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Abstract 

InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods were fabricated by using soft 

ultraviolet nanoimprint lithography. The intensity of light emission was found to be greatly enhanced 

due to the strong near-fields confined at the interface of Al/GaN and extended to the multiple quantum 

wells (MQWs) active region. The dynamics of carrier recombination and the plasmon enhanced Raman 

scattering were also investigated, which provides a progressive view on the effective energy transfer 

between MQWs and surface plasmons. 
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1. Introduction 

Blue light emitting diodes (LEDs) based on III-nitride materials provide higher performance than other 

material systems [1] mainly due to their higher lumen efficiency, longer lifetime, and better stability. For 

the promising applications in full-color displays, printers, and solid-state lighting, an improvement of 

external quantum efficiency (EQE) that depends on the product of internal quantum efficiency (IQE) 

and light extraction efficiency (LEE) is essentially required. Thanks to the development of InGaN/GaN 

multiple quantum wells (MQWs) grown on a GaN epitaxial layer, the IQE of LEDs at room temperature 

has been greatly increased by improving material quality and suppressing the charge separation in 

quantum wells (quantum confined Stark effect, QCSE) [2,3]. However, the emission efficiency or EQE 

still mainly suffers from the limitation of LEE, which is greatly suppressed by total internal reflection 

resulted from the large refractive index contrast between GaN and air, and hence a low portion of light 

that can be extracted from the active region of LEDs [4]. 

To achieve the prospect of energy saving, numerous efforts related to the plasmonic effect have 

been made to improve the total output power [5-10]. Among these metallic micro/nano structures, 

nanoparticles (NPs) are of great interest and have demonstrated the ability in EQE enhancement via 

controlling the energy transfer between multiple quantum wells (MQWs) and localized surface plasmons 

(LSPs) [8]. However, these NPs are usually formed by the rapid thermal annealing of noble metals (e.g. 

Au, Ag, or Pt) and the challenges lie in the accurate controlling of the shapes and dimension of these 

NPs. Therefore, the suppression of emission might be caused by the small size and low height due to the 

strong resonant absorption and poor light extraction as reported in [9]. Meanwhile, the metal NPs buried 

inside the LED for approaching the MQWs can even deteriorate the epitaxial quality of MQWs and 

consequently degrade the electrical characteristics of devices [6]. 

Two-dimensional metallic nano-structures with highly controlled dimensions have also been 

attempted to demonstrate plasmon-enhanced emission in LED structures based on the resonance 

coupling between the propagating Bloch surface plasmons (BSPs) and MQWs. As compared with self-
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organized NPs, highly controlled structures have the advantage of exciting long-range resonances, 

molding spectral/angular distribution of emission, and experimental reproducibility [11,12]. However, 

such a method still meets some limitations. For instance, the controllable nanostructure (e.g. 

nanocylinder) arrays are normally fabricated by electron-beam lithography (EBL) or focused ion beam 

(FIB) milling, which are much costly and complicated for LEDs. Moreover, for blue-light emission 

using Au or Ag, the spacer layer between metal and MQWs is required to be extremely thin to ensure 

efficient SP coupling, which is impractical for device applications due to the ineffective p-doping of 

GaN and inferior ohmic contact [10]. 

In this work, we present the fabrication of InGaN/GaN LEDs with Al-coated GaN nanorods by 

using soft ultraviolet nanoimprint lithography [13], which offers lower cost and higher throughput as 

compared to EBL and FIB techniques [14,15]. The nontraditional plasmonic metal Al is chosen here due 

to its lower dissipation loss and deeper penetration depth rather than Au and Ag at blue-light spectral 

region [16,17]. Besides the desirable property in the blue and UV spectral regions, it also offers much 

lower cost and higher compatibility with III-nitrides. To avoid damaging the InGaN/GaN MQWs and 

also facilitate reciprocal vector for the excitation of BSPs via grating coupling, we create the nanorods 

array only within the p-GaN layer. The presence of Al deposited on the bottom space outside nanorods 

is close to the MQW structure, which enables the excitation of BSP waves that converts the energy from 

non-radiative recombination to emitted photons. The consistency in theoretical simulation and 

experimental results suggested that the enhanced light emission of Al-coated LED structure with the 

reduced radiative recombination lifetime is attributed to the energy transfer from excitons in InGaN/GaN 

MQWs to BSPs by strong resonant coupling. The abnormal observations of blue-shift and enhancement 

of the longitudinal optical (LO) phonons in Al-coated structures indicated a resonant Raman scattering 

(RRS) process possibly assisted by metal-induced gap states at the Al/GaN interfaces and surface 

plasmon resonance (SPR) effect. 
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2. Experimental methods 

The LED epitaxial structure for this study was grown by metal-organic chemical vapor deposition 

technique on the double-side polished c-plane sapphire substrates. To demonstrate the contribution of 

the nanorod array and Al coating for higher performance LEDs, we have fabricated four samples (A-D) 

by following the sequence of major fabrication steps in process flow. The as-grown structure (Sample A) 

consists of an unintentionally-doped GaN buffer, a 2 µm thick n-GaN, a 220 nm thick active region with 

15-pair InGaN/GaN MQWs, and a 590 nm thick p-GaN on the topmost surface. The peak emission of 

as-grown MQWs is centered at the wavelength of 475 nm. The SiO2 mask for dry etching has been 

defined by using a nanoimprint lithography process [13] and it has a square lattice array with the 

dimension of 200 nm in depth, 200 nm in diameter, and 400 nm for pitch size. The Sample B was 

formed by etching down the LED wafer using Cl2/BCl3 ICP etching at 20 °C with 300 W ICP and 100 

W RF. The depth of the etched nanorods was controlled at about 560 nm. In order to remove the surface 

damages caused by dry etching and make the sidewall of nanorods smoother and straighter, the samples 

were wet etched in 3mol/L KOH at 80°C for 25 minutes (named as Sample C). Finally, a 20 nm thick Al 

film was deposited onto the sample surface by high-vacuum e-beam evaporation to form Sample D. 

The morphology of InGaN/GaN nanorods was measured by a JEOL JSM-7000F field emission 

scanning electron microscope (FE-SEM). The photoluminescence (PL) and time-resolved PL (TRPL) 

measurements have been performed excited by a 405 nm pulsed laser to investigate the effect of BSPs 

on the light emission property of LEDs. Both excitation and collection were carried out through the 

backside polished sapphire since the metal layer strongly attenuates the incident beams. The Raman 

scattering spectra were recorded in a backscattering configuration using the JYT6400 micro-Raman 

setup with a 514 nm laser as the excitation source, and the Raman shift was determined with accuracy 

better than 1 cm-1. 

 

3. Results and Discussion 
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Figure 1(a) shows the schematic of the BSP-enhanced LED structure (Sample D). Due to the steep 

sidewall of nanorods, the Al film will be only coated on the top of p-GaN nanorods and also the bottom 

space as shown in figure 1(a). The distance between the MQWs and the lower Al layer is approximately 

20 nm. Figures 1(b) and (c) show the top view and cross-sectional SEM images of the nanorod 

structures. The as-etched nanorod has a profile of conical frustum with a height of 560 nm. After dipping 

the sample into KOH solution for 25 minutes, the average diameter of nanorods was found to be 

considerably reduced from 260 nm (as-etched) to 190 nm, and the cross-section shape was changed from 

trapezoid into straight as illuminated in figures 1(d) and (e). The underlying mechanism for removing 

the etch-damaged region and obtaining the vertical shape with KOH treatment is identified as the 

different etching rates between N-face and Ga-face [18]. 

Figure 2 shows the time-integrated PL spectra of the Samples A (as-grown LED structure), B (as-

etched LED structure), C (KOH-treated LED structure), and D (Al-BSP LED structure) at room 

temperature, respectively. The peak positions of light emission from the InGaN/GaN active layer in 

Samples A-D were observed at 476, 475, 474, and 470 nm, respectively. For c-plane LED structures, it 

is well known that piezoelectric polarization field is present in InGaN/GaN quantum well structures, 

which will cause the spatial separation of electron and holes, thus leading to the red-shift of quantum 

well emission and degrading the recombination efficiency, as called QCSE [19,20]. Such effect will be 

suppressed as compressive strain is released in quantum well structures. In this work, the strain involved 

in InGaN/GaN MQWs is partially released after etching from continuous epilayer into nanorod 

structures. Thus, compared with Samples A and B, the light emission exhibits a slight blue-shift in 

wavelength and enhancement in intensity. The comparison of Samples B and C suggests that the further 

reduction of piezoelectric field occurs in MQWs for nanorods with smaller size due to the relaxation of 

compressive strain. As compared to Sample A, the PL intensities from Samples B and C have a slight 

enhancement mainly due to the combined contribution of partial relaxation of piezoelectric field and 

surface morphology. Although the output could be enhanced by modulating the optical modes via 
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photonic crystal patterns in Samples B and C, most of the emitted light leaks frontward to the free space 

rather than to the substrate, which can be confirmed based on the analysis of the dispersion diagram of 

electromagnetic waves in the photonic crystal regions (not shown). We therefore infer that in Samples B 

and C, the surface morphology may have slight influence on the measured PL intensity, since the 

emissions were collected from the backside of samples. Surprisingly, a 2.6 times of PL enhancement in 

Sample D as compared to Sample C was observed, which is higher than that would be expected from 

reflection mechanism alone [5]. As shown in the inset of figure 2, the PL enhancement of Sample D 

relative to Sample C is dominantly centered at 467 nm, which is exactly the wavelength of BSP mode 

excited on the interface of lower Al layer and p-GaN. It is therefore believed that the higher PL intensity 

in Sample D is due to the increase of spontaneous emission rate and internal quantum efficiency via Al 

BSP-coupling. 

To testify the PL measurement results and understand the physical mechanism behind, we 

calculated the electric field intensity enhancement spectrum of Sample D by detecting |Ez|
2/|Ez0|

2 at the 

interface of the lower Al nanostructures and p-GaN layer based on finite-difference time-domain (FDTD) 

method. Here |Ez0|
2 is the field intensity of incident light source located in the MQWs. The maximum 

electric field enhancement occurs at a free-space wavelength of 467 nm. In figures 3(b) and (c), we 

plotted out the electric field distribution in Samples C and D at the wavelength of 467 nm based on the 

rigorous coupled wave analysis (RCWA). It can be found that the corresponding electric fields in 

Sample D are strongly confined near the lower surface of Al nanostructures and exponentially decay into 

the InGaN/GaN MQWs due to the excitation of BSP mode, therefore, the electric field intensity in 

Sample C without Al nanostructures is relatively weak. The large field enhancements occur at 

wavelengths within the MQW emission line shape, thereby increasing the QW radiation efficiency and 

output of PL intensity. The minor wavelength difference between the measured PL peak and the 

simulated BSP mode is acceptable by consideration of the errors in fabrication and simulation. 
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To further demonstrate the plasmonic effects on improving the performance of the MQW LEDs, 

we carry out the TRPL measurements on all samples with a time-correlated single photon counting 

(TCSPC) setup at a temperature of 20 K (see figure 4). In our case, the TRPL traces could be fitted to a 

single exponential function [21] due to the frozen up of the non-radiative recombination centers at the 

low temperature of 20 K. By directly fitting results, the spontaneous emission lifetimes (τPL) for Samples 

A-D can be obtained as 20.04, 17.64, 17.49, and 14.13 ns, respectively. The reduction lifetime of 

Samples B and C in contrast with Sample A is the result of increased wavefunction overlap of electrons 

and holes in the InGaN/GaN MQWs with the partially reduced piezoelectric field. While the faster decay 

time of Al-BSP LEDs can be attributed to resonance coupling between MQWs and BSPs. When the 

energy of the excitons in MQW is close to the electron vibrational energy of the LSP in the metal NPs, 

the recombination rate of excitons can be increased via fast recombination path due to the energy 

transfer from excitons to BSPs. 

Figure 5 shows the normalized Raman scattering spectra collected from all the samples in 

( , )Z Z   geometry, respectively, where “” denotes a nonpolarized condition. The prominent peak at 

569 cm−1 is assigned to the h
2E  mode of GaN, and the peaks around 734 cm-1 are assigned to the A1 (LO) 

phonon mode of GaN [22]. We also observed an additional peak around 700 cm-1 in Samples B, C, and 

D, which shifts toward the lower frequency direction with decreasing diameter of nanorods. This 

additional vibrational mode has been reported in similar GaN nanowire structures and regarded as 

surface optical (SO) phonon mode [23]. An abnormal observation is that the Raman modes of A1 (LO) 

and SO phonon modes in Sample D exhibit nearly 3 times of enhancement at 740 and 700 cm-1, 

respectively, which is an indication of strong interaction between photons and BSP modes occurring at 

the Al/GaN interface [22]. In addition, a blue shift of the SO and A1 (LO) modes were also observed 

accompanied with a broader spectral linewidth in Sample D, which is attributed to the higher carrier 

concentration achieved after the deposition of Al nanostructures [22]. 
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To quantify the difference of carrier concentration with or without Al deposition, we theoretically 

fit the measured Raman intensity of the LO phonon-plasmon coupled (L+) mode by employing the 

following expression [22, 24] 
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In Eqs. (2) and (3), ωT, ωL, and ωP represent the unstrained TO, LO phonon and plasmon frequencies, γ 

and Γ the plasmon and phonon damping constants, and C the Faust-Henry coefficient for hexagonal GaN. 

The dielectric function ε(ω) is given by a sum of the contribution of plasmons and phonons 

  2 2 2 2 2 2[1 ( ) / ( i ) / ( i )]L T T P                                                       (4) 

The strain free values of ωT = 533 cm−1 and the un-coupled ωL = 735 cm−1 are used as constants for 

fitting. The profile of the experimental data and the theoretical fitted curves of phonon-plasmon coupled 

L+ modes are consistent very well as shown in the inset of figure 5. The fitting parameters γ, Γ, and ωP 

can be extracted from the above line shape analysis. They are related to the free-carrier concentration (n) 

and effective electron mass (m* = 0.2 me) by 

2
2 4

*P

ne

m




                                                                                   (5) 

where  is the high frequency dielectric constant. As a result, the carrier concentration can be 

determined to be 2.7×1017 and 1.6×1017 cm−3 for the case with and without Al nanostructures, 
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respectively. The higher electron concentration in Sample D may provide screening effect on the 

piezoelectric field, which also contributes to the blue-shift of light emission as described above.  

We notice that the photon energy of the 514 nm laser (2.41 eV) is much lower than the bandgap of 

GaN (3.4 eV) and therefore few free electrons can be excited from valence band into conduction band of 

GaN directly. However, the higher electron concentration can be generated from the sub-band electronic 

states, e.g., metal-induced gap states (MIGS) formed at the metal/GaN interfaces [25, 26]. Noted that the 

Schottky barrier is 1.5 eV for the Al/GaN interface [25], the electrons in MIGS state can be promoted 

and resonate with unoccupied electronic states in the conduction bands of GaN [26]. The emission of a 

Raman photon will consequently occur through the scattering of excited electron to another state and 

then the recombination of electrons with the hole left in the gap states. As expected, the interface of Al-

BSP in Sample D contains more electrons rather than the other samples due to the electron transfer from 

MIGS states to GaN, which finally results in the broadening and high frequency shift of SO and LO 

modes.  

 

4. Conclusions 

In this study, an InGaN/GaN MQW LED structure with Al-coated GaN nanorods has been demonstrated 

to exhibit improved performance and relatively high efficiency. The low cost Al metal exhibits superior 

performance in blue spectral region and the great enhancement of light emission is due to the strong 

confinement of optical energy in the active region of InGaN/GaN MQWs. The phenomena of faster 

radiative recombination rate and enhanced Raman scattering are also observed and discussed. Our 

findings provide the foundation for rapid development of high-efficiency and low-cost LED devices. 
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FIGURE CAPTIONS 

 

Figure 1. (Color online) (a) Schematics of the fabrication of Sample D. (b) The top-view and (c) cross-sectional 

SEM images of Sample B. (d) The top-view and (e) cross-sectional SEM images of Sample C. 

Figure 2. (Color online) Room-temperature PL spectra of Samples A-D. The inset shows the PL enhancement of 

Sample D relative to Sample C. 

Figure 3. (Color online) (a) The simulated electric field intensity (|Ez|
2/|Ez0|

2) enhancement spectrum in Sample D. 

Ez-field intensity distribution in (b) Sample C and (c) Sample D at the wavelength of 467 nm.  

Figure 4. (Color online) Time-resolved photoluminescence decay curves from Samples A (black), B (green), C 

(blue), and D (red) at 20 K. 

Figure 5. (Color online) Raman scattering spectra of Samples A-D recorded in ( , )Z Z   geometry at room 

temperature. The inset shows the experimental data and the theoretical fitted curves of L+ modes for 

Samples C and D.  
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Figure 2 By Guogang Zhang et al. 
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Figure 3 By Guogang Zhang et al. 
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Figure 4 By Guogang Zhang et al. 
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Figure 5 By Guogang Zhang et al. 


