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ABSTRACT

Block algorithms have been developed to acquire very
weak Global Positioning System (GPS)
coarse/acquisition (C/A) signals in a software receiver.
These algorithms are being developed in order to enable
the use of weak GPS signals in applications such as geo-
stationary orbit determination.  The algorithms average
signals over multiple GPS data bits after a squaring
operation that removes the bits’ signs.  Methods have
been developed to ensure that the pre-squaring
summation intervals do not contain data bit transitions.
The algorithms make judicious use of Fast Fourier
Transform (FFT) and inverse FFT (IFFT) techniques in
order to speed up operations.  Signals have been
successfully acquired from 4 seconds worth of bit-
grabbed data with signal-to-noise ratios (SNRs) as low as
21 dB Hz.

INTRODUCTION

Global Positioning System receivers must acquire and
track the pseudo-random number (PRN) code and carrier
signal from several GPS satellites.  A typical receiver
channel has two modes of operation: acquisition and
tracking.  The acquisition mode estimates the PRN code
phase and the carrier Doppler shift via a search process.
These quantities are then used to initiate tracking, which
continuously updates them.

It is difficult to acquire or track a signal when its SNR is
very low.  Most commercial receivers can use a signal
only if its SNR is greater than about 35 to 37 dB Hz 1,2.

An ability to acquire and track weaker signals would

enable important applications.  GPS-based orbit
determination would become more practical for high-
altitude spacecraft if signals with SNRs as low as 28 dB
Hz could be used 1,3.  Another potential application is in
the monitoring of ionospheric scintillations, which can
produce very low transient power levels.

The present paper concentrates on the problem of weak
signal acquisition in a software receiver.  It deals
exclusively with the C/A code on the GPS L1 frequency,
1575.42 MHz.  A software receiver performs signal
acquisition and tracking tasks using a hardware RF front
end and software that runs in a general-purpose
microprocessor 4.  Software receivers can be used in
non-real-time applications, which allows them to apply
sophisticated signal processing techniques.  Reference
5’s orbit determination method includes an example
application of a non-real-time software receiver.

GPS signal acquisition is a mature subject.  Reference 6
reviews acquisition methods for real-time receivers.
Reference 4 presents special block processing
algorithms for acquisition in software receivers.  Such
algorithms significantly enhance the computational
efficiency of acquisition by employing FFT techniques to
do code correlation.  Low-SNR acquisition techniques
for real-time receivers are presented in Ref. 7.
Reference 8 deals with low-SNR acquisition in a
software receiver.

Reference 8 claims that one needs to know the GPS data
bits in order to use acquisition intervals that are longer
than 0.010 sec, half the span of a data bit.  This
restriction leads to a lower limit of about 35 dB Hz for
acquisition without prior knowledge of the data bits.  The
paper goes on to show that weaker signals can be
acquired if one knows the data bits a priori, and it
demonstrates acquisition down to an SNR of about 15 dB
Hz for the bit-aided case.

The present work develops acquisition algorithms that do
not use a priori knowledge of the data bits and that
operate successfully far below the 35 dB Hz SNR
threshold.  It uses a known technique whereby the
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correlation accumulations are averaged, squared, and then
averaged further 6.  It augments this technique with either
of two schemes that preclude the occurrence of data bit
transitions during the pre-squaring summation intervals.

Another contribution is that this work tailors its
algorithms to use FFT-based block processing.
Approaches are developed that economize on the number
of FFTs and IFFTs that need to be computed.  Other
processing economies are developed as well.

The issue of weak signal acquisition in the presence of
strong interfering GPS signals is also addressed.  This
problem is important because the small cross-
correlations between different PRN codes become
significant when the acquired signal's power is much
lower than that of an interfering signal.

This paper presents acquisition test results that use real
data from a GPS bit-grabber that was connected to a
roof-top antenna.  A bit-grabber is an RF front end that
stores its digitized output on a disk for later software
processing.  Low SNR cases have been created in
software by adding simulated colored noise to the
experimental bit-grabber data.

The remainder of this paper is divided into 5 main
sections plus conclusions.  The second section presents a
model of the signal, and it reviews a standard block
processing FFT-based acquisition algorithm.  The third
section explains how to extend un-bit-aided acquisition
to multiple data bit intervals.  The fourth section shows
how to use block processing techniques efficiently in un-
aided acquisition.  The problem of weak signal
acquisition in the presence of strong interfering signals
is addressed in the fifth section.  The sixth section
presents semi-experimental results for the various
acquisition algorithms and gives guidelines for achieving
a successful acquisition.

SIGNAL MODEL AND REVIEW OF BLOCK-
PROCESSING SIGNAL ACQUISITION

Intermediate-Frequency RF Signal Model

The software receiver works with the digitized signal that
comes out of the RF front end.  The following is a model
of this signal for the front end that has been used in this
study:

yk  =  A d(tk) c[(1+η)(tk – ts)] cos[ωIFtk - (ωDtk + φ0)]
+ νk (1)

In this model yk is the output of the RF front end at
sample time tk.  The constant A is the signal amplitude.
The function d(t) is the GPS data stream, which is
sequence of +1 and –1 values that switch randomly
approximately every 0.020 sec.  The function c(t) is the
C/A PRN code of the received signal.  This is a known

pseudo-random sequence of +1 and –1 values that switch
at a nominal chipping rate of 1.023 MHz and that repeat
every 1023 code chips.  Thus, c(t) is periodic with a
period of 0.001 sec.  The quantity η is the fractional
perturbation of the chipping rate due to Doppler shift,
and ts is the start time of the PRN code, which is a
measure of its phase.  The frequency ωIF is the nominal
intermediate frequency to which the L1 carrier signal
gets mixed in the RF front end, and ωD is the carrier
signal’s Doppler shift.  Neglecting ionospheric effects,
the Doppler shift and the chipping rate perturbation are
related: η = ωD/(2π×1575.42×106).  The angle φ0 is the
initial carrier phase.

The term νk is the noise.  Normally it can be modeled as
Gaussian, band-limited colored noise.  The coloring
comes from the RF front end’s band-pass filters.
Sometimes it will be helpful to explicitly model the
effects on νk of interfering GPS satellites.

The 50 Hz data bit shifts in d(t) are synchronized with the
PRN code c(t).  They occur once every 20 PRN code
periods, at the times

tm  =  
η+
+

1
0.0010.020 im

 + ts for m = 0,1,2,… (2)

where i is an unknown, but fixed integer somewhere in
the range from 0 to 19 inclusive.

Review of Signal Acquisition Using Block
Processing

The goal of signal acquisition is to estimate ts and ωD

based on the measurements y0, y1, y2, …, yk, …  The
standard technique searches for the ts and ωD values that
maximize the correlation between the signal and a
reconstruction of it.  Suppose that st̂  and Dω̂  are
guessed values of the code phase and the Doppler shift
and that η̂  = Dω̂ /(2π×1575.42×106).  Then the
necessary correlations are:

I  =  ∑ −−+
−

=

1N

0k
kDIFskk tˆcost̂tˆ1cy ])[()])([( ωωη (3a)

Q  =  ∑ −−+−
−

=

1N

0k
kDIFskk tˆsint̂tˆ1cy ])[()])([( ωωη (3b)

where N is the maximum N that satisfies tN-1 < t0 +
0.001/ )( η̂1 + , which causes y0,…,yN-1 to span a whole
PRN code period of approximately 0.001 sec.  The
quantity I is known as the in-phase accumulation, and Q is
called the quadrature accumulation.

The acquisition maximizes P( st̂ , Dω̂ ) = I 2+Q 2 via brute

force search on the 2-dimensional grid of trial points st̂
= t0, t1, t2, …, tN-1  and Dω̂  = ωDmin, ωDmin+∆ωD, ωDmin+2∆ωD,
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…, ωDmax.  The limits ωDmin and ωDmax constitute a priori
knowledge of the possible range of Doppler shifts.  If
P( st̂ , Dω̂ ) exceeds a threshold value that is determined
by the noise statistics, then the acquisition algorithm
terminates successfully.  If all of the P values on the
search grid fall below this threshold, then no signal is
detected, and the acquisition fails.

Fast Fourier Transform techniques can speed up the
correlation calculations in a software receiver.  Suppose
that ∆t = tk+1-tk = a constant.  Then eqs. (3a) and (3b) can
be re-written as

z(n, Dω̂ )  =  z(t0+n∆t, Dω̂ )  =  I + jQ

=  ∑ −
−

=
−

1N

0k
kDIFnkk tˆjexpcy ])([- ωω (4)

where the integer n is an index of the code start time

)n(st̂  = t0+n∆t and where ck-n = ]))([( tnkˆ1c ∆η −+  is a

sampled version of the signal's PRN code.

For a given Dω̂ , one must compute z(n, Dω̂ ) for all of
the code delays in the range n = 0,…, N-1.  These can be
computed simultaneously in a batch (or block) process
that makes use of FFT and IFFT calculations.  If one uses
circular convolution techniques like those of Ref. 4 and
if one computes the following FFTs:
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then it is straightforward to show that
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This calculation assumes that the sampled PRN code is
periodic with period N, i.e., that ck = ck+N for all k.  Code
periodicity is enforced by data interpolation, which is
defined below.

Block processing techniques speed up the correlation
calculations by orders of magnitude.  Radix-2 FFT and
IFFT algorithms execute in order(N log2N) operations if
N is a power of 2.  Non-FFT-based techniques require

order(N 2) operations.  The savings factor is N/log2(N).
This factor ranges from 340 to 630 for typical values of
N, which range from 212 to 213.

Data interpolation is used to accomplish two goals: a) to
make ck exactly periodic with period N and b) to make N
equal to a power of 2.  Suppose that the RF front end
samples the C/A code at about 5 MHz.  If one
interpolates this sampled data using the shorter sample
period ∆tinterp = 0.001/[8192(1+η̂ )], then there are
exactly N = 8192 interpolated samples per PRN code
period, and the sampled PRN code is exactly periodic: ck

= ck+8192 for all k.  Linear interpolation of the yk data has
been used in the present study in order to achieve 8192
samples per code period.  The effect of this interpolation
on the SNR has been checked by comparing it with the
SNR for un-interpolated data.  No significant SNR
degradation has been found.

This paper’s remaining analyses assume the use of data
interpolation as defined above.  They work with redefined
sample times tk = t0 + k×∆tinterp, a redefined ∆t = ∆tinterp, and
the redefined yk values that result from interpolation of
the RF front end's original outputs onto the new time
grid.  This implies that the tk values, ∆t, and the yk values
change with changes in Dω̂ .  This is true because η̂
changes with Dω̂ .  These variations necessitate re-
interpolation of yk for each value of Dω̂ .  The resulting
re-interpolation effort does not add a significant amount
of time to the computation if one is careful to use a
special-purpose interpolation procedure which takes
advantage of the fact that the original sample times are
evenly spaced.

Acquisition of Weaker Signals by Block Processing

The acquisition process defined above requires
modifications if the SNR is significantly weaker than the
nominal terrestrial value of 50 dB Hz.  The easiest thing
to do is to sum correlations over adjacent PRN code
periods.  Suppose that

zl (n, Dω̂ )  =  Il + jQl

= ∑ −
−+

=
−

1)1(N

Nk
kDIFnkk tˆjexpcy

l

l
])([- ωω (7)

is the correlation for the l th PRN code period.  Then the
modified acquisition computes

zsum(n, Dω̂ )  =  Isum + jQsum  =  ∑
−

=

1L

0
Dˆnz

l
l ),( ω (8)

The acquisition procedure searches for a combination of

)n(st̂  and Dω̂  that yields a value of Psum = (Isum)2 + (Qsum)2

which is above a certain threshold.  Although zsum(n, Dω̂ )
for n = 0,…, N-1 could be computed by a single
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FFT/IFFT calculation over the long time interval from t0

to t0 + L×0.001, it is more efficient to add the results of
individual FFT/IFFT-based computations of
zl (n, Dω̂ ), as in eq. (8).  Also, one must search on a finer
grid of Dω̂  values in this modified acquisition because
large losses of correlation occur when Dω̂  differs from
the true Doppler shift by values approaching 1000×2π/L
rad/sec.

The SNR of the zsum(n, Dω̂ ) calculation can be increased,
up to a point, by increasing L, but there is a limit to the
useful size of L.  This limit is imposed by the presence of
unknown data bit transitions, which can entirely null out
the signal if they occur in bad places.

Reference 8 deals with the data bit problem by a
judicious choice of its acquisition interval.  The idea is to
limit L to be no greater than 10 and to try two different
intervals.  The second interval is delayed by 0.010 sec
from the first.  This guarantees that at least one of these
intervals does not contain a data bit transition because
transitions are separated by multiples of 0.020 sec.  This
acquisition strategy is effective for SNR levels as low as
35 dB Hz.

SIGNAL ACQUISITION OVER MULTIPLE DATA
BITS WITHOUT A PRIORI BIT INFORMATION

This section describes two methods for acquiring signals
with SNRs below 35 dB Hz.  These methods use no a
priori knowledge about the data bits or about their
transition times.  Both of the algorithms are variants of
the technique that is described in Appendix B of Ref. 6.
The basic idea is to sum correlations over short intervals,
as in eq. (8), to compute the magnitude squared of each
such sum, and then to sum these squared magnitudes over
longer intervals.  This technique allows one to average
over intervals that are much longer than half of a data bit.

This technique uses the following test statistic in order
to determine whether or not there is a signal present with
the code delay )n(st̂  and the Doppler shift Dω̂ :

Plong(n, Dω̂ )  =

∑























∑+












∑

−

=

−+

=

−+

=

1M

0m

21L
D

21L
D

m

m

m

m

ˆnQˆnI
l

ll
l

l

ll
l ),(),( ωω (9)

There are M short pre-squaring summation intervals.  The
new test statistic Plong(n, Dω̂ ) is the sum of the individual
Psum values from these M intervals.  Each short summation
interval spans L PRN code periods, and they start at the
PRN code periods l0, l1, l2, …, lM-1.

The test statistic in eq. (9) has two advantages.  First, one
can make M large and yet avoid signal losses that might

occur due to summation over data bit transitions.  The
squaring operations after the inner summations strip the
data bits.  Second, one need not search for Dω̂  over
nearly as fine a Doppler shift grid as one would have to
use if one summed the entire data batch before squaring.
One can use a Doppler shift grid spacing on the order of
1000×2π/L rad/sec.  A much finer spacing, on the order
of 1000×2π/(L+lM-1-l0) rad/sec, would be needed if the
correlations for the entire data interval were summed
before squaring.

An important aspect of the technique concerns how to
pick the pre-squaring summation intervals, i.e., how to
pick L and l0, l1, l2, …, lM-1.  The goal is to ensure that no data
bit transitions occur during any of these short summation
intervals.  This goal can be achieved in two ways.

Alternate Half-Bits Method

One interval selection method is an extension of the
technique of Ref. 8.  It performs two independent
acquisition calculations using alternate sets of lk values;
call them Set "a" and Set "b".  Set "a" uses l0 = 0, l1 = 20, l2

= 40, …, lM-1 = (M-1)×20.  Set "b" is displaced half a bit
later than set "a": l0 = 10, l1 = 30, l2 = 50, …, lM-1 = 10+(M-
1)×20.  Each pre-squaring summation interval is half a bit
in duration, i.e., L = 10.  Thus, one of the sets is
guaranteed to have no bit transitions in any of its pre-
squaring summation intervals.

Figure 1 illustrates this method.  It shows a time history
of Ql  accumulations for a case in which st̂  and Dω̂  have
been chosen correctly.  All of the signal power is phased
in quadrature.  The presence of a signal causes the non-
zero mean of the absolute value of the Ql  time history.
GPS data bit transitions cause the 7 jumps of the signal
between a positive mean value and a negative mean value.
Superimposed on the plot are the Set-"a" and Set-"b" pre-
squaring summation intervals.  The Set-"a" intervals start
at the vertical dashed lines and end at the vertical dotted
lines.  The Set-"b" intervals are vice versa, and the two
sets of intervals are interleaved.  All of the data bit
transitions occur in pre-squaring intervals from Set "a".
The Plong statistic of Set "b" would take on the largest value
and, therefore, would be used to acquire the signal.

Full-Bits Method with Estimation of Bit Transition
Times

This paper's other method of picking the summation
intervals involves estimation of the data bit transition
times.  The technique used here is similar to the optimum
bit synchronizer of Ref. 9.  The start indices of the pre-
squaring summation intervals are set to l0 = i, l1 = i+20, l2

= i+40, …, lM-1 = i+(M-1)×20, and the duration of each
summation is a full bit, L = 20.  The Plong detection
statistic is then computed for each i in the set
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{0,1,2,…,19}, and the value that gets used for a particular

st̂  and Dω̂  is the maximum of Plong over all 20 values.  If

st̂  and Dω̂  have been chosen correctly, then the
corresponding optimal i is an estimate of the data bit
transition time.

Fig. 1. Example relationship of pre-squaring summation
intervals to data bit transitions for the alternate-
half-bits method.

Comparison of the Two Algorithms

The principal advantage of the full-bits method over the
alternate-half-bits method is that it sums accumulations
for twice as much time before squaring.  This enables it
to detect weaker signals in a fixed batch of data.  There is
an SNR loss due to squaring.  Any SNR gain that can be
achieved before squaring is worth double that amount, in
dB terms, after squaring.  (Strictly speaking, this is true
only for false alarm calculations.)  The full-bits method
achieves 3 dB more gain before squaring because it
doubles the pre-squaring summation interval.  This
translates into a 6 dB gain in the SNR of the acquisition
statistic Plong.

Another advantage of the full-bits method is its
simultaneous estimation of the data bit start times.
These are required to decode the navigation message and
to infer pseudorange.

The advantage of the half-bits algorithm is its lower
complexity.  Its code is simpler, it uses less memory, and
it executes faster.  Even though it performs two separate
acquisition calculations, the Set-"a" calculations and the
Set-"b" calculations, it still executes faster than the full-
bits algorithm when operating on the same amount of raw
data.

Hypothesis Testing Analysis of the Acquisition
Algorithms

A signal acquisition algorithm can be treated as a
hypothesis testing problem, as in Refs. 6 and 10.  The
signal detection test Plong ≥ Pmin is a mixed Bayes/Neyman-
Pearson test 10.  In both types of test one effectively
compares the data's probability density conditioned on
the assumption of no signal with its probability density
conditioned on the assumption that there is a signal.  The
analysis of this particular test assumes that the
measurement noise is Gaussian and uncorrelated over
different pre-squaring summation intervals, that there are
no data bit transitions in the pre-squaring summations,
that the occurrence of positive and negative data bits is
random and equally likely, and that the initial carrier
phase, φ0, is randomly distributed on the interval [0,2π].
These assumptions allow one to compute a Bayesian
probability distribution for the measured data
conditioned on the presence of a signal with a given code
phase, Doppler shift, and amplitude.  This probability
density function is a complicated expression that
involves an integral over the random carrier phase.  The
integrand is an exponential function multiplied by
products of hyperbolic cosine functions.  The hyperbolic
cosine functions result from a Bayesian treatment of the
uncertain data bits, as in Ref. 9.

The unknown signal amplitude is removed from the
problem by using the technique of generating a locally
most powerful Neyman-Pearson hypothesis test (see
Ref. 10, pp. 51-55).  A locally most powerful test yields
the smallest probability of a missed detection for a given
false alarm probability in the limit as the signal amplitude
approaches zero.  Such a test is useful because the weak
signal case is the case for which one is most concerned
about achieving optimality.  The locally optimal test
performs a Taylor series expansion of the conditional
probability in terms of A, the signal amplitude.  This
Taylor series is taken about A = 0, and the locally optimal
test is developed by using the first non-zero coefficient
in the series 10.  After some manipulation, the resulting
test takes the form Plong > Pmin with Plong computed as in eq.
(9).

The search over a grid of code delays )n(st̂  and Doppler

shifts Dω̂  effectively solves an M-ary (as opposed to
binary) hypothesis testing problem, as in Ref. 10, p. 61.
Each grid point in [ )n(st̂ , Dω̂ ] space constitutes a

hypothesis as does the hypothesis that there is no signal.
This latter is called the null hypothesis.  A reasonable ad
hoc approach that is like the M-ary Bayesian approach is
to choose as the true hypothesis that combination of

)n(st̂  and Dω̂  which produces that largest value of Plong

subject to the constraint that this value exceed Pmin.
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Otherwise, the null hypothesis is chosen, and the system
fails to detect a signal.  In the full-bits case one also
searches over all possible bit start times i ∈
{0,1,2,…19}, but the algorithm is the same otherwise.

One can calculate or bound missed detection
probabilities and false alarm probabilities for these two
signal detection algorithms.  These calculations can be
used to design M and Pmin so as to enforce upper bounds
on the probabilities of these two error types.  Most of
the necessary analyses and equations can be found in
Appendix B of Ref. 6.  One must keep in mind that M in
Ref. 6 corresponds to L in the present paper, that K in
Ref. 6 corresponds to M in the present paper, that (S/N0)T
in Ref. 6 corresponds to (NA)2/[8(σIQ)2] in the present
paper, and that l in Ref. 6 corresponds to Plong/[L(σIQ)2] in
the present paper.  Note that (σIQ)2 is the variance of Il

and of Ql  that is caused by the measurement noise νk.
Note, also, that eq. (B7) of Ref. 6 has a sign error in the
argument of the exponential function: the term –2Kβ
should be +2Kβ.

The probability of detection, which equals one minus the
probability of missed detection, can be calculated using
eq. (B10) in Ref. 6.  It depends on the following three
quantities: M, the expression L(NA)2/[8(σIQ)2], and the
normalized threshold Pmin/[L(σIQ)2].

For both of this paper's algorithms, the false alarm
probability is a function of only two quantities: M and the
normalized threshold Pmin/[L(σIQ)2].  The alternate half-
bits method yields a no-signal probability distribution of
Plong/[L(σIQ)2] that is a chi-squared distribution of degree
2M, and eq. (B12) of Ref. 6 can be used to calculate the
corresponding false alarm probability.  In the full-bits
case, however, the no-signal probability distribution of
Plong/[L(σIQ)2] is more complicated.  For a given code
delay and Doppler shift, there is correlation between the
Plong/[L(σIQ)2] chi-squared distributions that correspond to
different bit start times i.  If one maximizes with respect
to i, then the distribution of the resulting maximum
Plong/[L(σIQ)2] cannot be calculated in closed form.
Fortunately, one can calculate a Bonferroni-type upper
bound on the false alarm probability for this case 11.  It
equals 20 times the false alarm probability of eq. (B12)
of Ref. 6.

This factor of 20 in the full-bits method causes it to lose
some of the benefit of the SNR gain that results from its
longer pre-squaring summation interval.  This happens
because the method’s maximization over i tends to
amplify the noise when there is no signal present.
Fortunately, the SNR loss due to this effect is never
more than the 6 dB gain due to the longer pre-squaring
summation intervals.  Experimental results show that the
SNR loss due to maximization with respect to i seems to

decrease as the number of post-squaring summations M
increases.  In a case with M = 199 this loss was only 1
dB.

The allowable false alarm probability must take into
account the size of the [ )n(st̂ , Dω̂ ] search space.

Suppose that one searches over the full code phase
uncertainty of 1023 chips and over a Doppler shift
uncertainty range from ωDmin to ωDmax.  Suppose, also, that
there is no signal present.  Then there are approximately
K = 1023×(ωDmax-ωDmin)×L×0.001/(2π) statistically
independent Plong values in this search space.  A
conservative Bonferroni-type calculation takes the false
alarm probability computed from eq. (B12) of Ref. 6 and
scales it up by the factor K.  One then designs Pmin so as
to enforce a certain bound on this re-scaled probability.
For the full-bits method, one scales the eq.-(B12) false
alarm probability by the factor 20K in order to account
for both the K independent Plong calculations and the
maximization with respect to i.  For the alternate half-
bits methods, the eq.-(B12) false alarm probability gets
scaled up by the factor 2K.  The extra factor of 2 comes
from the fact that Sets "a" and "b" together yield 2K
statistically independent Plong calculations.

Note, one might falsely conclude that (σIQ)2 = (N/2)(σν)2,
where (σν)2 is the variance of the measurement noise νk.
Normally (σIQ)2 is significantly larger than this due to the
band-limited nature of νk.  For the bit-grabber used in the
present study, the raw data yields (σIQ)2 = 1.28 (N/2)(σν)2,
and the interpolated data yields (σIQ)2 = 1.82 (N/2)(σν)2

when N = 8192 points.

EFFICIENT BLOCK PROCESSING FOR
COMPUTATION OF THE ACQUISITION
STATISTIC

The acquisition algorithms can require a large amount of
computation time.  This is especially true if the number
of pre-squaring summation intervals, M, is large and if
the Doppler shift uncertainty, ωDmax-ωDmin, is large.  Block
processing can be used to rapidly calculate
[Il(0, Dω̂ ),…,Il(N-1, Dω̂ )] and [Ql(0, Dω̂ ),…,
Ql(N-1, Dω̂ )] in one batch, but one must still step
through L×M different l values and many different Dω̂
values.  Furthermore, if one is using the full-bits method,
then one must keep track of 20 running sums of possible
Plong values at each code delay index n and each Doppler
shift grid point Dω̂ .
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Approximation of Accumulations on a Finely-Spaced
Doppler Shift Grid

There is a way to economize on the number of FFT and
IFFT calculations that must be computed on a large
Doppler shift grid.  The maximum grid spacing between
adjacent Doppler shift trial points is 2π/(0.001L)
rad/sec, and one may want to use an even finer grid in
order to maintain the pre-squaring SNR.  Fortunately, one
can save FFT calculations by approximating the values of
Il(n, Dω̂ ) and Ql(n, Dω̂ ) on a fine grid based on nearby
values from a rough grid.

Suppose that the eq.-(7) accumulations are to be
calculated at the Doppler shift Dω̂  = Drω̂ + Dω̂∆ .
Assume that Drω̂  is a Doppler shift for which
accumulations have already been computed and that

Dω̂∆  is a small perturbation.  Equation (7) can then be
re-written and approximated as follows:

Il (n, Dω̂ )  + jQl (n, Dω̂ )

=  ∑ −−−
−+

=
−

1)1(N

Nk
kDDrIFnkk tˆˆjexpcy

l

l
])([ ω∆ωω

=  •∑ −−
−+

=
−

1)1(N

Nk
kDrIFnkk tˆjexpcy

l

l
])([ ωω

][)]([ ll tˆjexpttˆjexp DkD ω∆ω∆ −

≅  ∑ −−
−+

=
−

1)1(N

Nk
kDrIFnkkD tˆjexpcytˆjexp

l

l
l ])([][ ωωω∆

≅  ][ ltˆjexp Dω∆ {Il (n, Drω̂ )  + jQl (n, Drω̂ )} (10)

where lt  = 0.5)]([ +lNt  is the mid point of the l th code-

period-length accumulation interval.  The approximation
made on the third line of eq. (10) is that

)]([ lttˆjexp kD −ω∆  ≅ 1.  The definition of lt  guarantees
that |tk - lt | ≤ 0.0005 sec.  Therefore, the eq.-(10)
approximation will be valid if Dω̂∆ /(2π) << 2000 Hz.
The approximation is reasonable for Dω̂∆ /(2π) ≤ 500
Hz and very good for Dω̂∆ /(2π) ≤ 250 Hz because the
average of )]([ lttˆjexp kD −ω∆  over the summation
interval is very close to 1.

The importance of eq. (10) is that it allows one to
restrict the use of expensive FFT and IFFT operations to
a rough grid of Doppler shift values 0Drω̂ , 1Drω̂ , 2Drω̂ ,
…  The spacing between these rough grid points can be as
large as 500 Hz.  The accumulations on a fine Doppler
shift grid can then be approximated by using eq. (10) and
the Il and Ql values of the nearest neighboring point on
the rough frequency grid.  If the fine grid spacing is 25
Hz and the rough grid spacing is 500 Hz, then there will
be a savings factor of 20 in the number of times that FFT
and IFFT calculations need to be carried out.

One must account for the differences in code chipping
rate between the accumulations on the rough Doppler
shift grid and the approximate accumulations on the fine
grid.  This is especially important for acquisitions that
use long data intervals.  The non-dimensional difference
in the chipping rate is η∆ ˆ  = Dω̂∆ /(2π×1575.42×106).
The effect of this difference is to cause the Il (n, Dω̂ ) and
Ql (n, Dω̂ ) accumulations in eq. (10) to be associated
with slightly different code start times:

{ )n(st̂ }new  =  )n(st̂   +  
η∆η

η∆
ˆˆ

ttˆ

r

0
++
−

1
)( l (11)

where rη̂  = Drω̂ /(2π×1575.42×106) is the fractional
chipping rate perturbation associated with the nearest
point on the rough Doppler grid.  Equation (11) is an
approximation that is valid only for η∆ ˆ  << 1/1023,
which is true in virtually all foreseeable circumstances.

It is necessary to interpolate accumulations onto a grid
of code start times that does not vary with the
accumulations' PRN code period l.  The perturbed code
start time in eq. (11) depends on l.  The grid to choose is

)n(st̂  = t0 + 0.001n/[N(1+ η∆ ˆ + rη̂ )] for n = 0,…, N-1.

This is accomplished by using eq. (11) to find the integer
k such that { )kn(st̂ + }new ≤ )n(st̂  < { )1kn(st̂ ++ }new.  One

then interpolates linearly between Il (n+k, Dω̂ ) and
Il (n+k+1, Dω̂ ) in order to find the I accumulation for the

estimated code start time )n(st̂ .  A similar interpolation

is used for the Q accumulation.  If either n+k or n+k+1
is outside of the range 0,1,2,…, N-1, then one uses the
periodicity property of the accumulations, Il (n+N, Dω̂ )
= Il (n, Dω̂ ) and Ql (n+N, Dω̂ ) = Ql (n, Dω̂ ) in order to
set up a sensible interpolation.

Worst-Case SNR Loss as a Function of Doppler Shift
Grid Spacings

The spacings of the fine and rough Doppler shift grids
can affect the SNR of the calculations.  The pre-squaring
SNR suffers a loss whenever there is a difference
between the signal's Doppler shift and the Doppler shift
of the grid point.  The loss due to rough-grid errors
occurs because the summand of eq. (4) drifts around a
circle in (I,Q) space during the summation.  Fine grid
frequency errors cause the Il and Ql accumulations of eq.
(9) to drift around a circle during that equation's pre-
squaring summation.  If the drift goes too far during a
summation, then a significant amount of signal power
will be lost.  The worst-case combined SNR losses for
the two operations can be approximated as follows:
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where rω̂∆  is the spacing of the rough grid and fω̂∆  is

the spacing of the fine grid, both in rad/sec.  Thus, if one
is using the alternate half-bits method, for which L = 10,
and if one uses rω̂∆ /(2π) = 250 Hz and fω̂∆ /(2π) = 25

Hz, then the worst-case pre-squaring SNR loss will be
0.45 dB.  If one doubles both grid spacings, then the
worst-case pre-squaring SNR loss becomes 1.82 dB.
The importance of this loss doubles after the squaring
operation.  Therefore, one must not use Doppler shift
grids that are too coarse if one wants to detect very weak
signals.

Reduction of the Number of FFT Operations via
Frequency Shifting

The acquisition algorithms call for calculation of the FFT
of ])([- kDIFk tˆjexpy ωω −  at each frequency point on
the Doppler shift rough grid, as in eq. (5).  Many of these
FFT operations can be avoided by performing shifts in
the frequency domain.  If one knows the FFT of

])([- kDIFk tˆjexpy ωω −  for k = 0,…, N-1, then the FFT
of ])([- kDpDIFk tˆˆjexpy ω∆ωω −−  can be computed by

a simple circular frequency shift

FFT(





















−−

−−
−−

−− ])([-

])([-
])([-

1NDpDIF1N

1DpDIF1

0DpDIF0

tˆˆjexpy

tˆˆjexpy
tˆˆjexpy

ω∆ωω

ω∆ωω
ω∆ωω

M
)  =



























−−

−

−

1pN

0

1N

pN

0Dp

Y

Y
Y

Y

tˆjexp

M

][ ω∆ (13)

if Dpω̂∆  = p×2π×1000×[1 + Dω̂ /(2π×1575.42×106)]

for any integer p.  If one chooses the rough Doppler shift
grid points to be p×2π×1000 for integer values of p, then
one only needs to compute the first FFT in eq. (5) once,
at a Doppler shift of zero.  (Note that the second FFT in
eq. (5) gets computed only once due to the assumption
that the sampled PRN code is periodic of period N.)  Of
course, one still needs to compute the IFFT of eq. (6) at
each Doppler shift grid point.  Thus, this procedure can
save about half of the required FFT/IFFT calculations.

One must modify the correlation interpolation associated
with eq. (11) if one uses eq. (13) in order to economize
on FFTs.  The definition of the η∆ ˆ  chipping rate
perturbation must be based on the frequency difference
between the Doppler-shift at the fine grid point and the
Doppler shift that has been used in the original FFT
calculation, Dω̂  of eq. (13).

Normally one wants to use a tighter spacing for the rough
Doppler shift grid than 1000 Hz. The first term on the
right-hand side of eq. (12) implies that a 1000 Hz
spacing will yield a worst-case SNR loss of 3.9 dB.  This
could be unacceptable for a low SNR signal acquisition.

The way to use eq. (13) with a narrower spacing of the
rough grid points is to calculate several eq.-(5)-type
FFTs for a minimal set of frequencies on the rough grid
that are not 1000 Hz multiples of each other.  For
example, suppose one used the rough Doppler shift grid
points …, -1500 Hz, -1000 Hz, -500 Hz, 0 Hz, 500 Hz,
1000 Hz, 1500 Hz, ...  One could calculate all of the
required FFTs at the frequencies …, -1000 Hz, 0 Hz,
1000 Hz, … by using frequency shifts of the FFT for 0
Hz, and one could calculate the FFTs at …, -1500 Hz, -
500 Hz, 500 Hz, 1500 Hz, …by frequency shifts of the
result at 500 Hz.  Thus, one would need to calculate only
2 FFTs in order to halve the grid spacing.  Note that the
actual grid frequencies associated with the 500 Hz FFT
will be –1500.0006, -500.0003, 500, 1500.0003 Hz, …
The small perturbations in these values result from the
definition of Dpω̂∆  that appears just after eq. (13).

This technique has not been used in the examples of this
paper.  It can greatly increase the computer storage
requirements for long data intervals, and it saves no more
than a factor of 2 in computation time.  Therefore, it was
not deemed to be worth implementing in order to
generate this study's proof-of-concept results.

Efficient Calculation of the Acquisition Statistic for
the Full-Bit Method

One must be careful about how one calculates Plong for the
full-bit method.  Twenty different values of Plong must be
calculated for a given [ )n(st̂ , Dω̂ ] combination because

there are 20 different possible bit start times.  An
efficient way to do this is to calculate running I and Q
sums that include the last 20 accumulations:

Irun(l)  =  ∑
−=

l

l 19k
kI    and   Qrun(l)  =  ∑

−=

l

l 19k
kQ (14)

These sums can be computed efficiently via the
recursions

Irun(l+1)  =  Irun(l) + Il+1 - Il-19   and
Qrun(l+1)  =  Qrun(l) + Ql+1 - Ql-19 (15)
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These recursions require storage of the last 20 values of
Il  and Ql, presumably in a circularly indexed array.
Equations (15) get iterated once per PRN code period.
After each iteration Irun(l) and Qrun(l) get squared and
added to the Plong value that corresponds to i =
mod(l +1,20).

WEAK SIGNAL ACQUISITION IN THE PRESENCE
OF INTERFERING STRONG SIGNALS

The acquisition of a weak GPS signal is more difficult if
there are other GPS signals present whose power is much
stronger than that of the signal in question.  One may
have to use additional strategies in order to detect the
signal reliably in this case.  The interfering signals have a
slight, non-zero cross correlation with the weak signal.
This cross correlation can cause a false acquisition if the
weak signal has about 23 dB less power than the strong
signal.  This spoofing can occur even when the two
signals’ Doppler shifts are very different because the
product of 2 PRN codes has harmonic components at
multiples of 1000 Hz.

Appendix B of Ref. 6 mentions a way to deal with this
problem: raise the acquisition threshold for Plong.  This
conservative technique reduces the incidence of false
alarms due to cross correlation, but it also increases the
probability of a missed detection.  In high-altitude orbit
determination, this approach might preclude the use of
signals from the side lobes of GPS transmitters when a
signal from another satellite's main lobe is present.  Such
conservatism would have a negative impact on the ability
to do GPS-based orbit determination at high altitude.

Another way to deal with this problem is to subtract the
interfering signals out of the raw data before trying to
acquire the weak signal.  Suppose that one has acquired a
stronger signal using the techniques given above.  One
can then track this signal using techniques like those of
Ref. 12.  This yields a knowledge of all of the strong
signal’s parameters in eq. (1) except for A, the signal
amplitude.  Suppose that the signal sk is defined to be the
PRN code and carrier part of the tracked strong signal:

sk  =  c[(1+η)(tk – ts)] cos[ωIFtk - (ωDtk + φ0)] (16)

where ts, ωD, and φ0 are estimated by the techniques of
Ref. 12 and may be time-varying.  Suppose, also, that one
knows the bit transition times of the strong signal.  Then
one can estimate the signed amplitude of the strong
signal over a given data bit interval as follows:

Â   =  ∑∑
==

stopbit

startbitk
kk

stopbit

startbitk
kk ssys (17)

One can then use Â  to subtract the estimated strong
signal out of the raw data in order to create wk, a signal
that still contains the weak signal but that does not

contain the strong signal:

wk  =  yk  -  Â sk (18)

Of course, one must re-calculate Â  for every data bit
interval.  The operations in eqs. (17) and (18) amount to a
projection of the signal yk perpendicular to the signal sk

as measured in signal-time-history space.  This particular
implementation assumes that the signal amplitude does
not vary significantly over a 0.020 sec data bit period.

WEAK SIGNAL ACQUISITION RESULTS

Test Procedures

The signal acquisition algorithms of this paper have been
tested using actual data from a GPS bit grabber.  The bit-
grabber has been connected to a roof-mounted patch
antenna that has a low-noise pre-amplifier.  The raw data
contains a number of strong GPS signals.  Simulated
noise has been added to the raw bit-grabbed data in order
to create data sets that contain GPS signals with low
SNRs.  These data sets have been used to test the
acquisition algorithms.

The bit grabber mixes the signal down to a nominal IF of
4.309 MHz and samples it at 5.714 MHz.  It use
automatic gain control and 2-bit analog-to-digital
conversion (ADC).  The sampling process aliases the
signal down to 1.405 MHz and creates the phase reversal
of eq. (1) 12.

The strong GPS signals in the raw bit-grabbed data have
been acquired and tracked in order to determine truth
values for ts and ωD.  Acquisition has been accomplished
using the algorithms of this paper.  Tracking has been
accomplished using the algorithms of Ref. 12.  The
tracking algorithms yield very accurate estimates of ts

and ωD because they use optimal smoothing and because
the raw signals are very strong.

Weak signals have been generated by adding simulated
colored noise to the raw bit-grabbed data.  A model of
the RF front end's band-pass filters has been driven by
simulated white noise in order to produce simulated
colored noise with the proper spectrum.  The amplitude
of this noise has been adjusted in order to achieve a
certain pre-specified loss of SNR, and the noise has been
added to the raw RF bit grabbed data.  Finally, in
operations which are identical to those of the bit grabber,
the signal has been gain controlled and re-digitized using
a 2-bit quantization.

The SNR of the weakened signal has been checked by
using the strong signal truth results.  The strong signal
results give the carrier phase, the code phase, and the bit
transitions.  These can be used in to calculate I and Q
accumulations, as in eqs. (3a) and (3b), and to estimate
the signal amplitude A, as in eq. (17).  The measured
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standard deviation of the I and Q accumulations, σIQ, and
the measured value of A have been used to calculate the
carrier to noise ratio:

C/N0  =  10 log10{(NA)2/(4×0.001 2
IQσ )} dB Hz (19)

This SNR definition is larger by 3 dB than that used in
Appendix B of Ref. 6.

Example Cases

A number of weak signal acquisition cases have been run.
Signals with SNRs as low as 20.7 dB Hz have been
successfully acquired, and acquisition times as long as
3.980 sec (M = 199 bits) have been used.  The alternate
half-bits method has been compared with the full-bits
method, and the dependence of the required acquisition
time on the SNR has been investigated.

The following results are those of a typical case.  It uses
4 seconds worth of data for the GPS satellite with PRN
code number 08.  The data has been collected on Jan. 10,
2001 in Ithaca, N.Y.  The SNR of the raw data is 50.7 dB
Hz.  This SNR has been attenuated by 30 dB through the
addition of simulated noise.  Thus, the test acquisition
has been carried out at an SNR level of 20.7 dB Hz.  The
full 4 second data batch has been used in the acquisition
process because an analysis of the missed detection and
false alarm probabilities indicated that this amount of
data would virtually ensure success.  This means that M =
199 data bits have been used in the full-bits process; the
bit optimization process uses data that spans M + 19/20
bits.  Both the full-bits process and the alternate half-bits
process have been tried on this data set.

The acquisition has searched in the Doppler shift space
spanning from –5250 Hz to + 5250 Hz, which is the
expected range of signals for a static terrestrial receiver.
The fine Doppler shift grid spacing has been set at 12.5
Hz for the full-bits procedure and at 25 Hz for the half-
bits procedure.  The rough Doppler shift grid spacing has
been set at 250 Hz for both methods.

An upper bound for the false alarm probability has been
set at 0.001.  Recall that this is a bound on the probability
that any of the peaks in the full [ts,ωD] search space will
reach the Pmin threshold when no signal is present.  For
the 199 full-bits method this yields a detection threshold
of Pmin = 600L(σIQ)2.  For the 199 alternate half-bits
method the threshold is Pmin = 582L(σIQ)2.  The
corresponding probabilities of missed detection are
5.3×10-9 for the full-bits method and 0.11 for the
alternate half-bits method, assuming an SNR of 20.7 dB
Hz.  These greatly differing probabilities of missed
detection illustrate the superior performance of the full-
bits method over the half-bits method.  In either case,
though, the likelihood of successful signal detection is
high.  The main advantage of the full-bits method is that it

should be able to acquire a signal at an SNR level of 18
dB Hz with a missed detection probability of only 0.12
when operating on 199 bits.  The corresponding alternate
half-bits method has a missed detection probability above
0.36 for SNR levels below 20 dB Hz.

The example signal has been successfully detected by
both the full-bits method and the alternate half-bits
method.  In the full-bits method the maximum value of
Plong has exceeded Pmin by a significant amount: max(Plong)-
Pmin = 232L(σIQ)2.  This margin is much lower in the
alternate half-bits case, only 53L(σIQ)2.  The missed-
detection probability analysis for the full-bits method
predicts that max(Plong) will exceed this example's
computed value 75 % of time, which further confirms the
high likelihood of a successful acquisition.

Figure 2 presents a surface plot of Plong/[L(σIQ)2] vs. ts and
ωD for this example's full-bits acquisition.  The peak at
the correct values of ts and ωD rises well above the noise.
This indicates that this acquisition procedure is a
powerful method for detecting the 20.7 dB Hz signal.

Fig. 2. The signal detection statistic, Plong, as a function
of the trial values of the code delay and the
Doppler shift, a 199 full-bits acquisition case for
PRN 08 with an SNR of 20.7 dB Hz.

These results compare favorably with the weak signal
acquisition results of Ref. 8.  Reference 8 starts out with
a strong signal from a simulator.  Although the paper
never reports an SNR, its Fig. 4 implies that the original
signal's SNR is about 50 dB Hz at the output of the RF
front end.  The paper presents acquisition results for
various attenuated versions of the signal.  It reports
successful acquisition down to 35 dB Hz (15 dB of loss)
without assuming knowledge of the GPS data bits, and it
claims that one needs to know the GPS data bit
transitions a priori in order to acquire weaker signals.  It
reports successful acquisition of signals down to 15 dB
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Hz when aided by such a priori information.  The present
example is equivalent to the 30 dB loss case of Ref. 8.
Reference 8 reports successful acquisition using only
0.400 sec of data (20 bits) in this case.  The current
technique uses 10 times as many bits to acquire the
signal, but it does so without using a priori information
about the bit transitions.

The bit transition time has been successfully estimated in
this case – almost.  In fact, there is no value of i, the PRN
code period of the bit transition, that is exactly correct.
The peak of the Plong vs. ts plot does not occur at an end of
the a priori accumulation interval of eqs. (3a) and (3b).
Figure 2 indicates that the code start time occurs right in
the middle of the accumulation interval.  This is the worst
possible case for correct i calculation because it causes
an i ambiguity.  The calculated i for this case has been
affected by this ambiguity:  Its optimal value is off by
one PRN code period from the value that would bring the
solved bit transition time as close as possible to the true
bit transition time.  An unambiguous correct
determination of i has been made in another case in
which ts is much closer to the end of the a priori
accumulation interval.  In cases that are ambiguous, it is
advisable to re-estimate i at the end of the acquisition
using the correct ts and ωD and using re-aligned
accumulation intervals that put ts at one end.

A Case with a Weak Signal in the Presence of Strong
Signals

The case of a weak GPS signal with strong interfering
GPS signals has been tried using raw bit-grabber data
with no added noise.  The weak signal in this case has an
SNR of 38 dB Hz, and there are 9 stronger interfering
signals with SNRs ranging from 51.6 dB Hz down to 41.9
dB Hz.  Acquisition calculations have been attempted
both with and without the cancellation of the strong
interfering signals, as described in the fifth section.  In
the cases when strong signals have been cancelled, all 9
have been eliminated from the signal prior to acquisition.

The signal has been successfully acquired, both with the
alternate half-bits method and with the full-bits method.
It can be acquired using a single half bit (M = 1) and
without cancellation of the strong GPS signals, but the
margins for avoiding false alarms and missed detections
are low in this case.  The reliability of the acquisition
increases if the number of half-bits M increases, or if the
strong signals are cancelled before acquisition.

The beneficial effects of canceling the strong signals
increase as M increases.  The theory of the acquisition
calculation predicts that one can reduce both the
probability of false alarm and the probability of a missed
detection by increasing M.  This calculation, however, is
based on the assumption that the noise is random.  The

presence of stronger interfering signals increases the
probability of a false alarm, and the amount of the
increase grows with M.

If one cancels the strong signals, then the full benefits of
an increased M can be realized.  This effect is illustrated
by the probability density functions of Fig. 3.  This figure
plots four probability density functions for the signal
detection statistic Plong/[L(σIQ)2] under the assumption that
no signal is present.  These are the density functions that
get used to calculate false alarm probabilities.  Each
corresponds to an alternate half-bits acquisition that uses
M = 5 half bits.  The black dash-dotted curve is an
experimentally determined curve for the case in which
strong signals are not cancelled.  It has been generated
from a histogram of all the Plong values corresponding to
erroneous values of ts and ωD.   The solid gray curve is the
theoretical 10th degree chi-squared distribution that has
the same mean as the experimental curve.  These curves
should be identical, but they differ because of the non-
random interference from the strong signals.
Significantly, the experimental curve has a heavier tail in
the +∞ direction.  This implies that the true false alarm
probability will be higher than the theory predicts.  This
discrepancy between the tails of the theoretical plot and
the experimental plot tends to increase as M increases.

Fig. 3. The effect of strong signal cancellation on the
null-hypothesis probability distribution of the
detection statistic, a case with 5 alternate half-
bits.

The other two curves on the plot correspond to the same
data, but with the strong signals cancelled out.  The black
dotted curve is the experimental curve for this case, and
the dashed gray curve is the corresponding theoretical
chi-squared distribution.  These two curves fall right on
top of each other.  Thus, the theory does a good job of
predicting the experiment if one subtracts out interfering
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signals.  Also, both of these curves show a no-signal
distribution that is shifted markedly towards zero in
comparison to the distribution with strong signals
present.  Thus, there is a greater ability to detect weak
signals with both a low probability of false alarm and a
low probability of missed detection if one first cancels
the strong signals out of the bit-grabbed data.

An interesting side note to this analysis has to do with the
effect of the GPS signals on the RF power spectrum near
the L1 frequency.  Reference 13 points out that the
power spectral density of any given GPS C/A signal is
about 15 dB below the power spectral density of the
noise.  This fact might lead one to think that the signals
have no noticeable effect on the spectrum.  This is not
the case.  There is a very noticeable effect on the signal
spectrum after all 9 of the strongest GPS signals have
been cancelled out of the bit-grabbed data.

Trends in Acquisition Times and Detectable Signal-
to-Noise Ratios

The required acquisition time is a function of the SNR at
the output of the bit grabber.  As the SNR decreases the
acquisition time increases.  Because of the squaring loss,
one would expect the acquisition time to go as one over
the square of the SNR.  Thus, a 5 dB decrease in the
received SNR would necessitate a factor of 10 increase
in the number of bits or half bits used in the acquisition.
This rule of thumb has held roughly true.   A 26 dB Hz
signal could be acquired using the alternate half-bits
algorithm with 20 bits of averaging, but a 21 dB Hz signal
required 199 half bits to achieve a successful detection.
A full-bits algorithm that used M = 35 bits easily
detected a signal whose SNR was 26 dB Hz, but M = 35
was useless on a 21 dB Hz signal.  For higher SNR levels
this relationship may be more rough, but it is a good rule
of thumb for estimating the necessary input parameters
of a signal acquisition algorithm.

Analysis indicates that the weakest signal which can be
detected in 4 sec of data is one with an SNR of 18 dB Hz.
This presumes use of the full-bits method.  If one
increases the acquisition time to 30 sec, then the weakest
detectable signal has an SNR of 14 dB Hz.

Computational Effort

The algorithms described in this paper can be very
expensive in terms of computation time and memory.
The detection associated with Fig. 2 is very expensive.  It
requires 36 hours to execute in MATLAB on a 733 MHz
Pentium III processor (i.e., 1012 floating point
operations).  The code needs to store about 430 Mbytes
of data during its execution.  The corresponding
alternate-half-bits run requires only 14 hours of
execution time and 240 Mbytes of memory.  Such
expensive computations will be feasible only for off-line

applications.

The algorithms of this paper have been partially
optimized for speed by careful use of FFT block
processing, but there is room for more optimization.
The most obvious thing to do is to switch from
interpretive MATLAB to compiled code.  This should
yield a speed up of a factor of 10 to 20 based on the raw
machine speed.  Another possible source of speed
increase would be to use integer calculations in place of
double precision real calculations.

The computation time varies linearly with the number of
PRN code periods that get processed, M×L, and roughly
linearly with the width of the initial Doppler shift
uncertainty ωDmax - ωDmin.  The former quantity is dictated
by the received SNR, but the latter quantity can be greatly
reduced if one has a rough a priori estimate of the user
vehicle state.  The Fig.-2 calculations use (ωDmax-
ωDmin)/(2π) = 10,500 Hz.  If the initial Doppler
uncertainty is reduced to 25 Hz, then the execution time
reduces by a factor of 127, to 17 min.  Thus, with the
proper optimizations, the algorithms of this paper would
be practical for use in spacecraft orbit determination via
post processing of flight data.

VII. Summary and Conclusions

This paper has developed methods for the acquisition of
weak GPS C/A signals without a priori information
about the GPS data bit stream.  These methods are
applicable for use in a software receiver.  Weak signals
are acquired by a process of accumulation of
correlations, summation of accumulations, squaring to
remove GPS data bits, and further summation of the
squared accumulations.  The resulting detection statistic
is then maximized via a search over bins in the space of
possible code delays and Doppler shifts.  Two strategies
are introduced to avoid the use of pre-squaring
summation intervals that contain GPS data bit transitions.
One strategy uses only alternate half-bit intervals and
does two independent acquisition calculations for two
interleaved sets of half-bit intervals.  The other strategy
estimates the bit transition times by choosing the bit-
start PRN code period index that maximizes the
detection statistic.  The calculations of these detection
procedures have been specially tailored to the block
processing context, which uses FFT and inverse FFT
operations in order to rapidly calculate correlations for
entire batches of candidate PRN code period start times.

Additional work has been done on the problem of weak
signal detection in the presence of interfering strong
GPS signals.  The resulting algorithm acquires, tracks,
and cancels the strong signals prior to acquiring the weak
signals.  This allows for a reduced conservatism in the
calculation of false alarm rates for the detection of the
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weak signal.

The new signal acquisition algorithms have been tested
using real data from a GPS bit grabber in conjunction
with simulated noise.  The digitally-generated noise has
been used to simulate a lowering of the received SNR.
Signals with signal-to-noise ratios as weak as 21 dB Hz
have been successfully detected in 4 sec acquisition
intervals.  The theory indicates that these algorithms
could detect 18 dB Hz signals in the same amount of
time and that longer data intervals could be used to detect
even weaker signals.
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