
†
kâk

∑

j

aj ĉ
†
j ĉj . (19)

The new frame, obtained by applying the transformation

ÛLLP to our system, will be called polaron frame in the

following. Here, kx = k · ex denotes the x component of

k.2 The action of the Lee-Low-Pines transformation on

2In practice, when doing calculations, we find it convenient to

introduce spherical coordinates around the x axis, such that kx =

063610-4
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an impurity can be understood by noting that it can be

interpreted as a displacement in quasimomentum space. Such

a displacement q → q + δq (modulo reciprocal lattice vectors

2π/a) is generated by the unitary transformation eiδqX̂, where

the impurity position operator is defined by X̂ =
∑

j aj ĉ
†
j ĉj .

Comparing this to Eq. (19) yields δq =
∫

d3k kx â
†
kâk, which

is the total phonon momentum operator. Thus, we obtain

Û
†
LLPĉqÛLLP = ĉq+δq . (20)

For phonon operators, on the other hand, transformation (19)

corresponds to translations in real space by the impurity

position X̂ and one can easily see that

Û
†
LLPâkÛLLP = eiX̂kx âk. (21)

Now, we apply the Lee-Low-Pines transformation to the

Hamiltonian (10). To this end, we first write the free-impurity

Hamiltonian in quasimomentum space

ĤI = −2J
∑

q∈BZ

ĉ†q ĉq cos(aq). (22)

Next, we make use of the fact that only a single impurity is

considered, i.e.,
∑

q∈BZ ĉ
†
q ĉq = 1, allowing us to simplify

ĉ
†
j ĉje

ikx X̂ = ĉ
†
j ĉje

ikxaj . (23)

Note that although the operator X̂ in Eq. (23) consists of a

summation over all sites of the lattice, in the case of a single

impurity the prefactor ĉ
†
j ĉj selects the contribution from site j

only.

We proceed by employing Eqs. (20)–(23) and arrive at the

Hamiltonian

Ĥ(t) = Û
†
LLPH̃ÛLLP

=
∑

q∈BZ

ĉ†q ĉq

{ ∫

d3k[ωk â
†
kâk + Vk(â

†
k + âk)]

− 2J cos

(

aq − ωBt − a

∫

d3k′k′
x â

†
k′ âk′

)

+ gIBn0

}

.

(24)

Let us stress again that this result is true only for a single

impurity, i.e., when
∑

q∈BZ ĉ
†
q ĉq = 1. We find it convenient to

make use of this identity and pull out
∑

q∈BZ ĉ
†
q ĉq everywhere

to emphasize that the Hamiltonian factorizes into a part

involving only impurity operators and a part involving only

phonon operators. Notably, the Hamiltonian (24) is time

dependent and nonlinear in the phonon operators. From the

equation we can moreover see that, in the absence of a

driving force F = 0 (corresponding to ωB = 0), the total

quasimomentum q in the BZ is a conserved quantity. We stress,

however, that the total phonon momentum
∫

d3kkâ
†
kâk of the

system is not conserved.

k cos ϑ with ϑ the polar angle. In these coordinates, rotational

symmetry around the direction of the impurity lattice ex is made

explicit, and all expressions are independent of the azimuthal

angle ϕ.

Even in the presence of a nonvanishing force F �= 0 the

Hamiltonian is still block-diagonal for all times,

Ĥ(t) =
∑

q∈BZ

ĉ†q ĉqĤq(t), (25)

and quasimomentum evolves in time according to

q(t) = q − F t, (26)

i.e., Ĥq(t) = Ĥq(t)(0). This relation has the following physical

meaning: If we start with an initial state that has a well-defined

quasimomentum q0, then the quasimomentum of the system

remains a well-defined quantity. The rate of change of the

quasimomentum is given by F , i.e., q(t) = q0 − F t . Thus,

states that correspond to different initial momenta do not mix

in the time evolution of the system.

III. POLARONS WITHOUT THE DRIVE: DISPERSION

RENORMALIZATION

Before turning to the nonequilibrium problem of polaron

BO in the next section, we discuss the equilibrium properties

at F = 0. Because we employed the Lee-Low-Pines canonical

transformation above, quasimomentum q is explicitly con-

served in the Hamiltonian (24). This enables us to treat every

sector of fixed q separately for the characterization of the

equilibrium state.

We begin the section by introducing the MF polaron

wave function in Sec. III A, where we also minimize its

variational energy. This readily gives us the renormalized

polaron dispersion, the properties of which we discuss in

Sec. III B. There, we moreover present the MF polaron phase

diagram.

A. Model and MF ansatz

To describe the polaron ground state, we apply the vari-

ational ansatz of uncorrelated coherent phonon states, which

has been used successfully for polarons in the absence of a

lattice [1,33,67],

∣

∣�MF
q

〉

=
∏

k

∣

∣αMF
k

〉

. (27)

Here |αMF
k 〉 denotes coherent states with amplitude αMF

k ∈ C:

∣

∣αMF
k

〉

= exp
[

αMF
k â

†
k −

(

αMF
k

)∗
âk

]

|0〉. (28)

We note that the wave function (27) is asymptotically exact in

the limit of a localized impurity, i.e., when J → 0. However,

from the case of unconfined impurities it is known that the MF

ansatz (27) is unable to capture strong-coupling physics [83]

corresponding to the regime of very large interaction strength

geff [20,25,29,30].

To obtain self-consistency equations for the polaron ground

state, we minimize the MF variational energy HMF:

HMF =
〈

�MF
q

∣

∣Ĥq

∣

∣�MF
q

〉 != min. (29)
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As shown in Appendix C, the MF energy functional can be

written as

H [ακ ] = −2Je−C[ακ ] cos(aq − S[ακ ])

+
∫

d3k[ωk|αk|2 + Vk(αk + α∗
k )], (30)

where we introduced the functionals

C[αk] =
∫

d3k|αk|2[1 − cos(akx)], (31)

S[αk] =
∫

d3k|αk|2 sin(akx). (32)

Equation (29) together with (30) then yields the MF self-

consistency equations for the polaron ground state

αMF
k = −Vk/�k

[

αMF
κ

]

, (33)

where we defined yet another functional

�k[ακ ] = ωk + 2Je−C[ακ ]

× [cos(aq − S[ακ ]) − cos(aq − akx − S[ακ ])].

(34)

This frequency �k[αMF
κ

] can be interpreted as the renormalized

phonon dispersion at total quasimomentum q.

Importantly for numerical evaluation, Eq. (33) reduces

to a set of only two self-consistency equations for CMF =
C[αMF

k ] and SMF = S[αMF
k ]: Plugging αMF

k from (33) into the

definitions (31) and (32) readily yields

CMF =
∫

d3k

∣

∣

∣

∣

Vk

�k(CMF,SMF)

∣

∣

∣

∣

2
[

1 − cos(akx)
]

, (35)

SMF =
∫

d3k

∣

∣

∣

∣

Vk

�k(CMF,SMF)

∣

∣

∣

∣

2

sin(akx). (36)

Moreover, from the analytic form of �k [Eq. (34)] we find

the following exact symmetries of the solution under spatial

inversion q → −q:

CMF(−q) = CMF(q), SMF(−q) = −SMF(q). (37)

B. Results: Equilibrium properties

In Fig. 2 we show the solutions CMF and SMF of the

self-consistency equations (35) and (36) as a function of

total quasimomentum q for different hoppings. For weak

interactions and not too close to the subsonic to supersonic

transition, we find SMF(q) ≈ 0 while CMF(q) ≈ const. In this

limit, the MF polaron dispersion becomes

ωp(q) ≈ Eb − 2J ∗ cos(qa) (38)

[cf. (30)]. Here, J ∗ = Je−CMF

describes the renormalized

hopping of the polaron, and we obtain a similar exponential

suppression as reported in [23]. Eb describes the binding

energy of the polaron.

In Fig. 3(a), we show the full polaron dispersion relation.

For substantial interactions geff = 10 chosen in Fig. 3 we find

a transition from a subsonic to a supersonic polaron around

Jc ≈ 0.8c/a. For hoppings close to this transition point, the

renormalized dispersion deviates markedly from the cosine

FIG. 2. (Color online) The MF polaron ground state at total

quasimomentum q is characterized by CMF(q) (upper thin lines)

and SMF(q) (lower thick lines). These quantities are plotted for

various hoppings J , all in the subsonic regime. When approaching

the transition towards supersonic polarons (which takes place slightly

above J = 0.8c/a in this case), the phase shift SMF(q) develops a

strong dispersion around q = π/a. At the same point, a pronounced

local minimum of CMF(q) develops. We used ξ = 5a,ℓho = a/
√

2,

and geff = 10.

shape familiar from bare impurities, and we observe strong

renormalization at the edge of the BZ, q = ±π/a. At the

same time, the overall energy is shifted substantially as a

consequence of the dressing with high-energy phonons.

In Fig. 3(b), we show the MF phase diagram. To this

end, we calculated the critical hopping Jc where the maximal

polaron group velocity in the BZ exceeds 90% of the speed

of sound c. (We only went to 90% because close to the

transition to supersonic polarons, solving the MF equations for

C[αMF
k ] and S[αMF

k ] becomes increasingly hard numerically.)

We observe that for large interactions, the polaron is subsonic,

even for bare hoppings J one order of magnitude larger than

the noninteracting critical hopping J (0)
c = c/2a. This is in

direct analogy to the strong mass renormalization predicted

for free polarons (see, e.g., [30,33,67]). Interestingly, we

FIG. 3. (Color online) (a) MF polaron dispersion HMF(q) for

different impurity hoppings J , where the BEC MF shift gIBn0 was

neglected (it depends not only on the coupling strength geff, but

also on the BEC density n0 which we did not specify here). For

larger J � 0.8c/a ≈ Jc, the group velocity vg = ∂qHMF(q) exceeds

the speed of sound c for some quasimomentum q. The interaction

strength was geff = 10. (b) Critical hopping J where the maximal

group velocity maxq vg(q) is 90% of c, as a function of interaction

strength squared g2
eff. For large interactions geff ≫ 1, the hopping

where the polaron becomes supersonic is much larger than in the

noninteracting case (dashed line). Error bars are due to the finite

mesh size used to raster parameter space. In both figures, we have

chosen ξ = 5a and ℓho = a/
√

2.
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FIG. 4. (Color online) Dependence of the quasiparticle weight Z

of the polaron on quasimomentum q. We used the static MF polaron

ground state to calculate Z = ZMF, which according to Eq. (41) is

related to the average number of phonons in the polaron cloud ZMF =
e−〈Nph〉. We have chosen ξ = 5a, ℓho = a/

√
2, and geff = 10 as in

Figs. 2 and 3(a).

observe different behavior for weakly and strongly interacting

polarons; We fitted the critical hopping to the curve

Jc(vg = 0.9c) = 0.9J (0)
c + g2

effC1

[

1 +
(

geff

gc
eff

)4
]

, (39)

varying parameters C1,g
c
eff. In this way, we obtain a crossover

at gc
eff = 14.2 for the parameters from Fig. 3.

We also consider the the quasiparticle weight Z, which is

another quantity characterizing the polaron ground state. Z

is defined as the overlap between the bare and the dressed

impurity states,

Z = |〈0|�q〉|2, (40)

and can, e.g., be measured using radiofrequency absorption

spectroscopy of the impurity [9,12,32,33]. Within the MF

approximation (27) |�q〉 = |�MF
q 〉, Z is directly related to the

number of phonons in the polaron cloud,

ZMF = exp

(

−
∫

d3k|αMF
k |2

)

= e−〈Nph〉. (41)

Note, however, that this relation between the quasiparticle

weight and the number of excited phonons is specific to the

MF wave function and originates from its Poissonian phonon

number statistics.

In Fig. 4, the dependence of the MF quasiparticle weight on

quasimomentum is shown. For the relatively strong coupling

we have chosen, Z ≪ 1 and the corresponding number of

phonons is Nph = − ln(ZMF), taking values between Nph = 5

and 9 in the particular case of Fig. 4. Importantly, we observe

that the polaron properties are strongly quasimomentum

dependent. Especially close to the subsonic to supersonic

transition (i.e., for larger hopping J ), we find an abrupt

change of the quasiparticle weight close to the edge of the

BZ. This is related to the peak observed in the renormalized

polaron dispersion in Fig. 3(a). We interpret both these features

as an onset of the subsonic to supersonic transition, which

takes place at the edges of the BZ for strong impurity-boson

interactions as in Fig. 3.

IV. POLARON BLOCH OSCILLATIONS AND ADIABATIC

APPROXIMATION

In this section, we discuss how a uniform force acting on the

impurity affects coherent polaron wavepacket dynamics. To

this end, we derive the equations of motion of a time-dependent

variational state, and give an approximate solution using the

adiabatic principle. From the latter we calculate real-space

impurity trajectories. We close the section by pointing out

how these trajectories can be used to measure the renormalized

polaron dispersion in an experiment. In the following section,

we will check the validity of the adiabatic approximation by

solving full nonequilibrium dynamics.

A. Time-dependent variational wave functions

We now treat the fully time-dependent Hamiltonian from

Eq. (24), allowing us to solve for polaron dynamics. Our logic

is as follows: we decompose the wave function of the impurity-

BEC system into different quasimomentum sectors, and use

the conservation of quasimomentum of the polaron, which we

established in Sec. II B, to treat each quasimomentum sector

independently.

To this end, at time t = 0, we consider a general initial wave

function ψ in
j of the impurity3 when the force is switched off,

and for simplicity we assume complete absence of phonons.

Thus, the initial quantum state reads as

|�(0)〉 =
∑

j

ψ in
j ĉ

†
j |0〉c ⊗ |0〉a, (42)

where |0〉c and |0〉a denote the impurity and phonon vacuum,

respectively. Note that Eq. (42) is true not only in the laboratory

frame, but also in the polaron frame, i.e., after applying the

Lee-Low-Pines transformation (16). Because in the absence

of phonons we have â
†
kâk|�(0)〉 = 0, for the initial state from

Eq. (42) it holds Ŝ|�(0)〉 = |�(0)〉.
The initial state (42) considered in most of the remaining

part of this paper can be realized experimentally by different

means. For instance, if Feshbach resonances are used to

realize strong impurity-boson interactions, one can quickly

change the magnetic field strength from a value far away

from the resonance to a value very close to it at time t = 0.

Therefore, an initially noninteracting impurity, immersed in

a cold BEC, suddenly starts to interact strongly with the

surrounding phonons as the magnetic field approaches the

Feshbach resonance.

Alternatively, if a different internal (e.g., hyperfine) state of

the majority bosons is used as an impurity as, e.g., in [37], the

initial state can be prepared by applying a microwave pulse,

which is possible also in combination with local addressing

techniques [37,84]. In this case, however, the preparation of a

phonon vacuum state as in Eq. (42) is hard to achieve since

a spin-flip always comes along with a local excitation of the

BEC. Nevertheless, the true initial state for this situation can be

calculated exactly if after a local spin flip the impurity is tightly

3To be precise, ψ in
j denotes the projection of the initial impurity

wave function ψ in
I (r) onto the j th Wannier basis function wj (r), i.e.,

ψ in
I (r) =

∑

j ψ in
j wj (r).
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confined by an addressing beam [37,84] until the dynamic

evolution is started at time t = 0. In fact, a sufficiently tight

local confinement of the impurity corresponds to vanishing

hopping J = 0, and in this case the MF ansatz (27) yields

the exact phonon ground state with coherent state amplitudes

α
(J=0)

k . Therefore, assuming the system has enough time to

relax to its ground state after preparation of the tightly confined

impurity on the central site j = 0, the initial state reads as

|�(0)〉 = ĉ
†
0|0〉c ⊗

∏

k

∣

∣α
(J=0)

k

〉

. (43)

Like the state from Eq. (42), this wave function is invariant

under the Lee-Low-Pines transformation (16), but in this case

because of a trivial action of the impurity position operator

X̂|�(0)〉 = 0.

Next, focusing on Eq. (42) again for concreteness, we

decompose the initial state into its different quasimomentum

sectors, which is achieved by taking a Fourier transform of the

impurity wave function,

fq =
1

√
L/a

∑

j

eiqajψ in
j . (44)

When the force is switched on at time t = 0, all quasimomen-

tum sectors evolve individually without any couplings between

them. As a consequence, the amplitudes fq defined above are

conserved, and we may write the time-evolved quantum state

in the polaron frame as

|�(t)〉 =
∑

q∈BZ

fq ĉ
†
q |0〉c ⊗ |�q(t)〉. (45)

At given initial quasimomentum q(0) = q and for finite

driving force F we can make a variational ansatz for the

phonon wave function similar to the MF case (27), but with

time-dependent parameters:

|�q(t)〉 = e−iχq (t)
∏

k

|αk(t)〉. (46)

To derive equations of motion for αk(t), we use Dirac’s time-

dependent variational principle and arrive at (for details see

Appendix D)

i∂tαk(t) = �k[ακ (t)]αk(t) + Vk. (47)

Here, �k[ακ (t)] is the renormalized phonon dispersion [see

Eq. (34)], but evaluated for time dependent ακ (t). Note that

�k explicitly depends on q(t) = q − F t . In Appendix D, we

also derive an equation describing the dynamics of the global

phases χq(t):

∂tχq =
i

2

∫

d3k(α̇∗
kαk − α̇kα

∗
k) +

∏

k

〈αk|Ĥq(t)|αk〉. (48)

B. Adiabatic approximation

Before presenting the full numerical solutions of Eqs. (47)

and (48), we first discuss the adiabatic approximation. It as-

sumes that the polaron follows its ground state without creating

additional excitations, i.e., without emission of phonons. We

may thus approximate the dynamical phonon wave function by

|�q(t)〉 ≈ e−iχq (t)
∣

∣�MF
q(t)

〉

. (49)

The intuition here is that the time scale for polaron formation

is much faster than the dynamics of BO. In particular,

|�MF
q(t)〉 is simply the equilibrium polaron MF solution for

quasimomentum q(t) obtained in Sec. III, which changes in

time according to

q(t) = q(0) − F t. (50)

Additionally, we allow for a time dependence of the global

phase, which we obtain from Eq. (48):

χq(t) =
∫ t

0

dt ′HMF(q(t ′)). (51)

C. Polaron trajectory

Next, we derive the real-space trajectory of the polaron.

To this end, we calculate the impurity density, which can be

expressed as

〈ĉ†j ĉj 〉 =
1

L/a

∑

q2,q1∈BZ

eia(q2−q1)jAq2,q1
(t)f ∗

q2
fq1

. (52)

This formula is derived in Appendix E, and it requires

knowledge of the time-dependent overlaps

Aq2,q1
(t) = 〈�q2

(t)|�q1
(t)〉. (53)

They consist of two factors Aq2,q1
= Aq2,q1

Dq2,q1
. The phases

obey |Aq2,q1
| = 1 and are given by

Aq2,q1
(t) = exp{i[χq2

(t) − χq1
(t)]}, (54)

whereas the amplitudes Dq2,q1
, determined by phonon dress-

ing, are

Dq2,q1
=

∏

k

〈αk(q2,t)|αk(q1,t)〉. (55)

Within the adiabatic approximation we set αk(q,t) =
αMF

k [q(t)]. For noninteracting impurities, the phases alone

give rise to BO, while the amplitude is trivial D = 1. When

interactions of the impurity with the phonon bath are included,

|D| < 1 and interference is suppressed.

To get an insight into the BO of polarons, we begin by dis-

cussing a special case of a polaron wavepacket prepared with

narrow distribution in quasimomentum space. In particular,

we will consider an initial ground-state polaron wavepacket

centered around q = 0, which is described by

|�(0)〉 =

√

2LI√
2π

∑

q∈BZ

e−q2L2
I ĉ†q |0〉c ⊗

∣

∣�MF
q

〉

, (56)

and where LI denotes its width in real space. We will assume

LI ≫ a in the analysis below, such that all wavepackets carry

a well-defined quasimomentum. Therefore, in Eq. (52) only

neighboring momenta |q2 − q1| ≪ 2π/a contribute, allowing

us to expand the exponent of Aq2,q1
to second order in |q2 −

q1|. In this way, we obtain the adiabatic impurity density (the

detailed calculation can be found in Appendix F)

n(x,t) = e
− [x−X(t)]2

2[L2
I
+Ŵ2(t)]

{

2π
[

L2
I + Ŵ2(t)

]}−1/2
. (57)

Note that due to the large spatial extent assumed for the polaron

wavepacket, we treated aj = x as a continuous variable here.
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The center-of-mass coordinate of the polaron is determined

by Aq2,q1
and it reads as

X(t) = X(0) + [HMF(F t) − HMF(0)]/F. (58)

The amplitude Dq2,q1
, meanwhile, leads to reversible broaden-

ing of the polaron wavepacket

Ŵ2(t) =
∫

d3k
(

∂qα
MF
k

∣

∣

q=−F t

)2
. (59)

From Eq. (58), we thus conclude that a measurement of the

polaron center X(t) directly reveals the renormalized polaron

dispersion relation: For a polaron momentum q(t) = −F t ,

the value of the energy HMF(q(t)) can be extracted from X(t).

Although derived from a simplified theory, we expect that this

result holds more generally beyond MF approximation of the

polaron ground state.

V. NONADIABATIC CORRECTIONS

In this section, we study the full nonequilibrium dynamics

of the driven polaron by numerically solving for the time-

dependent MF wave function (46). We start from the phonon

vacuum and some initial impurity wave function ψ in
j [see

Eq. (42)], mostly chosen to be a Gaussian wavepacket with

a width LI of several lattice sites and vanishing mean

quasimomentum q = 0. After switching on the impurity-

boson interactions at time t = 0, we find polaron formation

and discuss the validity of the adiabatic approximation for

a description of the subsequent dynamics (in Sec. V A). We

also briefly discuss the case of initially localized impurities (in

Sec. V B).

To solve equations of motion (47), we employ spherical

coordinates k,ϑ,φ and make use of azimuthal symmetry

around the direction of the impurity lattice. We introduce a

grid in k − ϑ space (typically 170 × 40 grid points) and use

a standard MATLAB solver for ordinary differential equations.

From the so-obtained solutions αk,ϑ (t) and χq(t), we calculate

Aq2,q1
(t) using Eqs. (54) and (55), giving access to impurity

densities for arbitrary impurity initial conditions [see Eq. (52)].

A. Impurity dynamics beyond the adiabatic approximation

To extend our analysis beyond the assumption that the

system follows its ground state adiabatically, we now consider

the full dynamical equations (47) and (48). We assume that

the system starts in the initial state (42) with the phonons

in their vacuum state, and at time t = 0 interactions between

the impurity and the bosons are switched on abruptly. We

chose the initial impurity wave function ψ in
j to be a Gaussian

wavepacket (standard deviation LI) as in the discussion of the

adiabatic approximation (see Sec. IV C). Thus, the amplitudes

fq read as fq = e−(qLI)
2

(2LI)
1/2(2π )−1/4, as in Eq. (44). The

global phases vanish initially, i.e., we set χq(0) = 0 for all

quasimomenta q.

In Fig. 5, the evolution of the impurity density is shown

for a strongly interacting case. Although the impurity hopping

J = 1.7c/a exceeds the critical hopping J (0)
c = 0.5c/a where

a bare particle becomes supersonic by more than a factor of

3, we observe well-defined BO with group velocities of the

wavepacket below the speed of sound c. By investigating the

FIG. 5. (Color online) Impurity density 〈ĉ†j ĉj 〉 (color code) with

ja = x for a heavily dressed impurity. The polaron dynamics, starting

from phonon vacuum, is compared to the result from the adiabatic

approximation (red, dashed line) as well as the trajectory of a

noninteracting impurity wavepacket (blue, dashed-dotted line). The

parameters are J = 1.7c/a, F = 0.1c/a2, geff = 17.32, ℓho = a/
√

2,

and ξ = 5a.

mean phonon number we moreover find that polaron formation

takes place on a time scale ξ/c after which a quasi-steady state

is reached.

Along with the plot in Fig. 5 we show the result of the

adiabatic approximation. Although the latter can not capture

the initial polaron formation, it is expected to be applicable

once a steady state is reached.4 In the case shown in the figure,

however, nonadiabatic corrections play an important role and

we observe a pronounced polaron drift in the direction of

the force F . Moreover, irreversible broadening of the polaron

wavepacket takes place. Nevertheless, the shape of the BO

trajectory, including its pronounced peaks and the amplitude

of oscillations, can be understood from the adiabatic result.

For smaller hopping and smaller interactions, the adiabatic

approximation compares even better with the full numerics, as

is shown in Fig. 6.

To perform a more quantitative analysis when adiabaticity

may be assumed, we determine the center of mass X(t) =
∑

j j 〈ĉ†j ĉj 〉 of the impurity wave function from the full

variational calculation and fit it to

X(t) =
vfit

g

�
cos(�t + ϕ) + vdt + X0. (60)

Here, vfit
g denotes the maximum polaron velocity in the absence

of a drift. In Fig. 7, the resulting fit parameters are shown as

a function of the bare hopping J . We compare the value of

vfit
g to the polaron group velocity expected from adiabatic ap-

proximation vfit
g |adiab.. The latter is obtained by fitting Eq. (60)

to the adiabatic trajectory. While the adiabatic theory captures

correctly the qualitative behavior, on a quantitative level it

overestimates the group velocity. This, however, is related to

our initial conditions and not to a shortcoming of the adiabatic

4After the quench, there is excess energy which will, however, be

carried away by phonons. When tracing out these emitted phonons,

we expect the remaining state to be well described by a ground-state

polaron, provided that equilibration mechanisms are available.
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FIG. 6. (Color online) Impurity density 〈ĉ†j ĉj 〉 (color code) with

ja = x for a weakly driven polaron. For comparison, the trajectory

of a noninteracting impurity wavepacket is shown (dashed-dotted

line). The polaron dynamics is well described by the adiabatic

approximation (dashed line), which in turn is given by the polaron

dispersion relation [see Eq. (58)]. Thus, direct imaging of the

impurity density allows a measurement of the polaron dispersion. The

parameters are J = 0.4c/a, F = 0.06c/a2, geff = 10, ℓho = a/
√

2,

and ξ = 5a.

approximation in general. When starting the dynamics from

the MF polaron state (56) instead of considering an interaction

quench of the impurity, we find excellent agreement, with

deviations below 1%. This is demonstrated by a few data points

in Fig. 7. The quench, on the other hand, leads to the creation of

phonons, which are also expected to contribute to the dressing

of the impurity in general [25].

Close to the subsonic to supersonic transition around

Jc ≈ c/a, the polaron drift velocity takes substantial values

of ≈ 0.2c. We also note that, in the entire subsonic regime, the

FIG. 7. (Color online) The impurity center of mass X(t) obtained

from our time-dependent variational calculation can be fitted to the

expression from Eq. (60). The dependencies of the fitting parameters

vd, vfit
g as well as � on the hopping strength J are shown in this

figure. In the subsonic regime (J � 1.2c/a), the fitted maximum

group velocity vfit
g (red bullets) is compared to the result obtained

from the adiabatic approximation (solid line). To this end, we fitted

the polaron trajectory obtained from the adiabatic approximation to

the same curve from Eq. (60) and plotted the so-obtained velocity

vfit
g |adiab.. The observed deviations of our data from the adiabatic theory

can be explained by the initial quench: when starting the dynamics

from the MF polaron ground state (instead of a noninteracting

impurity) the resulting trajectory vfit
g |MF ini. is in excellent agreement

with our theoretical prediction (triangles △). The parameters were

F = 0.2c/a2, geff = 10, ξ = 5a, and ℓho = a/
√

2.

fitted BO frequency � is precisely given by the bare-impurity

value ωB (to within < 0.5% in the numerics). However, once

the polaron becomes supersonic we observe a decrease of

the frequency to � < ωB. We attribute this effect to the

spontaneous emission of phonons in regions of the BZ where

the polaron becomes supersonic. Along with phonon emission

comes emission of net phonon momentum �qph, which has

to be replenished by the external driving force �qph = F�t .

Thus, an extra time �t is required for each Bloch cycle and as

a consequence we expect the BO frequency of the polaron to

decrease.

Within the adiabatic approximation we have shown that the

wavepacket trajectory X(t) allows a direct measurement of the

renormalized polaron dispersion. We found that even when

nonadiabatic effects are appreciable, the polaron dispersion

can be reconstructed. BO can therefore be used as a tool to

measure polaronic properties, which are of special interest

in the strongly interacting regime. We emphasize that our

scheme does not rely on the specific variational method used

above. As long as the ground state of the impurity interacting

with the phonons of the surrounding BEC is described by a

stable polaron band, the real-space BO trajectory maps out the

integrated group velocity, i.e., the band structure itself.

B. Beyond wavepacket dynamics

Motivated by their possible application for measurements of

the renormalized dispersion, we focused on polaron wavepack-

ets so far. Our variational treatment, however, is applicable to

any initial wave function. In Fig. 8 we show two examples

starting from an impurity which is localized on a single lattice

site, still assuming phonon vacuum initially. Since all momenta

are occupied, we first observe interference patterns which

are symmetric under spatial inversion x → −x. For large

enough interactions and sufficiently strong driving, however,

we observe diffusion of the polaron and the interference

patterns disappear. The maximum impurity density drops

substantially and the symmetry under spatial inversion is lost.

Moreover, we observe a finite drift velocity of the polaron.

VI. POLARON TRANSPORT

In this section, we discuss the polaron drift velocity vd,

which is the most important nonadiabatic effect and can also

be interpreted as a manifestation of incoherent transport.

After some brief general remarks about the problem, we

present our numerical results for the current-force relation

vd(F ). These are obtained, like in the last section, from

the time-dependent variational MF ansatz (46), requiring

numerical solutions of Eqs. (47) and (48). Next, we derive a

closed, semianalytical expression for the current-force relation

vd(F ) from first principles in the limit of small polaron

hopping J ∗ = Je−CMF

and show that our predictions are in

good quantitative agreement with the full time-dependent MF

numerics. As a result, we find that the polaron drift in the

weak-driving limit strongly depends on the dimensionality

of the system. At the end of this section, we discuss the

connection between our results and the Esaki-Tsu relation,

which originates from a purely phenomenological model of

incoherent transport in a lattice potential. We find that, in the
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FIG. 8. Impurity density 〈ĉ†j ĉj 〉 (color code) with ja = x for an initially localized state on a single lattice site [x(0) = 20a in this concrete

example]. (a) Weak driving F = 0.06c/a2 and (b) stronger driving F = 0.2c/a2. Other parameters are J = 0.3c/a, geff = 10, ξ = 5a, and

ℓho = a/
√

2 in both cases.

polaron case, this simplified model is unable to capture many

key features of our findings. In particular, it completely fails

in the weak-driving regime and predicts a wrong dependence

on the hopping strength J .

A. General observations

The fundamental Hamiltonian (10) is manifestly time

independent, and thus total energy is conserved. When the

impurity slides down the optical lattice, the loss of potential

energy Ėpot = −Fvd requires a gain of radiative energy Eγ

in the form of phonons Ėγ = Fvd. [This relation can also

formally be derived from Eq. (17).] Therefore, the nonzero

drift velocity of the polaron wavepacket observed, e.g., in

Fig. 1(b) comes along with phonon emission, albeit its velocity

never exceeds the speed of sound c. Such phonon emission is

not in contradiction to Landau’s criterion for superfluidity,

which is appropriate only for impurities (or obstacles in

general) in a superfluid moving with a constant velocity.

However, the system considered here is driven by an external

force F which gives rise to periodic oscillations of the net

quasimomentum of the system q(t). We thus expect phonons

to be emitted at multiples of the BO frequency ω = nωB, with

rates γph(nωB). Using Ėγ =
∑

n nωBγph(nωB), we can express

the drift velocity as

vd = a
∑

n

nγph(nωB). (61)

B. Numerical results

In Fig. 9 we present numerical results for the current-

force dependence at different hopping strengths J , in linear

(a) and double-logarithmic scale (b). These curves were

obtained by solving for the variational time-dependent MF

wavefunction (46). Like in the last section, we started from

phonon vacuum and assumed a zero-quasimomentum impurity

wavepacket extending over a few lattice sites. The center of

mass X(t) of the resulting polaron trajectory was then fitted to

Eq. (60) from which vd was obtained as a fitting parameter.

All curves have a similar qualitative form: For small force

ωB � c/ξ , the polaron current increases monotonically with

F . Somewhere around ωB ≈ c/ξ the curvature changes and

the polaron drift velocity takes its maximum value vmax
d for

a force FNDC. For even larger driving ωB, we find negative

differential conductance, defined by the condition dvd/dF <

0. The maximum is also referred to as negative differential

conductance peak. Previously, all these features have been

predicted by different polaron models for impurities in 1D

condensates [23,45].

From the double-logarithmic plot in Fig. 9(b) we observe

a sub-Ohmic behavior in the weak-driving regime. For the

smallest achievable forces F , we can approximate our curves

by power laws vd ∼ F γ . The observed exponents in Fig. 9(b)

are in a range γ = 3.0 (for J = 0.3c/a, geff = 3.16) to

γ = 1.5 (for J = 0.5c/a, geff = 3.16). While this behavior

is clearly sub-Ohmic, it is hard to estimate how well these

power laws extrapolate to the limit F → 0. Going to even

smaller driving is costly numerically because the required total

simulation time for a few Bloch cycles T ∼ 1/F becomes

large.

To our knowledge, the sub-Ohmic behavior in the weak-

driving regime was not previously observed. As we discuss at

the end of this section, it goes beyond the phenomenological

Esaki-Tsu model for incoherent transport in lattice models.

We show in the following that it is moreover tightly linked

to the dimensionality d of the condensate providing phonon

excitations. For 1D systems, which were studied in some

depth in the literature [23,45,46], we do in fact expect Ohmic

behavior for F → 0. This is in agreement with the results of

[23,45,46].

C. Semianalytical current-force relation

Now, we want to extend our formalism used to describe the

static polaron ground state in Sec. III by including quantum

fluctuations. To this end, we apply the following unitary

transformation:

Û (q) =
∏

k

exp
{

αMF
k (q)â

†
k −

[

αMF
k (q)

]∗
âk

}

, (62)

where in the new frame âk describes quantum fluctuations

around the MF solution in the absence of driving, F = 0. In the

case of a nonvanishing force F �= 0, we can analogously obtain

corrections to the adiabatic MF polaron solution (46). To this

end, we have to make the transformation (62) time dependent,

Û (t) := Ûq((t)), where q(t) = q(0) − F t [see Eq. (50)].
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FIG. 9. (Color online) (a) Dependence of the polaron drift velocity vd [obtained from the fit Eq. (60)] on the driving force F , for interaction

strength geff = 3.16 and various hoppings (top: J = 0.5c/a, middle: J = 0.3c/a, bottom: J = 0.1c/a). All curves show the same qualitative

features: for small force F the polaron current increases with F , it reaches its maximum vmax
d at the negative differential conductance peak

at FNDC and for stronger driving F > FNDC negative differential conductance dvd/dF < 0 is observed. For each J we also show the result

from our analytical model (64) of polaron transport (solid lines), free of any fitting parameters. We find excellent agreement for J = 0.3c/a

and J = 0.1c/a. We also plotted the prediction of an extended model [dashed lines, solution of the truncated Hamiltonian (63)], which for

J = 0.5c/a yields somewhat better results. In (b) we show the same data [legend from (a) applies], but in double-logarithmic scale. In the

lower left corner we indicated an Ohmic power-law dependence ∼ F (thin solid line). Comparison to our data shows a sub-Ohmic current-force

dependence in the weak-driving regime (the approximate power laws have exponents in a range between 1 and 3). It starts roughly when

ωB = aF < c/ξ , which is indicated by a dashed vertical line in (b). For all curves we used ξ = 5a and ℓho = a/
√

2 and simulated at least three

periods of BO assuming an initial Gaussian impurity wavepacket with a width LI of three lattice sites.

By applying Ûq((t)), defined by Eq. (62) above, to

the polaron Hamiltonian (17) we obtain the following

time-dependent Hamiltonian describing quantum fluctuations

around the adiabatic MF polaron solution in the case of a

d-dimensional condensate:

H̃(t) =
∫

dd k �k(q(t))â
†
kâk + O(J ∗â2)

+ iF

∫

dd k
[

∂qα
MF
k (q(t))

]

[â
†
k − âk]. (63)

Here, we introduced J ∗(q(t)) := J exp[−CMF(q(t))] and

O(J ∗â2) denotes terms describing corrections to the adiabatic

solution beyond the MF description of the polaron ground

state. The leading-order terms have a form ∼ J ∗âkâk′ and can

be treated following ideas by Kagan and Prokof’ev [85]. In

the rest of this paper, however, we will discard such terms and

assume that the MF polaron state provides a valid starting point

to calculate corrections to the adiabatic approximation. Note

that the time-dependent ansatz (46) used for our calculations

of nonequilibrium dynamics includes corrections due to the

additional terms of order O(J ∗â2). As a side remark, we also

mention that from Eq. (63) it becomes apparent why, in the

absence of driving, �k describes the renormalized phonon

dispersion in the polaron frame.

1. Results: Analytical current-force relation

In the following, we will employ Fermi’s golden rule to

calculate nonadiabatic corrections, corresponding to phonon

excitations due to the terms in the second line of Eq. (63). To

leading order in J ∗ we will derive (in Sec. VIC2) the following

expression for the current-force relation:

vd(F )=Sd−28π
J ∗2

0

aF 2

kd−1V 2
k

(∂kωk)
[1 − sinc(ak)] +O(J ∗

0 )3, (64)

where k is determined by the condition that ωk = ωB. Here,

J ∗
0 := limJ→0 J ∗(q) is the renormalized polaron hopping in

the heavy impurity limit (which is independent of q), and

Sn = (n + 1)π (n+1)/2/Ŵ(n/2 + 3/2) denotes the surface area

of an n-dimensional unit sphere. sinc(x) is a shorthand notation

for the function sin(x)/x.

Importantly, our model yields the closed expression (64) for

the current-force relation, at least for heavy polarons. Although

this limit has been considered before [23], we are not aware of

any such expression describing incoherent polaron transport

and derived from first principles. Our result is semianalytic, in

the sense that the prefactor J ∗
0 has to be calculated numerically

from an integral [see Eq. (72)].

In Fig. 9 we compare our numerical results to the semi-

analytical expression (64). We obtain excellent agreement for

both cases of small and intermediate hopping J = 0.1c/a and

J = 0.3c/a. For large J = 0.5c/a very close to the subsonic

to supersonic transition, larger deviations are found in the

weak-driving limit aF � c/ξ , which in view of the fact that

our result (64) is perturbative in the hopping strength J ∗, does

not surprise us. Interestingly, for large force aF � c/ξ , our

semianalytical theory yields good agreement for all hopping

strengths. We will further elaborate on the conditions under

which our model works in Sec. VIC3.

From Eq. (64) we can furthermore obtain a number of

algebraic properties of the polaron’s current-force relation. To

begin with, let us discuss the dependence of the drift velocity on

system parameters. Because Vk ∼ geff and J ∗
0 = J + O(g2

eff),

we obtain

vd ∼ g2
eff + O

(

g4
eff

)

. (65)

Moreover, the leading-order contribution in the hopping

strength scales like

vd ∼ J 2 + O(J 3). (66)
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FIG. 10. (Color online) Dependence of the negative differential

conductance peak position, characterized by FNDC and vmax
d , on the

system parameters. In (a) and (b), the hopping J is varied while the

coupling geff = 3.16 is fixed. In (c) and (d), in contrast, the interaction

strength geff is varied while keeping J = 0.4c/a fixed. In (b) and

(d), a double-logarithmic scale is used, allowing us to read off the

indicated power-law dependencies from best fits to the data (dashed

lines) vmax
d ∼ J 2 and vmax

d ∼ g2
eff (for small geff). The position FNDC,

in contrast, is only weakly J dependent (a) and we can not observe

any clear interaction dependence in (c). The dashed horizontal line

in (c) shows the mean of our data. The indicated error bars in (a)

and (c) are due to the finite mesh used for sampling the underlying

current-force relations.

In Fig. 10, we investigate the position of the negative differen-

tial conductance peak, obtained from the full time-dependent

variational simulations of the system. For small hopping J and

weak interactions geff we identify power laws whose exponents

agree well with our expectations (65) and (66) derived above.

Next, we investigate the behavior in the weak-driving

regime. A series expansion of Eq. (64) around F = 0 yields

vd = F dg2
eff(J

∗)2ξ 2 a3+dSd−2

cd+16
√

2π2
+ O

(

F d+1,J ∗3
0

)

. (67)

This explains the strong sub-Ohmic behavior we found in Sec.

VI B, and furthermore shows that the latter strongly depends

on the dimensionality d of the condensate. In particular, for

d = 1, we arrive at Ohmic behavior as found in [23,45,46]. The

numerical results for J � 0.3c/a in Fig. 9 are also consistent

with the power law vd ∼ F 3 predicted in Eq. (67). Note, how-

ever, that for larger J a comparison of the exponents is difficult

because, even for the smallest numerically achievable driving

F , some residual curvature is left and, more importantly, higher

orders in J ∗ can not simply be neglected.

For large driving, on the other hand, we arrive at the

following asymptotic behavior in the continuum limit ℓho = 0

of the impurity lattice:

vd =
2d/4−1

π2
Sd−2

(

a

c

)d/2−2

ξ 1−d/2g2
eff(J

∗
0 )2F−3+d/2

+O
(

F−4+d/2,J ∗3
0

)

. (68)

We can not compare our results in Fig. 9 to this power

law because nonvanishing ℓho �= 0 was considered there.

Interestingly from a theoretical perspective, as a consequence

of Eq. (68), in d � 6 dimensions we expect the negative

differential conductance peak to disappear. For nonvanishing

ℓho it reappears of course, but its position may be located at

very large F . This effect, however, is simply connected to

the absence of interacting phonons at the Bloch frequency.

Therefore, in more than six spatial dimensions coherent Bloch

oscillations can never overcome incoherent scattering, in

contrast to what we find in lower-dimensional systems.

In the following (Sec. VIC2), we will derive Eq. (64), before

we discuss its range of validity as well as possible extensions

(in Sec. VIC3).

2. Derivation of the current-force relation

To derive Eq. (64), we start by noting that the driving term

in Eq. (63), i.e., F [∂qα
MF
k (q(t))], is TB = 2π/ωB periodic in

time. We can thus expand it in a discrete Fourier series

∂qα
MF
k (q(t)) =

∞
∑

m=−∞
A

(m)

k eiωBmt , (69)

where the Fourier coefficients read as

A
(m)

k =
a

2π

∫ π/a

−π/a

dq
[

∂qα
MF
k (q)

]

eiamq . (70)

Using partial integration and a series expansion of αMF
k in J ∗,

we find for m � 0

A
(m)

k = iδm,1aJ ∗
0

Vk

ω2
k

(eikxa − 1) + O(J ∗)2. (71)

Here, we employed that CMF(q) = CMF
0 + O(J ∗) and

SMF(q) = O(J ∗) and we used J ∗
0 = Je−CMF

0 , where

CMF
0 =

∫

d3k
V 2

k

ω2
k

[1 − cos(akx)] . (72)

The coefficients for m < 0 can be obtained from symmetry

A
(−m)

k = A
(m)∗
k .

Next, we want to apply Fermi’s golden rule to calculate

phonon emission due to the driving term ∼ F [∂qα
MF
k (q(t))]

in Eq. (63). Before doing so, we notice that the renormalized

phonon frequency �k(q(t)) has a time-dependent contribution.

However, we can treat the latter as a perturbation itself and find

that to leading order in time-dependent perturbation theory

(from which Fermi’s golden rule is obtained), it has a vanishing

matrix element 〈0|â†
kâk|0〉 = 0. Then, from Fermi’s golden

rule we obtain

γph =
∞

∑

m=1

2πF 2

∫

dd k
∣

∣A
(m)

k

∣

∣

2
δ(ωk − mωB). (73)

Plugging in Eq. (71) yields our result (64) if we make use of the

fact that (to the considered order) phonons are emitted only on

the fundamental frequency ωB, and using Eq. (61), vd = aγph.

In Appendix G, a somewhat simpler derivation is presented,

which, however, only works in the weakly interacting regime

where J ∗ = J and provided that F is sufficiently small.
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3. Discussion and extensions

In this section, we will further discuss under which

conditions our analytical result (64) is valid. In particular,

we try to understand Fig. 9(b) in more detail. To this end, we

suggest an extension of our model, beyond the expression (73)

obtained from Fermi’s golden rule.

To begin with, we investigate the effect of higher-order

contributions in the polaron hopping J ∗. While an analytical

series expansion is cumbersome, we note that the truncated

Hamiltonian (63), from which we started, is integrable. Since

it does not couple different phonon momenta k �= k′, we only

have to solve dynamics of a driven harmonic oscillator at

each k. This can be done numerically using coherent phonon

states, and takes into account all orders in the renormalized

hopping J ∗. Compared to a solution of the full time-dependent

MF dynamics, which includes couplings between different

momenta, it is still cheaper numerically.

In Fig. 9(b), we also compare our results to such a full so-

lution of the truncated Hamiltonian (63) (dashed lines). While

for the smallest hopping J = 0.1c/a only small corrections to

the result (64) from Fermi’s golden rule are obtained, we find

large corrections for J = 0.3c/a and 0.5c/a in weak-driving

regime aF � c/ξ (deviations by up to two orders of magnitude

are observed).

To understand why this is the case, we first recall that

to leading order (i.e., vd ∼ J ∗2
0 ) only phonon emission on

the fundamental frequency ωB contributes [see Eq. (71)]. A

higher-order series expansion moreover shows that to third

order in J ∗
0 , only phonons with frequencies ωk = 2ωB on the

second harmonic contribute to vd. Therefore, we expect higher-

order contributions in J ∗
0 to lead to phonon emission on higher

harmonics. In Fig. 11, we plot the energy density of emitted

phonons, calculated from the truncated Hamiltonian (63).

Indeed, for large hopping J = 0.5c/a and weak driving

F = 0.048c/a2 we observe multiple resonances in Fig. 11(a).

For the same force but smaller hopping J = 0.1c/a in contrast,

only the fundamental frequency is relevant [see Fig. 11(c)].

From the comparison in Fig. 9, we moreover observe that

the result (64) from Fermi’s golden rule, which is perturbative

in J ∗, works surprisingly well in the strong-driving regime

(aF � c/ξ ), even for hoppings as large as J = 0.5c/a close

to the transition to the supersonic regime. To understand why

this is the case, we analyze the energy density of phonons

for large force F = 5.4c/a2 in Figs. 11(b) and 11(d). We find

that in both cases of large and small hopping, J = 0.5c/a in

(b) and J = 0.1c/a in (d), only emission on the fundamental

frequency contributes. This is generally expected in the strong-

driving regime aF > cξ , as can be seen from a simple scaling

analysis. Using Eq. (73), we expect the rate of change of the

energy density ǫ(k,t) for driving with fixed frequency ωB (in

d = 3 dimensions) to scale like

∂

∂t
ǫ(k,t) ∼ k2

∣

∣A
(m)

k

∣

∣

2 1

∂kωk

. (74)

Estimating A
(m)

k ∼ ∂qα
MF
k (q) ∼ Vk/ωk , we find the following

scalings with momentum:

∂

∂t
ǫ(k,t) ∼

{

k if k ≪ 1/ξ,
1
k3 if k ≫ 1/ξ.

(75)

FIG. 11. (Color online) Phonon energy density ǫ(k,t) in units of

c of the truncated Hamiltonian (63) as a function of time and radial

momentum k = |k|. We integrated over the entire momentum shell

of radius k and included the measure in the density, i.e., the total

phonon energy is Eph(t) =
∫

dk ǫ(k,t). The results were obtained by

solving full dynamics of the truncated Hamiltonian (63) and starting

from vacuum. Parameters are F = 0.048c/a2 and J = 0.5c/a in (a),

F = 5.4c/a2 and J = 0.5c/a in (b), F = 0.048c/a2 and J = 0.1c/a

in (c), and F = 5.4c/a2 and J = 0.1c/a in (d). Positions of the first

four resonances ωk = nωB for n = 1,2,3,4 are indicated by dashed

horizontal lines. Other parameters are geff = 3.16, ξ = 5a, and ℓho =
a/2 in all cases.

Thus, for ωB > c/ξ , i.e., for k > 1/ξ , phonon emission on

higher harmonics ωk = nωB with n � 2 is highly suppressed.

Finally, emission on the fundamental frequency ωk = ωB

is captured by Fermi’s golden rule (64) up to corrections of

order J ∗6
0 , as can be shown using a series expansion of A

(m)

k to

second order in J ∗
0 . Thus, in the strong-driving regime, where

mostly the fundamental frequency contributes, only weak J

dependence can be expected. This is fully consistent with

Fig. 10(d) showing how the negative differential conductance

peak varies with J . Hardly any deviations from the power

law (66) derived from Fermi’s golden rule can be observed

there.

D. Insufficiencies of the phenomenological Esaki-Tsu model

In this section, we discuss the relation of our results to

the phenomenological Esaki-Tsu model [68]. While the latter

explains some of the qualitative features of the observed

current-force relations, we find that it is insufficient for their

detailed understanding. Nevertheless, a comparison to this

model clarifies how an impurity atom in an optical lattice

immersed in a thermal bath [69] differs from a particle

immersed in a superfluid, as discussed in this paper. In the

former case, the Esaki-Tsu relation is valid [69] and can even

be rigorously derived from microscopic models [70,71].

We begin by a brief review of the Esaki-Tsu model and

derive its basic predictions for the polaron case. Afterwards,

we compare these expectations to our numerical results and

discuss the differences.
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1. Phenomenological Esaki-Tsu model

Esaki and Tsu considered an electron in a periodic lattice,

subject to a constant electric field. Using nearest-neighbor

tight-binding approximation, the dispersion relation reads as

ωq = −2J cos (qa). Because of the external field the particle

undergoes Bloch oscillation, so long as incoherent scattering

is absent. To include decoherence mechanisms with a rate

1/τ , the relaxation time approximation is employed and the

following closed expression for the resulting drift velocity was

derived [68]:

vd = 2Ja
ωBτ

1 + (ωBτ )2
. (76)

We will not rederive this result here, however, it is

instructive to consider the limiting cases F → 0,∞. The

essence of the relaxation time approximation is the assumption

that a wavepacket evolves coherently for a time τ . Then,

incoherent scattering takes place and instantly the particle

equilibrates in the state of minimal energy, i.e., at q = 0. In

the meantime, the distance traveled in real space is

�x =
∫ τ

0

dt ∂qωq =
2J

F
[1 − cos(ωBτ )]. (77)

In the weak-driving limit ωB ≪ 1/τ , we can expand the cosine

and find vd = �x/τ = Jτa2F , which explains the Ohmic

behavior in Eq. (76). In the strong-driving limit ωB ≫ 1/τ ,

on the other hand, we can average out the coherent part

of the evolution and set cos(ωBτ ) ≈ 0. Then, we obtain

vd = �x/τ = 2J/(Fτ ), which captures the large-force limit

in Eq. (76).

Now, we can naively adapt the Esaki-Tsu model to the

polaron case, without specifying the origin of the relaxation

mechanism. It makes the following predictions for the current-

force relation:

(i) For weak driving F → 0, Ohmic behavior vd ∼ F is

expected.

(ii) For strong driving, negative differential conductance

vd ∼ 1/F is predicted.

(iii) For intermediate force, a negative differential conduc-

tance peak appears, where dvd/dF = 0.

(iv) The polaron drift should depend linearly on the

effective hopping strength vd ∼ J ∗, at least for small hopping

J ∗ → 0 (for larger hopping, τ might include J ∗-dependent

corrections).

In the following, we will investigate our numerical results

more carefully, and show that many of them are not consistent

with the simple Esaki-Tsu model, despite the fact that this

model has been applied in numerous polaron models before

[23,45,46]. However, all these points are correctly described

by our analytical model of the polaron current.

2. Comparison to numerics

As discussed in Sec. VI B, the Esaki-Tsu relation correctly

predicts (ii) the existence of negative differential conductance

and (iii) a corresponding peak at which vd takes its maximum

value. This is a direct manifestation of the interplay between

coherent transport, which dominates for large F , and its inco-

herent counterpart responsible for the weak-driving behavior.

FIG. 12. (Color online) Best fit of the Esaki-Tsu relation (dashed

black line) to our numerically obtained current-force relation vd(F )

(red squares), where both J and τ were treated as free parameters in

Eq. (76). We also show our analytical result (64) (solid orange line),

which was obtained from first principles and without any free-fitting

parameters. While the Esaki-Tsu model can reproduce the negative

differential conductance peak, it fits less well in the strong-driving

regime. In the inset, the same data are shown, but using a double-

logarithmic scale. Here, the complete failure of the Esaki-Tsu model

in the weak-driving limit becomes apparent. The parameters are J =
0.3c/a, geff = 3.16, ξ = 5a, and ℓho = a/

√
2 and from the best fit

we obtain τ = 1.34a/c and J |fit = 0.0065c/a.

However, we also pointed out already that (i) is inconsistent

with the sub-Ohmic behavior observed in our numerics.

In Fig. 12 we fitted Eq. (76) to the results of our full solution

of the semiclassical dynamical equations (47) and (48). While

for moderate driving F � c/a2 the shape of the curve can

be reproduced by the fit, the comparison for small force

(in the inset of Fig. 12) clearly shows that the Esaki-Tsu

relation can not capture the weak-driving regime. Importantly,

to get reasonable quantitative agreement, one should treat not

only the relaxation time τ , but also the hopping strength

J as a free parameter [23]. The resulting best fit J |fit

always yields effective hoppings exceeding the renormalized

polaron hopping J ∗ = Je−CMF

. For instance, in the case shown

in Fig. 12 (geff = 3.16, J = 0.3c/a) we find from fitting

J |fit/J = 0.022 whereas J ∗/J ≈ 0.96 is almost two orders

of magnitude larger. Therefore, on a quantitative level, the

Esaki-Tsu model completely fails here.

To get a better understanding why the quantitative result

from the Esaki-Tsu relation is so far off, we now investigate

in detail how the current-force relation vd(F ) depends on

our system parameters geff and J . To this end, we consider

the position of the negative differential conductance peak,

which is characterized by FNDC and vmax
d . From the Esaki-Tsu

relation (76) we would expect FNDC = 1/τa and vmax
d = J ∗a

[see (iv)].

In Figs. 10(a) and 10(b), we show how FNDC and vmax
d

depend on the hopping strength J . While the effect on FNDC is

rather weak, a power law very close to vmax
d ∼ J 2 is observed

in Fig. 10(b). This is in contradiction to the Esaki-Tsu model,

which suggests vmax
d ∼ J ∗ since to leading order J ∗ ∼ J . It

shows that not only τ , but also J should be considered as a

fitting parameter in order to describe the numerical curves by
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the Esaki-Tsu relation (76). Physically, however, it is not clear

why J should be a free parameter in this equation. Meanwhile,

from our analytical model we obtain the correct power law

vd ∼ J 2 for small J [see Eq. (66)].

In Figs. 10(c) and 10(d), we show the dependence of

the negative differential conductance peak on the interaction

strength. While no dependence of FNDC can be identified

[Fig. 10(c)], we obtain a power law vmax
d ∼ g2

eff for sufficiently

weak interactions. From Esaki-Tsu, in contrast, we would

expect a decrease of the polaron drift with the interaction

strength because the latter suppresses the polaron hopping J ∗.

Again, our analytical model can explain the observed power

law [see Eq. (65)]. It also predicts vd ∼ J ∗2
0 , such that we

do indeed expect to find indications of the polaronic dressing

for sufficiently large interaction strength. This effect can be

observed in Fig. 10(c), where for large geff the incoherent

polaron current reaches a maximum value before it becomes

strongly suppressed by interactions.

Thus, we have seen that on a quantitative level the Esaki-Tsu

model is insufficient for understanding the incoherent polaron

current in the subsonic regime. The phonon emission observed

in our numerics can not lead to a redistribution of polaron

momentum, and hence the relaxation time approximation

underlying the simplified Esaki-Tsu model is not justified. This

is in contrast to the case of a surrounding thermal bath, where

the Esaki-Tsu relation provides an appropriate description of

the incoherent polaron current. For an impurity surrounded

by a pure BEC, as discussed in this paper, we expect that the

Esaki-Tsu result regains its validity only when the polaron

enters the supersonic regime, where polaron momentum can

be spontaneously emitted. We attribute the reasonable fit to

our data in the moderate-driving regime simply to the fact that

the Esaki-Tsu relation works on a qualitative level, in the sense

that it predicts a negative differential conductance peak.

VII. SUMMARY

In summary, we investigated polarons, i.e., mobile im-

purities dressed by phonons, confined to 1D optical lattices

and immersed in a d-dimensional BEC. In particular, we

considered Bloch oscillations of these quasiparticles, which

can be observed when a constant force is applied to the

impurity. We showed (using an adiabatic approximation) that

real-space trajectories of polaron wavepackets provide a tool

to measure the renormalized polaron dispersion. By means

of a variational MF ansatz we pointed out that the latter is

strongly modified at the BZ edges for large impurity-phonon

interactions and close to the subsonic to supersonic transition

of the polaron.

Driven by the external force, the phonon cloud has to adjust

to the new Bloch wave function of the polaron. Since it can not

follow its lowest-energy eigenstate completely adiabatically,

phonons are emitted. This effect leads to a drift of the polaron

along the applied force, and we investigated its dependence

on the strength of the driving in detail. In particular, we

derived a closed semianalytical expression for the incoherent

polaron current by expanding around the MF polaron solution

and employing Fermi’s golden rule. A comparison to full

time-dependent MF dynamics yields good agreement. From

our findings we conclude that the phenomenological Esaki-Tsu

model is insufficient for a detailed understanding of the

current-force relation, and we pointed out that it completely

fails in the weak-driving regime. There, for condensates of

dimensionality d > 1, we find sub-Ohmic behavior instead of

the Ohmic prediction by Esaki and Tsu.
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APPENDIX A: DERIVATION OF MODEL PARAMETERS

CHARACTERIZING IMPURITY-BOSON INTERACTIONS

In the main text, we mentioned that both the scattering

length aeff
IB and the effective range reff

IB of the impurity-

boson interaction are modified due to lattice effects (see

[78,79,86]). In the following, we discuss in detail how our

model parameters gIB and ℓho [entering ĤIB implicitly via

the Wannier function w(r) in Eq. (8)], which characterize the

impurity-boson interaction within our simplified model (8),

relate to the two universal numbers aeff
IB and reff

IB . Since both

aeff
IB and reff

IB can be accessed numerically (see, e.g., [78,79])

or experimentally (see, e.g., [80]), this allows us to make

quantitative predictions using our model. Our treatment is

analogous to that of [87], where a similar discussion can be

found.

To understand the connection between effective model

parameters, such as gIB, and universal numbers characterizing

interparticle interactions at low energies, such as aeff
IB , let us first

recall the standard procedure when both the impurity and the

boson are unconfined [76]. For instance, already when writing

the microscopic model in Eq. (1), we replaced the complicated

microscopic impurity-boson interaction potential by a much

simpler pointlike interaction of strength gIB. The philosophy

here is as follows: when two-particle scattering takes place at

sufficiently low energies k → 0, the corresponding scattering

amplitude fk takes a universal form which is characterized by

only a handful of parameters, irrespective of all the micro-

scopic details of the underlying interaction. In particular, for

the smallest energies only the asymptotic value of fk matters,

defining the (s-wave) scattering length as = − limk→0 fk .

In an effective model describing low-energy physics only,

it is sufficient to capture only the s-wave scattering correctly.

To this end, one may replace the microscopic impurity-boson

potential by a simplified pseudopotential, characterized by

only a single parameter gIB. Next, one can calculate the

scattering amplitude fk(gIB) expected from this pseudopo-

tential, and to be consistent one has to choose gIB such
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that as(gIB) = − limk→0 fk(gIB). This is an implicit equation

defining the relation between as and gIB.

In the case when one of the partners (in our case the

impurity) is confined to a local oscillator state (a tight-binding

Wannier orbital), two body-scattering can be substantially

modified. For example, the possibility of forming molecules

bound to the local trapping potential gives rise to confinement-

induced resonances with diverging scattering length, quite

similar to Feshbach resonances [78,79,86]. Importantly for

us, this case can be treated in complete analogy to the scenario

of free particles described above. The scattering amplitude in

the low-energy limit is universally given by [78]

fk = −
[

1/aeff
IB + ik − reff

IB k2/2 + O(k3)
]−1

, (A1)

where aeff
IB denotes the s-wave scattering length and reff

IB is the

effective range of the interaction. These two parameters can be

calculated from the scattering lengths of unconfined particles,

as shown by Massignan and Castin [78], which however

requires a full numerical treatment of the two-body scattering

problem. Doing so, these authors showed in particular that by

varying the lattice depth V0, both parameters can be externally

tuned.

Now, instead of going through the complicated microscopic

calculations, we introduce a simplified pseudopotential. Moti-

vated by our derivation in the main text, we chose the impurity-

boson interaction from Eq. (8). It can be characterized by two

parameters, first the interaction strength gIB, and second the

extent ℓho of the involved Wannier functions. In the following,

both will be determined in such a way that the universal

scattering amplitude (A1) is correctly reproduced. To this end,

we calculate the latter analytically in Born approximation and

obtain

fk = −
mBgIB

2π

(

1 − k2ℓ2
ho/2

)

+ O
(

k3,g2
IB

)

. (A2)

Comparing Eq. (A2) to the universal form Eq. (A1) yields the

following relations (valid within Born approximation):

gIB =
2π

mB

aeff
IB , ℓ2

ho = −reff
IB aeff

IB , (A3)

which define our model parameters (see also [87]).

To derive Eq. (A2) we assumed the impurity to be

localized on a single Wannier site, giving rise to a potential

VIB(r) = gIB|w(r)|2 seen by the bosons. This is justified in

the tight-binding limit, when the hopping J can be treated

as a perturbation after handling the scattering problem. Then,

solving the Lippmann-Schwinger equation of the scattering

problem for a single boson on VIB(r) (perturbatively to leading

order in gIB) yields our result (A2). In order to assure that in the

scattering process no higher state in the microtrap is excited,

we require the involved boson momenta k to be sufficiently

small [78]

k2

2mB

≪ ω0, (A4)

where ω0 is the microtrap frequency. Since the involved boson

momenta are limited by k � 1/ℓho from Eq. (A3), we obtain

a condition for the interaction strength

1
∣

∣reff
IB

∣

∣aeff
IB

≪ 2mBω0. (A5)

A comment is in order about the use of the tight-binding

approximation in this context. First, to study also cases with

stronger hopping along the lattice, the full scattering problem

for this case has to be solved. Extending the calculations of

[78,79] to this case, we expect to obtain the same universal

form (A1) of the scattering amplitude fk in the low-energy

limit, with modified values for aeff
IB and reff

IB . Nevertheless, the

relation (A3) can still be used to link the the new parameters to

the effective model parameters. Second, we note that when we

discuss approaching the subsonic to supersonic transition in the

main text of the paper, this is not necessarily in contradiction

to the tight-binding approximation. In fact, the subsonic to

supersonic transition takes place around the critical hopping

Jca = c, which is determined solely by properties of the Bose

system. In concrete cases, whether or not tight-binding results

may be used, has to be checked for each system individually.

APPENDIX B: EFFECTIVE HAMILTONIAN

In this Appendix, we give a self-contained derivation of the

effective Fröhlich-type Hamiltonian (10) from the main text.

It is similar to the derivations given in [23,30,33]

1. Free phonons

We start from the microscopic Hamiltonian (10) from the

main text, describing the bosonic field φ̂ and the impurity field

ψ̂ . In the Bose-condensed phase, the order parameter is given

by the homogeneous BEC density n0. The Bose field operator

can be written as φ̂(r) = √
n0 + �̂(r) where �̂(r) describes

quantum fluctuations around the condensate. We calculate the

BEC excitation spectrum using standard Bogoliubov theory

and write for quantum fluctuations in momentum space

�̂k = uk âk + vk â
†
−k. (B1)

The mode functions uk,vk are given by

uk =
1

√
2

√

1 + (kξ )2

kξ
√

2 + (kξ )2
+ 1 (B2)

and

vk = −
1

√
2

√

1 + (kξ )2

kξ
√

2 + (kξ )2
− 1, (B3)

where we introduced the BEC healing length

ξ = (2mBgBBn0)−1/2 . (B4)

The excitation spectrum of the BEC is given by

ĤB =
∫

d3k ωk â
†
kâk, (B5)

and we have chosen the overall energy scale such that the

BEC in the absence of the impurity has energy E = 0. The

phonon frequency is ωk = ck

√

1 + 1
2

(ξk)2 and the speed of

sound reads as

c =
√

gBBn0/mB. (B6)

Note that, provided they are sufficiently weak, boson-boson

interactions can be parametrized by their s-wave scattering
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length aBB as [76]

gBB =
4πaBB

mB

. (B7)

2. Free impurity

The free-impurity problem can straightforwardly be solved

using nearest-neighbor tight-binding approximation. To this

end, we expand the impurity operator

ψ̂(r) =
∑

j

w (r − jaex) ĉj (B8)

in terms of Gaussian tight-binding Wannier functions w(r)

[see Eq. (3)] with

|w(r)|2 =
(

πℓ2
ho

)−3/2
e−r2/ℓ2

ho . (B9)

This yields the impurity Hamiltonian

ĤI = −J
∑

j

(ĉ
†
j+1ĉ

†
j + H.c.) − F

∑

j

jaĉ
†
j ĉj . (B10)

3. Impurity-phonon interactions

Finally, we turn to the impurity-boson interaction, which

after using the expansion (B8) is described by Eq. (8) from

the main text. Replacing also quantum fluctuations around the

BEC by phonons [see Eq. (B1)], we obtain

ĤIB =
∫

d3k
∑

j

ĉ
†
j ĉje

ikxaj (â
†
k + â−k)Vk

+ n0gIB + ĤJ -ph + Ĥph-ph. (B11)

Here, ĤJ -ph denotes phonon-induced hoppings (terms of

the form ĉ
†
j+nĉj âk with n �= 0), while Ĥph-ph stands for

two-phonon processes (terms of the form ĉ
†
j ĉj âkâk′ ). The

interaction strength in Eq. (B11) is determined by the form

factors uk,vk and the Wannier function w(r),

Vk =
√

n0

(2π )3
gIB

(

(ξk)2

2 + (ξk)2

)1/4 ∫

d3r eik·r |w(r)|2.

(B12)

Using the Gaussian Wannier function (B9) from above, we

obtain

Vk = (2π )−3/2√n0gIB

(

(ξk)2

2 + (ξk)2

)1/4

e−k2ℓ2
ho/4. (B13)

The relation between gIB and a measurable scattering length

was discussed in Appendix A.

To obtain the final polaron Hamiltonian (10), we neglect

phonon-induced tunneling as well as two-phonon processes.

In the following two paragraphs, we discuss under which

conditions this is justified.

(a) Two-phonon processes

Neglecting two-phonon processes is justified if the phonon

density nph is much smaller than the BEC density, i.e., for

nph ≪ n0. (B14)

In this case, scattering events involving a boson from the

condensate dominate over phonon-phonon terms.

In order to estimate the phonon density due to quantum

depletion δN0 of the condensate around the impurity, let

us calculate the latter perturbatively from the term linear in

phonon operators in Eq. (B11):

δN0 ≈
∫

d3k

(

Vk

ωk

)2

. (B15)

Assuming that the typical length scale associated with the

Wannier function ℓho/
√

2 � ξ is smaller than the healing

length, we find that Vk saturates at k ≈ 1/ξ [see (B13)],

while ωk changes from linear ∼ k to quadratic ∼ k2 behavior.

Therefore, only momentum modes with k � 1/ξ contribute

substantially to quantum depletion in the vicinity of the

impurity. Consequently, depletion takes place on a spatial scale

set by ξ and we require

nph ≈ δN0ξ
−3 ≪ n0. (B16)

Integrating only up to 1/ξ in k space and using the scaling

Vk ∼
√

k and ωk ∼ k with the correct prefactors, valid for

k � 1/ξ , we obtain the estimate

|gIB|ξ−3 ≪ 7.5c/ξ. (B17)

This condition is similar to the one derived in [25], |gIB|ξ−3 ≪
4c/ξ .

(b) Phonon-induced tunneling

Phonon-induced tunneling is described by

ĤJ -ph =
∑

i>j

ĉ
†
i ĉj

∫

d3k eikxaj (â
†
k + â−k)V

(i−j )

k + H.c.,

(B18)

where the corresponding scattering amplitudes read as

V
(n)
k = Vk

∫

d3r w∗(r − naex)eik·rw(r)
∫

d3r eik·r |w(r)|2
(B19)

for integer n = . . . , − 1,0,1, . . . .

We may neglect such phonon-induced tunnelings, if the

scattering amplitude V
(0)
k dominates over all those involving

tunneling, V
(n)
k with n �= 0. Their ratio is given by matrix

elements of eik·r with respect to the Wannier functions and we

obtain the condition
∣

∣V
(n)
k

∣

∣

|Vk|
=

|〈wn|eik·r |w0〉|
|〈w0|eik·r |w0〉|

!

≪ 1, (B20)

when phonon-induced tunneling can be discarded. In the tight-

binding limit, this is usually fulfilled when Wannier functions

are well localized.

APPENDIX C: STATIC MF POLARONS

In this Appendix, we derive the MF self-consistency

equation (33) from the main text. To this end, we have to

calculate the variational energy

H [αk](q) =
∏

k

〈αk|Ĥq |αk〉. (C1)
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The main obstacle is the treatment of the nonlinear term ∼
cos â†â in the Hamiltonian Ĥq (24), for which we find

∏

k

〈αk| cos

(

aq − a

∫

d3k′k′
x n̂k′

)

|αk〉

= e−C[ακ ] cos(aq − S[ακ ]). (C2)

The functionals C[ακ ] and S[ακ ] appearing in this expression

were defined in the main text [see Eqs. (31) and (32)].

To proof the result (C2), let us first focus on a single mode

and replace
∫

d3k′k′
x â

†
k′ âk′ by kâ†â for simplicity. Next, we

write the cosine in terms of exponentials, for which it is then

sufficient to show that

〈α| exp[iakâ†â]|α〉 = exp[−|α|2(1 − eiak)]. (C3)

This is most easily achieved by expanding coherent states |α〉
in the Fock basis |n〉:

|α〉 = e−|α|2/2

∞
∑

n=0

αn

√
n!

|n〉, (C4)

from which we can read off the relation

〈α|eiakâ†â|α〉 = e−|α|2
∞

∑

n=0

eiakn|α|2n

n!

= exp[−|α|2(1 − eiak)]. (C5)

This result can easily be generalized to the multimode case

with
∫

d3k kx n̂k appearing in the argument of the cosine, when

use is made of the commutativity of phonon modes at different

momenta.

Using the result (C2), we end up with the variational

Hamiltonian

H [ακ ,α
∗
κ
] = −2Je−C[ακ ] cos(aq − S[ακ ])

+
∫

d3k[ωk|αk|2 + Vk(αk + α∗
k )]. (C6)

The MF self-consistency equations can now easily be obtained

by demanding vanishing functional derivatives

δH [αk,α
∗
k ]

δαk

=
δH [αk,α

∗
k ]

δα∗
k

!= 0, (C7)

which readily yield Eq. (33) from the main text,

αMF
k = −

Vk

�k

[

αMF
κ

] . (C8)

Plugging this result into the definitions of C[ακ ] and S[ακ ]

yields the coupled set of self-consistency equations (35)

and(36) for CMF and SMF.

APPENDIX D: TIME-DEPENDENT VARIATIONAL

PRINCIPLE

To derive the equations of motion for the time-dependent

variational phonon state (46), we apply Dirac’s variational

principle (see, e.g., [88]). It states that, given a possibly

time-dependent Hamiltonian Ĥ(t), the dynamics of a quantum

state |ψ(t)〉 (which can alternatively be described by the

Schrödinger equation) can be obtained from the variational

principle

δ

∫

dt〈ψ(t)|i∂t − Ĥ(t)|ψ(t)〉 = 0. (D1)

We reformulate this in terms of a Lagrangian action L =
〈ψ(t)|i∂t − Ĥ(t)|ψ(t)〉 and obtain

δ

∫

dtL = 0. (D2)

When using a variational ansatz |ψ(t)〉 = |ψ[xj (t)]〉 defined

by a general set of time-dependent variational parameters

xj (t), we obtain their dynamics from the Euler-Lagrange

equations of the classical Lagrangian L[xj ,ẋj ,t].

We note that there is a global phase degree of freedom: when

|ψ(t)〉 is a solution of (D1), then so is e−iχ (t)|ψ(t)〉 because

the Lagrangian changes as L → L + ∂tχ (t). To determine the

dynamics of χ (t) we note that for the exact solution |ψex(t ′)〉
of the Schrödinger equation it holds

∫

0

t

L(t ′) = 0, (D3)

for all times t , i.e., L = 0. This equation can then be used to

determine the dynamics of the overall phase for variational

states.

Now we can construct the Lagrangian L for the variational

coherent phonon state (46) in the main text. Using the

following identity for coherent states |α〉,

〈α|∂t |α〉 = 1
2
(α̇α∗ − α̇∗α), (D4)

we obtain

L[αk,α
∗
k,α̇k,α̇

∗
k,t] = ∂tχq − H [αk,α

∗
k]

−
i

2

∫

d3k(α̇∗
kαk − α̇kα

∗
k), (D5)

where the Hamiltonian H is given by (C6). Using Eq. (D5),

the Euler-Lagrange equations yield the equations of mo-

tion (47) from the main text

i∂tαk(t) = �k[ακ (t)]αk(t) + Vk. (D6)

Moreover, as described above, Eq. (D3) yields equations of

motion for the global phases Eq. (48) given in the main text

∂tχq =
i

2

∫

d3k(α̇∗
kαk − α̇kα

∗
k) + H [αk,α

∗
k]. (D7)

Using the equations of motion (D6) for αk, this simplifies

somewhat and we obtain

∂tχq = 2Je−C[αk(t)](S[αk(t)] sin{aq − ωBt − S[αk(t)]}
− {1 + C[αk(t)]} cos{aq − ωBt − S[αk(t)]})

+ Re

∫

d3k Vkαk. (D8)

APPENDIX E: IMPURITY DENSITY

In this Appendix, we derive Eq. (52) from the main text,

which allows us to calculate the impurity density from the time-

dependent overlaps Aq2,q1
(t). For the definition of the latter, let
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us recall that we work in the polaron frame throughout, where

the quantum state is of the form

|�(t)〉 =
∑

q∈BZ

fq ĉ
†
q |0〉c ⊗ |�q(t)〉a. (E1)

Here, |0〉c denotes the impurity vacuum and |�q(t)〉a is a pure

phonon wave function. The corresponding time-dependent

overlaps are defined as

Aq2,q1
(t) =a 〈�q2

(t)|�q1
(t)〉a (E2)

[see also Eq. (53)].

In order to calculate the impurity density in the laboratory

frame, nj = 〈ĉ†j ĉj 〉, we have to transform the operator ĉ
†
j ĉj to

the polaron frame first. Keeping in mind that we moreover

applied the time-dependent unitary transformation ÛB(t)

Eq. (16), we thus arrive at

nj = 〈ĉ†j ĉj 〉lab = 〈�(t)|Û †
LLPÛ

†
B(t)ĉ

†
j ĉj ÛB(t)ÛLLP|�(t)〉.

(E3)

We proceed by writing the impurity operators ĉj in their

Fourier components [see Eq. (18)] and plug Eq. (E1) into

the last expression

nj (t) =
a

L

∑

q1,q2∈BZ

e−i(q1−q2)aj

×
∑

q3,q4∈BZ

fq3

∗fq4 a〈�q3
(t)|c〈0|ĉq3

Û
†
LLP

× Û
†
B(t)ĉ†q2

ĉq1
ÛB(t)ÛLLP|0〉c|�q4

(t)〉a. (E4)

To simplify this expression, we note that

Û
†
B(t)ĉ†q2

ÛB(t) = ĉ
†
q2+ωBt (E5)

and analogously for ĉq1
. Thus, by relabeling indices q1,2 →

q1,2 + ωBt in Eq. (E4), we can completely eliminate ÛB(t)

from the equations above.

To deal with the Lee-Low-Pines transformation, let us

introduce an eigenbasis consisting of states |P 〉 where the

total phonon momentum is diagonal
∫

d3k kx â
†
kâk|P 〉 = P |P 〉. (E6)

Of course, for each value of P there is a large number of states

denoted by |P 〉 with this property (E6). Importantly, the Lee-

Low-Pines transformation (19) can now easily be evaluated in

this new basis, where

〈P |ÛLLP|P ′〉 = eiX̂P δP,P ′ (E7)

and for simplicity we used a discrete set of phonon modes. We

can make use of this result by formally introducing a unity in

this basis
∑

P

|P 〉〈P | = 1̂, (E8)

allowing us to write

Û
†
LLPĉ

†
q2

ĉq1
ÛLLP =

∑

P,P ′

|P 〉〈P |Û †
LLPĉ

†
q2

ĉq1
ÛLLP|P ′〉〈P ′|

=
∑

P

|P 〉〈P |e−iP X̂ ĉ†q2
ĉq1

eiP X̂. (E9)

Next, using e−iP X̂ ĉq1
eiP X̂ = ĉq1+P , we obtain

Û
†
LLPĉ

†
q2

ĉq1
ÛLLP =

∑

P

|P 〉〈P |ĉ†q2+P ĉq1+P . (E10)

Using this identity after introducing unities (E8) in Eq. (E4),

we find after relabeling summation indices q1,2 → q1,2 + P

that

nj (t) =
a

L

∑

q1,q2∈BZ

e−i(q1−q2)aj
∑

q3,q4∈BZ

f ∗
q3

fq4

× c〈0|ĉq3
ĉ†q2

ĉq1
ĉ†q4

|0〉c a〈�q3
(t)|�q4

(t)〉a. (E11)

After simplification of the impurity operators, we obtain the

desired result

nj (t) =
a

L

∑

q1,q2∈BZ

e−i(q1−q2)ajf ∗
q2

fq1
Aq2,q1

(t). (E12)

APPENDIX F: ADIABATIC WAVEPACKET DYNAMICS

In this Appendix, we present the detailed calculation

leading to the expression for the adiabatic impurity density (57)

given in the main text. To this end, we first calculate the

time-dependent overlaps from Eqs. (54) and (55),

Aq2,q1
(t) = 〈�q2

(t)|�q1
(t)〉 = Aq2,q1

Dq2,q1
, (F1)

and use Eq. (52) together with a suitable initial impurity wave

function ψ in
j .

We start from an impurity wavepacket in the band minimum

of the bare impurity, and assume its width (in real space) LI ≫
a by far exceeds the lattice spacing a. In this case, the width in

(quasi)momentum space is δq ≈ 2π/LI ≪ 2π/a. Moreover,

we can treat aj → x as a continuous variable and write

ψ in(x) = (2π )−1/4L
−1/2

I exp

(

−
x2

4L2
I

)

, (F2)

where the following normalization was chosen:
∫ ∞

−∞
dx|ψ in(x)|2 = 1. (F3)

By Fourier transforming the initial impurity wave function, we

obtain the amplitudes

fq =
1

√
2π

∫ ∞

−∞
dx eiqxψ in(x), (F4)

such that the impurity density (52) becomes

n(x,t) =
∫ ∞

−∞

dq2dq1

2π
ei(q2−q1)xf ∗

q2
fq1

Aq2,q1
(t). (F5)

Since the width δq ≪ 2π/a of the wavepacket is much smaller

than the size of the BZ, we approximated
∫

BZ
dq ≈

∫ ∞
−∞ dq in

this step.

Using the adiabatic wave function (49), the phases of

Aq2,q1
(t) read as

Aq2,q1
(t) = exp

[

i

∫ t

0

dt ′HMF(q2(t ′)) − HMF(q1(t ′))

]

,

(F6)
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and the amplitude is given by

Dq2,q1
(t) = exp

[

−
1

2

∫

d3k
{

αMF
k (q2(t)) − αMF

k (q1(t))
}2

]

.

(F7)

Due to the small width δq of the polaron wavepacket in

quasimomentum space, we can expand the expressions in the

exponents in powers of the difference q2(t) − q1(t) = q2 − q1.

Note that lnAq2,q1
(lnDq2,q1

) is antisymmetric (symmetric)

under exchange of q2 and q1. To second order in |q2 − q1| we

obtain

Aq2,q1
(t) = exp

[

i (q2 − q1)

∫ t

0

dt ′∂qHMF(q1(t ′))

]

, (F8)

Dq2,q1
(t) = exp

{

− 1
2

(q2 − q1)2
∫

d3k
[

∂qα
MF
k (q1(t))

]2}

.

(F9)

Since only q1 ≈ q2 ≈ 0 contributes substantially in f ∗
q2

fq1
, we

further approximate

∂qHMF(q1(t ′)) ≈ ∂qHMF(−F t ′) (F10)

and analogously in ∂qα
MF
k . Thus, we obtain

Aq2,q1
(t) = exp

[

− i(q2 − q1)X(t) − 1
2
(q2 − q1)2Ŵ2(t)

]

,

(F11)

with Ŵ2(t) defined in Eq. (59) in the main text and

X(t) = X(0) −
∫ t

0

dt ′ ∂qHMF

∣

∣

q=−F t ′
. (F12)

Evaluating this integral exactly yields the expression for X(t)

given in Eq. (58).

Using the last expression for Aq2,q1
(F11) to perform

momentum integrals dq1dq2 in (F5) finally yields the adiabatic

impurity density

n(x,t) = e
− [x−X(t)]2

2[L2
I
+Ŵ2(t)]

{

2π
[

L2
I + Ŵ2(t)

]}−1/2
(F13)

as we claimed in the main text.

APPENDIX G: ALTERNATIVE DERIVATION OF

POLARON CURRENT IN WEAK-COUPLING AND

SMALL-HOPPING LIMITS

In this Appendix, we give an alternative derivation of

the analytical current-force relation (64) introduced in the

main text. The following treatment is somewhat simpler

conceptually, however, it is only valid in the limit of small

force F and weak interactions geff → 0. For simplicity, we

restrict our discussion to d = 3 dimensions, but all arguments

can easily generalized to arbitrary d.

The idea is to start from the Hamiltonian in Eq. (10) in

the laboratory frame, i.e., before applying the Lee-Low-Pines

transformation. Then, we can consider the limit geff → 0,

where to first approximation the impurity can be treated as

being independent of the phonons. If we moreover assume

that the particle is sufficiently heavy, i.e., J is small, we may

neglect fluctuations of the impurity position and approximate

the latter by its mean

x(t) ≈ 〈x(t)〉 =
2J

ωB

cos (ωBt) . (G1)

To describe the interactions of the impurity with phonons,

we now plug the last equation into Eq. (10) and obtain

Ĥ(t) ≈
∫

d3k{ωk â
†
kâk + eikx 〈x(t)〉(â

†
k + â−k)Vk}. (G2)

Then, we can expand the exponential in orders of the hopping

eikx 〈x(t)〉 ≈ 1 + ikx
2J
ωB

cos (ωBt) + O(J 2), and treat the result-

ing oscillatory term using Fermi’s golden rule. As a result we

obtain, using vd = aγph as described in the main text,

vd =
8π2a

3

J 2

F 2

k4V 2
k

(∂kωk)
. (G3)

Now as in the main text, we can perform a series expansion

of the resulting expression (G3) in the driving force F . In the

weak-driving limit, we obtain

vd =
a6

c43π
√

2
g2

effJ
2ξ 2F 3 + O(F 4). (G4)

Notably, this is exactly the same expression as Eq. (67) from

our calculation in the main text, except that J appears instead

of J ∗
0 .

In the strong-driving limit, in contrast, we obtain a different

power law than in Eq. (68):

vd =
21/4

3π
c−1/2a5/2ξ−3/2g2

effJ
2F−1/2 + O(F−3/2), (G5)

where we used the impurity continuum limit again, i.e.,

ℓho → 0. The reason why we do not reproduce the result

from the (more involved) calculation in the main text is that

expanding the exponential below Eq. (G2) contains a small-k

approximation as well.
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