
Block and Sliding-Block Lossy Compression

via MCMC
Shirin Jalali∗ and Tsachy Weissman†,

∗Center for Mathematics of Information, CalTech, Pasadena, CA 91125
†Department of Electrical Engineering, Stanford University, Stanford, CA 94305

Abstract

We propose an approach to lossy compression of finite-alphabet sources that utilizes Markov chain

Monte Carlo (MCMC) and simulated annealing methods. The idea is to define an energy function over

the space of reconstruction sequences. The energy of a candidate reconstruction sequence is defined such

that it incorporates its distortion relative to the source sequence, its compressibility, and the point sought

on the rate-distortion curve. The proposed algorithm samples from the Boltzmann distribution associated

with this energy function using the ‘heat-bath’ algorithm.

The complexity of each iteration is independent of the sequence length and only linearly dependent

on a certain context parameter (which grows sub-logarithmically with the sequence length). We show

that the proposed algorithm achieves optimum rate-distortion performance in the limits of large number

of iterations, and sequence length, when employed on any stationary ergodic source. Inspired by the

proposed block-coding algorithm, we also propose an algorithm for constructing sliding-block (SB)

codes using similar ideas.

Index Terms

Rate-distortion coding, Universal lossy compression, Markov chain Monte Carlo, Gibbs sampler,

Simulated annealing

I. INTRODUCTION

Consider the problem of lossy compression of a finite-alphabet stationary ergodic source X = {Xi :

i ≥ 1}. Each source output block of length n, Xn, is mapped to fn(Xn), an index of nr bits, where

R can either be constant (fixed-rate coding) or depend on the block that is coded (variable-rate coding).

The index fn(Xn) is then losslessly transmitted to the decoder, and is mapped to a reconstruction block

X̂n = gn(fn(Xn)), where X̂n ∈ X̂ n. The two main measures used to evaluate the performance of a

lossy coding scheme C = (fn, gn, n) are the following: i) Distortion D defined as the expected average
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distortion between source and reconstruction blocks, i.e., D , E[dn(Xn, X̂n)] , 1
n

n∑
i=1

E[d(Xi, X̂i)],

where d : X × X̂ → R+ is a single-letter distortion measure, and ii) Rate R defined as the average

expected number of coded bits per source symbol, i.e., R , E[r]. For any D ≥ 0, and stationary process

X, its minimum achievable rate at distortion D is characterized as (cf. [1], [2], [3])

R(D,X) = lim
n→∞

min
p(X̂n|Xn):E[dn(Xn,X̂n)]≤D

1
n
I(Xn; X̂n). (1)

The minimum required rate for lossless compression of a source is its entropy rate defined as H̄(X) ,

lim
k→∞

H(X0|X−1
−k). There are known implementable universal lossless codes, such as Lempel-Ziv [4],

arithmetic coding [5], etc. that losslessly compress any stationary ergodic source down to its entropy rate.

In contrast, neither the explicit solution of (1) is known for a general source (not even for a first-order

Markov source [6]), nor are there known practical schemes that universally achieve the rate-distortion

curve.

One possible intuitive explanation for this sharp dichotomy is as follows. The essence of universal

lossless compression is learning the source distribution, and the difference between various coding

algorithms is in different efficient methods through which they accomplish this goal. Universal lossy

compression, on the other hand, intrinsically consists of two components: quantization and lossless

compression. This breakdown can be explained more clearly by the characterization of the rate-distortion

function as R(D,X) = inf{H̄(Z) : E[d(X1, Z1)] ≤ D}, where the minimization is over all processes

that are jointly stationary ergodic with X [7]. This representation suggests the following alternative

approach to lossy compression: To code a process X, we quantize it, either implicitly or explicitly, to

another process Z, which is sufficiently close to X but more compressible, and then compress Z via

a universal lossless compression algorithm. The quantization step in fact involves a search over jointly

stationary ergodic processes, and is another way to understand why universal lossy compression is more

difficult than universal lossless compression.

In this paper, we present an approach to implementable lossy source coding of finite-alphabet sources,

which borrows tools from statistical physics and computer science: Markov Chain Monte Carlo (MCMC)

methods, and simulated annealing [8], [9]. MCMC methods refer to a class of algorithms that are

designed to generate samples of a given distribution through generating a Markov chain having the

desired distribution as its stationary distribution. MCMC methods include a large number of algorithms.

For our application, we use Gibbs sampler [10] also known as the heat bath algorithm, which is well-

suited to the case where the desired distribution is hard to compute, but the conditional distributions of
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each variable given the rest are easy to work out.

The second required tool is simulated annealing. It is a well-known method in discrete optimization for

finding the minimizer of a function f(s) over a possibly huge set of states S, i.e., smin = arg mins∈S f(s).

Consider a sequence of probability distributions {pi}∞i=1 corresponding to the temperatures {Ti}∞i=1, where

Ti → 0 as i→∞. At each time i, the algorithm runs one of the relevant MCMC methods in an attempt

to sample from distribution pi. The sequence of probability distributions is designed such that: 1) their

output, with high probability, is the minimizing state smin, or a state achieving a value close to it,

2) the probability of getting the minimizing state increases as the temperature drops. The probability

distribution that satisfies these characteristics, and is almost always used, is the Boltzmann distribution

pβi(s) ∝ e−βif(s), where βi ∝ 1/Ti. It can be proved that, if the temperature drops slowly enough, the

probability of getting the minimizing state as the output of the algorithm approaches one [10].

Simulated annealing and related ideas such as deterministic annealing have been suggested before in the

context of lossy compression, either for approximating the rate distortion function, i.e., the optimization

problem involving minimization of the mutual information, or as a method for designing the codebook

in vector quantization [11], [12], as an alternative to the conventional generalized Lloyd algorithm

(GLA) [13]. In contrast, in this paper we use the simulated annealing approach to obtain a particular

reconstruction sequence, rather than a codebook.

Let us briefly describe how the new algorithm codes a source sequence xn. First, to each reconstruction

block yn, it assigns an energy, E(yn), which is a linear combination of its conditional empirical entropy,

to be defined formally in the next section, and its distortion relative to the source sequence xn. Then, it

assumes a Boltzman probability distribution of the form p(yn) ∝ e−βE(yn) over the space of reconstruction

blocks , and generates x̂n by sampling from this distribution using Gibbs sampler [10]. As we show, for β

large enough, with high probability the reconstruction block of our algorithm satisfies E(x̂n) ≈ min E(yn).

The encoder will output LZ(x̂n), which is the Lempel-Ziv [4] description of x̂n. The decoder, upon

receiving LZ(x̂n), reconstructs x̂n losslessly.

Instead of working at a fixed rate or at a fixed distortion, we are fixing the slope. A fixed-slope

rate-distortion scheme working at a fixed slope s = −α < 0 is a scheme that minimizes for R+ αD.

A. Prior work

The literature on universal lossy compression can be divided into two main categories: proofs of

existence [14], [15], [16], [17], [18], [19] and algorithm designs. In this section we briefly review some

of the work on the latter.
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One popular trend in designing universal lossy compression algorithms in extending universal lossless

compression algorithms to the case of lossy compression. An example of such attempts is the work

by Cheung and Wei [20] who extended the move-to-front transform [21]. Morita and Kobayashi [22]

proposed a lossy version of LZW algorithm and Steinberg and Gutman [23] suggested fixed-database

lossy compression algorithms based on string-matching. All these extensions, as was later shown by

Yang and Kieffer [24], are suboptimal even for memoryless sources. Another suboptimal but practical

universal lossy compression algorithm based on approximate pattern matching is the work of Luczak and

Szpankowski [25]. In [26], Zamir and Rose proposed an adaptive lossy compression algorithm based on

type selection for memoryless sources. More recently, a new lossy version of the LZ algorithm has been

proposed by Kontoyiannis [27], which instead of using a fixed database which has the same distribution

as the source, employs multiple databases.

Zhang and Wei [28] proposed an online universal lossy data compression algorithm, called ‘gold-

washing’, which involves continuous codebook refinement. The algorithm is called ‘online’ meaning that

the codebook is constructed simultaneously by the encoder and the decoder as the source symbols arrive,

and no codebook is shared between the two before the coding starts. Most of the previously mentioned

algorithms fall into the class of online algorithms as well.

As mentioned before, the approach we take here is one of fixing the slope. The idea of fixed-slope

universal lossy compression was considered by Yang, Zhang and Berger in [29]. In that paper, they first

propose an exhaustive search algorithm which is very similar to the algorithm proposed in Section III.

After establishing its universality for lossy compression of stationary ergodic sources, they suggest a

heuristic approach to approximate its solution. In our case, the special structure of our cost function

enables us to employ simulated annealing plus Gibbs sampling to approximate the minimizer.

For the non-universal setting, specifically the case of lossy compression of an i.i.d. source with a

known distribution, there is an ongoing progress towards designing codes that approach the optimum

performance [30], [31], [32], [33], [34].

B. Paper organization

The organization of the paper is as follows. In Section II, we set up the notation. Section III describes an

exhaustive search scheme for fixed-slope lossy compression which universally achieves the rate-distortion

curve for any stationary ergodic source. Section IV describes our new universal MCMC-based lossy block

coder. Inspired by the proposed block lossy compression algorithm, in Section V we propose an algorithm

for constructing SB codes using MCMC and simulated annealing methods. Section VI presents some
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simulations results. We conclude in Section VII with a discussion of some future directions.

II. NOTATION AND DEFINITIONS

Calligraphic letters such as X , Y represent sets. The size of a set X is denoted by |X |. For 1 ≤ i ≤

j ≤ n, xji = (xi, xi+1, . . . , xj). For two vectors xi and yj , xiyj denotes a vector of length i+ j formed

by concatenating the two vector as (x1, . . . , xi, y1, . . . , yj). Capital letters represent random variables and

capital bold letters represent random vectors. For a random variable X , let X denote its alphabet set. For

an event A, 1A denotes an indicator function of event A. For u ∈ Rn, let ‖u‖1 =
∑n

i=1 |ui|.

Let X = {Xi; ∀ i ∈ N+} be a stochastic process defined on a probability space (X,Σ, µ), where Σ

denotes the σ-algebra generated by cylinder sets C, and µ is a probability measure defined on it. For a

process X, let X denote the alphabet of Xi. Throughout the paper X is assumed to be a finite set. For

a stationary process X, let H̄(X) denote its entropy rate defined as H̄(X) = lim
n→∞

H(Xn+1|Xn).

For yn ∈ Yn, define the |Y| × |Y|k matrix m(yn) to denote the (k+ 1)th order empirical distribution

of yn. Each column and each row of m are indexed by a k-tuple bk ∈ Yk and some β ∈ Y , respectively.

The element in row β ∈ Y and column bk ∈ Yk of m is defined as

mβ,bk(yn) =
1

n− k

∣∣∣{k + 1 ≤ i ≤ n : yi−1
i−k = bk, yi = β

}∣∣∣ .
Let Hk(yn) denote the kth order conditional empirical entropy induced by yn, i.e.,

Hk(yn) =
∑
bk∈Yk

‖m·,bk(yn)‖1H
(
m·,bk(yn)

)
, (2)

where m·,bk(yn) denotes the column in m(yn) corresponding to bk, and for a vector v = (v1, . . . , v`) with

non-negative components, H(v) denotes the entropy of the random variable whose pmf is proportional

to v. Formally,

H(v) =


∑̀
i=1

vi
‖v‖1 log ‖v‖1vi

if v 6= (0, . . . , 0)

0 if v = (0, . . . , 0),
(3)

where 0 log(0) , 0 by convention.1

Alternatively, Hk(yn) , H(Uk+1|Uk), where Uk+1 is distributed according to the (k + 1)th order

empirical distribution induced by yn, i.e., P(Uk+1 = [bk, β]) = mβ,bk(yn).

1Here and throughout the paper the base of the logarithms is 2.
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III. AN EXHAUSTIVE SEARCH SCHEME FOR FIXED-SLOPE COMPRESSION

Consider the following scheme for lossy source coding at a fixed slope α > 0. For each source

sequence xn, let the reconstruction block x̂n be defined as x̂n = arg minyn∈X̂n [Hk(yn) + αdn(xn, yn)].

The encoder, after computing x̂n, losslessly conveys it to the decoder using the LZ compressor [4].

Theorem 1: Let X be a stationary ergodic source, and R(D,X) denote its rate distortion function. Let

X̂n and LZ(X̂n) denote the reconstruction sequence generated by the proposed method and its binary

representation using the Lempel-Ziv compression, respectively. Then

1
n
`LZ(X̂n) + αdn(Xn, X̂n) n→∞−→ min

D≥0
[R(D,X) + αD] , (4)

almost surely. (Here `LZ(X̂n) denotes the length of the binary sequence LZ(X̂n).)

In words, the above scheme universally attains the optimum rate-distortion performance at slope α for

any stationary ergodic process.

The exhaustive search algorithm described above is very similar to the generic algorithm proposed in

[29], which works as follows

x̂n = arg min
yn∈X̂n

[
1
n
l(yn) + αdn(xn, yn)

]
, (5)

where l(yn) represents the length of the binary codeword assigned to yn by some universal lossless

compression algorithm. In other words, a length function l(yn) denotes a mapping from X̂ n → N+ that

satisfies the following two conditions:

1) Kraft inequality:
∑

yn∈X̂n 2−l(y
n) ≤ 1, for each n ∈ N.

2) For any stationary ergodic process X, lim supn→∞
1
n l(X

n) ≤ H̄(X), almost surely.

Although the conditional empirical entropy function, Hk(·), is not a length function,2 it has a close

connection to length functions, specifically to `LZ(·). This link is described by the Ziv inequality [35].

Ziv’s inequality states that if kn →∞ as n→∞ while kn = o(log n), then for any ε > 0, there exists

Nε ∈ N such that for any individual infinite-length sequence y = (y1, y2, . . .) and any n ≥ Nε,[
1
n
`LZ(yn)−Hkn(yn)

]
≤ ε.

Using this connection and the results of [29], we prove Theorem 1 in Appendix A.

The drawback of the described algorithm is its computational complexity; It involves exhaustive search

among the set of all possible reconstructions. The size of this set is |X̂ |n growing exponentially fast with

2Note that
P
yn 2−nHk(yn) ≥ 2−nHk(0,...,0) + 2−nHk(1,...,1) = 2, for any k and n
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n.

IV. UNIVERSAL LOSSY CODING VIA MCMC

In this section, we will show how simulated annealing and Gibbs sampling enable us to get close to

the performance of the impractical exhaustive search coding algorithm described in the previous section.

Throughout this section we fix the slope α > 0.

Associate with each reconstruction sequence yn the energy E(yn) , Hk(yn)+αdn(xn, yn), and define

the Boltzmann distribution as the pmf on X̂ n given by pβ(yn) = e−βE(yn)/Z, where Z =
∑

yn e
−βE(yn) is

the normalization constant (partition function). 3 For large enough values of β, a sample Y n from pβ , with

high probability, satisfies E(Y n) ≈ minyn E(yn). Thus, for large β, using a sample from the Boltzmann

distribution pβ as the reconstruction sequence yields a performance close to that of an exhaustive search

scheme that would use the minimizer of E(·). Unfortunately, it is hard to sample from the Boltzmann

distribution directly. However, as described next, we can get samples close to the optimal point via

MCMC.

As mentioned earlier, the Gibbs sampler [10] is a useful sampling method. Its main application is

in cases where, although it is prohibitively complex to evaluate the desired probability distribution,

its conditional distributions of each variable given the rest are accessible. In our case, the conditional

probability distribution under pβ of Yi given the other variables Y n\i , (Yj : j 6= i) can be expressed as

P(Yi = a|Y n\i = yn\i) =
pβ(yi−1 a yni+1)∑
b∈X̂ pβ(yi−1 b yni+1)

=
e−βE(yi−1ayni+1)∑
b∈X̂ e

−βE(yi−1byni+1)

=
e−β(Hk(yi−1ayni+1)+αdn(xn,yi−1ayni+1))∑
b∈X̂ e

−β(Hk(yi−1byni+1)+αdn(xn,yi−1byni+1))

=
1

1 +
∑

b∈X̂ ,b 6=a
e−β(∆Hk(a,b,yi−1,yni+1)+α∆d(a,b,xi))

, (6)

where

∆Hk(a, b, yi−1, yni+1) , Hk(yi−1byni+1)−Hk(yi−1ayni+1),

3Note that, though this dependence is suppressed in the notation for simplicity, E(yn), and therefore also pβ and Z depend
on xn and α, which are fixed until further notice.
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and

∆d(a, b, xi) , dn(xn, yi−1byni+1)− dn(xn, yi−1ayni+1)

=
d(xi, b)− d(xi, a)

n
.

Hence, for (a, b) ∈ X̂ 2, P(Yi = a|Y n\i = yn\i) depends on yn only through ∆Hk(a, b, yi−1, yni+1) and

∆d(a, b, xi). In turn,

{∆Hk(yi−1byni+1, a)}(a,b)∈X̂ 2

depends on yn only through {m(yi−1byni+1)}b.

Since the number of contexts whose counts are affected by changing one component of yn is at most

2k + 2, given m(yi−1ayni+1), the number of operations required to obtain m(yi−1byni+1) is linear in k.

To be more specific, letting Si(yn, b) denote the set of contexts whose counts are affected when the ith

component of yn is flipped from yi to b. We have |Si(yn, b)| ≤ 2k. Further, since

∆Hk(a, b, yi−1, yni+1) =
∑

uk∈Si(yi−1byi+1,a)

[
‖m·,uk(yi−1byni+1)‖1H

(
m.,uk(yi−1byni+1)

)
−

‖m·,uk(yi−1ayni+1)‖1H
(
m·,uk(yi−1ayni+1)

)]
, (7)

it follows that, given m(yi−1ayni+1) and Hk(yi−1ayni+1), the number of operations required to compute

m(yi−1byni+1) and Hk(yi−1byni+1) is linear in k (and independent of n).

Now consider the following algorithm (Algorithm 1 below) based on the Gibbs sampling for sampling

from pβ . Let X̂n
α,r(X

n) denote its (random) outcome when applied to the source sequence Xn,4 taking

k = kn and β = {βt}t to be deterministic sequences satisfying kn → ∞, kn = o(log n), and βt =
1

T
(n)
0

log(b tnc+ 1), for some T (n)
0 > n∆, where

∆ = max
i

max
ui−1∈X̂ i−1,uni+1∈X̂n−i,a,b∈X̂

∣∣E(ui−1auni+1)− E(ui−1buni+1)
∣∣ . (8)

By the previous discussion, the computational complexity of the algorithm at each iteration is independent

of n and linear in k.

4Here and throughout it is implicit that the randomness used in the algorithms is independent of the source, and the
randomization variables used at each drawing are independent of each other.
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Algorithm 1 Generating the reconstruction sequence
Input: xn, k, α, {βt}t, r
Output: a reconstruction sequence x̂n

1: yn ← xn

2: for t = 1 to r do
3: Draw an integer i ∈ {1, . . . , n} uniformly at random
4: For each b ∈ X̂ compute pβt(Yi = b|Y n\i = yn\i) given by (6)
5: Update yn by replacing its ith component yi by Z, where

Z ∼ pβt(Yi = ·|Y n\i = yn\i)
6: Update m(yn) and Hk(yn)
7: end for
8: x̂n ← yn

Theorem 2: Let X be a stationary ergodic source. Then

lim
n→∞

lim
r→∞

[
1
n
`LZ

(
X̂n
α,r(X

n)
)

+ αdn(Xn, X̂n)
]

= min
D≥0

[R(D,X) + αD] , a.s. (9)

Theorem 2 is proved by a direct application of the results in [36]. Note that the Markov chain defined

by the transition probabilities {pβt(Yi = a|Y n\i = yn\i)}t is a non-homogeneous Markov chain, whose

transition probabilities are varying with time. A non-homogeneous Markov chain is called strongly ergodic

if there exists a distribution over its state space such that for any distributions µ and any n1 ∈ N,

lim supn2→∞ ‖µP(n1,n2) − π‖1 = 0, where P(n1,n2) denotes the transition probabilities matrix between

times n1 and n2 > n1. The proof’s idea is to show the defined Markov chain is strongly ergodic and

decreasing the temperature according to {βt} implies that its steady state distribution, as the number of

iterations converge to infinity, is the uniform distribution over the set of all sequences with minimum

energy.

V. SLIDING-BLOCK RATE-DISTORTION CODING VIA MCMC

The conventional method for lossy compression is block coding, where the source symbols are divided

into non-overlapping blocks of size n ∈ N and each block, independent of the other blocks, is mapped

to a reconstruction block of length n [1]. One of the disadvantages of the block codes is that they do

not conserve the stationarity of the source process, i.e., a block code maps a stationary process to a

non-stationary reconstruction process. The idea of sliding-block coding was introduced by R.M. Gray,

D.L. Neuhoff, and D.S. Ornstein in [37], and independently by K. Marton in [38], both in 1975. In

this alternative approach to lossy compression, a fixed mapping of a certain window length 2kf + 1

slides over the source sequence and generates the reconstruction sequence. The entropy rate of the
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reconstruction process is less than the entropy rate of the original process, and can be conveyed to

the decoder using a universal lossless compression algorithm. It has been proved that the achievable

rate-distortion performances of SB codes and block codes coincide [39].

There are a couple of advantages in using SB codes instead of block codes. One main benefit is that SB

codes preserve the stationarity of the source process. This enables the compression algorithms to get rid

of the blocking artifacts which result from applying the code to non-overlapping adjacent blocks of data.

This issue has been extensively studied in image compression, and one of the reasons wavelet transform

is preferred over more traditional image compression schemes like DCT is that it can be implemented as a

sliding-window transform, and therefore does not introduce blocking artifacts [40]. The other advantages

of SB codes are in terms of speed and memory-efficiency.

Although SB codes seem to serve as a good alternative to block codes, there has been very little

progress in desiging such codes since their introduction in 1975, and up to date there is no known

practical method for finding even sub-optimal SB codes. In this section, inspired by the lossy compression

algorithm proposed in Section IV, we present an iterative algorithm for finding SB codes using simulated

annealing and Markov chain Monte Carlo methods. To our knowledge, this is the first implementable

algorithm for designing SB codes. The algorithm is an iterative algorithm. It starts from the identity

mapping and at each iteration probabilistically decides whether to change one of the mapped values. We

show that as the number of iterations grows, if the parameters are chosen appropriately, this algorithm

achieves the rate-distortion curve of any stationary ergodic process. Our initial simulations show that in

coding a first-order Markov source, even for a small window length of 11, with a moderate number of

iterations the algorithm achieves points close to the rate-distortion curve.

A SB code of window length 2kf +1 is defined by a mapping f : X 2kf+1 → X̂ . Applying the mapping

f to the source process X = {Xi}∞i=−∞ generates the reconstruction process X̂ = {X̂i}∞i=−∞, where

X̂i = f(Xi+kf
i−kf ). There exist Kf = |X |2kf+1 vectors of length 2kf + 1 with elements taking values in X .

Therefore, to specify a SB code of window length 2kf + 1, there are Kf values to be determined. Hence

f can be represented as a vector f = [f0, f1, . . . , fKf−1] where fi ∈ X̂ is the output of the function f to

the input vector b = (b1, b2, . . . , b2kf+1) ∈ X 2kf+1, such that

i =
2kf+1∑
j=1

r(bj)|X |j−1,

where r : X → {0, 1, . . . , |X | − 1} is a fixed arbitrary one-to-one mapping from the source symbols to

{0, 1, . . . , |X | − 1}.
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Example 1: Consider the case of binary source and reconstruction alphabets, i.e., X = X̂ = {0, 1},

and let kf = 1. In this case a SB code of window length 3 can be specified by 8 values (f0, f1, . . . , f7).

For x ∈ X , letting r(x) = x, fi determines the binary value assigned to the binary expansion of i,

0 ≤ i ≤ 7, in three binary digits. For instance, f3 ∈ {0, 1} denotes the value assigned to the binary

vector (0, 1, 1).

To a SB code defined by the vector f , assign the energy E(f) defined as

E(f) , Hk(yn) + αdn(xn, yn), (10)

where yn = yn[xn, f ] is defined by yi , f(xi+kfi−kf ), for kf + 1 ≤ i ≤ n − kf , and yi , xi otherwise.

Consider the SB code fo which minimizes the energy function, i.e., fo = arg min
f∈X̂ |X|

2kf+1 E(f).

While in block coding at block length n, the search space includes |X̂ |n possible reconstruction

sequences, in SB coding of window length 2kf + 1, the search space consists of |X̂ ||X |
2kf+1

possible SB

codes. Hence, in this case the search space grows double exponentially in kf . Note that even for binary

source and reconstruction alphabets and kf = 2, the search space is gigantic (225 ≈ 109.6).

Similar to the case of block lossy compression, we resort to the simulated annealing and Gibbs sampling

algorithms to approximate the minimizer of (10). Instead of the space of possible reconstruction sequences,

here we define a probability distribution over the space of all possible SB codes. Each SB code is

represented by a unique vector f , and pβ(f) ∝ exp (−βE(yn)), where yn = yn[xn, f ]. The conditional

probabilities required at each step of the Gibbs sampler can be written as

pβ(fi = θ|fKf\i) =
pβ(f i−1θf

Kf
i+1)∑

ϑ

pβ(f i−1ϑf
Kf
i+1)

=
1∑

ϑ

e−β(E(f i−1ϑf
Kf
i+1)−E(f i−1θf

Kf
i+1))

. (11)

Therefore, for computing the conditional probabilities we need to be able to compute the energy dif-

ferences of the form E(f i−1ϑf
Kf
i+1) − E(f i−1θf

Kf
i+1), (ϑ, θ) ∈ X̂ 2 efficiently. Compared to the case

of block coding, described in Section IV, computation of these energy differences is somewhat more

involved and requires more resourcefulness to be done efficiently. To this end, we first categorize different

positions in xn into |X |2kf+1 different groups and construct the vector α = (α1, α2, . . . , αn) such that

αi ,
∑kf

j=−kf r(xi+j)|X |
kf+j . In other words, the label of each position is defined to be the symmetric

context of length 2kf + 1 embracing it, i.e., xi+kfi−kf . Using this definition, applying a SB code fKf to a

sequence xn can alternatively be expressed as constructing a sequence yn where yi = fαi .

From this representation, changing fi from θ to ϑ while leaving the other elements of f unchanged

only affects the positions of the yn sequence that correspond to the label i in α. Hence, we can write
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the energy difference in (11) as

E(f i−1ϑf
Kf
i+1)− E(f i−1θf

Kf
i+1) = Hk(yn)−Hk(ŷn) + α

∑
j:αj=i

d(xj , ϑ)− d(xj , θ)
n

, (12)

where yn and ŷn represent the results of applying f i−1ϑf
Kf
i+1 and f i−1θf

Kf
i+1 to xn, respectively. As noted

before yn and ŷn differ only at the positions {j : αj = i}. Flipping each position in the yn sequence in

turn affects at most 2(k+1) columns of the count matrix m(yn). Here at each pass of the Gibbs sampler

a number of positions in the yn sequence are flipped simultaneously. Alg. 2 describes how we can keep

track of all these changes and update the count matrix. After that, in analogy to Alg. 1, Alg. 3 runs the

Gibbs sampling method to find the best SB code of order 2kf + 1. At each iteration, Alg. 3 employs

Alg. 2.

Algorithm 2 Updating the count matrix of yn = f(xn), when fi changes from θ to ϑ
Input: xn, kf , k, m(yn), i, ϑ, θ
Output: m(ŷn)

1: an ← 0
2: ŷn ← yn

3: for j = 1 to n do
4: if αj = i then
5: ŷj ← θ
6: end if
7: end for
8: m(ŷn)←m(yn)
9: for j = kf + 1 to n− kf do

10: if αj = i then
11: aj+kj ← 1
12: end if
13: end for
14: for j = k + 1 to n− k do
15: if aj = 1 then
16: myj ,y

j−1
j−k
← myj ,y

j−1
j−k
− 1

n−k
17: mŷj ,ŷ

j−1
j−k
← mŷj ,ŷ

j−1
j−k

+ 1
n−k

18: end if
19: end for

Let fβ,α,r = f
K

(n)
f

β,α,r denote the output of Alg. 3 to the input vector xn at slope α after r iterations,

and annealing process β = {βt}rt=1. K(n)
f = 22k

(n)
f +1 denotes the length of the vector f representing the

SB code. The following theorem states that Alg. 3 is asymptotically optimal for any stationary ergodic

source, i.e., coding a source sequence by applying the SB code fβ,α,r to the source sequence, and then
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Algorithm 3 Universal SB lossy coder based on simulated annealing Gibbs sampler
Input: xn, kf , k, α, β, r
Output: fKf

1: for t = 1 to r do
2: Draw an integer i ∈ {1, . . . ,Kf} uniformly at random
3: For each θ ∈ X̂ compute pβt(fi = θ|fKf\i) using Algorithm 2, equations (11), and (12)
4: Update fKf by replacing its ith component fi by θ drawn from the pmf computed in the previous

step
5: end for

describing the output to the decoder using the Lempel-Ziv algorithm, asymptotically, as the number of

iterations and window length kf grow to infinity, achieves the rate-distortion curve.

Theorem 3: Consider a sequence (k(n)
f )n such that k(n)

f grows to infinity, kn = o(log n), kn → ∞,

and a cooling schedule β(n)
t = 1

T
(n)
0

log(b t
K

(n)
f

c+ 1) for some T (n)
0 > K

(n)
f ∆, where

∆ = max
i

max
f i−1∈X̂ i−1,fni+1∈X̂

Kf−i,ϑ,θ∈X̂
|E(f i−1ϑf

Kf
i+1)− E(f i−1θf

Kf
i+1)|, (13)

and K(n)
f = 22k

(n)
f +1. Then, for any stationary ergodic source X, we have

lim
n→∞

lim
r→∞

[
1
n
`LZ

(
X̂n
)

+ αdn(Xn, X̂n)
]

= min
D≥0

[R(D,X) + αD] , (14)

almost surely, where X̂n is the result of applying SB code fKfβ,α,r to Xn.

Proof: First, we need to show that a result similar to Theorem 1 holds for SB codes. That is, we

need to prove that for the given sequences (k(n)
f )n and (kn)n, finding a sequence of SB codes according

to fo = f
K

(n)
f

o , arg min
f
K

(n)
f
E(fK

(n)
f ), where E(fK

(n)
f ) is defined in (10), results in a sequence of

asymptotically optimal codes for any stationary ergodic source X at slope α. In other words,

lim
n→∞

[
1
n
`LZ(X̂n) + αdn(X̂n, Xn)

]
= min

D≥0
[R(D,X) + αD] , (15)

almost surely, where X̂n = X̂n[Xn, f
K

(n)
f

o ]. After proving this, the rest of the proof follows similar to

the proof of Theorem 2. For establishing the equality stated in (15), we prove consistent lower and upper

bounds, which in the limit yield the desired result. The lower bound,

lim inf
n→∞

[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
≥ min

D≥0
[R(D,X) + αD] , (16)

follows from part (1) of Theorem 5 in [29]. For proving the upper bound, we split the cost into two
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terms, as[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
=
[

1
n
`LZ(X̂n)−Hkn(X̂n)

]
+
[
Hkn(X̂n) + αd(Xn, X̂n).

]
. (17)

By Ziv’s inequality, the first term on the RHS of (A-2) converges to zero as n → ∞. Hence, we only

need to upper bound the second term.

Since, asymptotically, for any stationary ergodic process X, SB codes have the same rate-distortion

performance as block codes, for a point (R(D,X), D) on the rate-distortion curve of the source, and

any ε > 0, there exits a SB code f2κεf+1 of some order κεf such that coding the process X by this SB

code results in a process X̃ which satisfies i) H̄(X̃) ≤ R(D,X), and ii) E[d(X0, X̃0)] ≤ D + ε. On the

other hand, for a fixed n, E(fKfo ) is monotonically decreasing in Kf . Therefore, for any process X and

any δ > 0, there exists nδ such that for n > nδ and k(n)
f ≥ κεf

lim sup
n→∞

[
Hkn(X̂n) + αdn(Xn, X̂n)

]
≤ R(D,X) + α(D + ε) + δ, w.p. 1. (18)

Combining (16) and (18), plus the arbitrariness of ε, δ and D yield the desired result.

Note that in Algorithm 3, for a fixed kf , the SB code is a vector of length Kf = |X |2kf+1. Hence, the

size of the search space, |X̂ |Kf , is independent of n. Moreover, the transition probabilities defined by

(11) depend on the differences of the form presented in (12), which, for a stationary ergodic source and

fixed kf , if n is large enough, linearly scales with n. That is, for a given f i−1, fKfi+1, ϑ and θ,

lim
n→∞

1
n

[E(f i−1ϑf
Kf
i+1)− E(f i−1θf

Kf
i+1)] = q, (19)

almost surely, where q ∈ [0, 1] is some fixed value depending only on the source distribution. This is

an immediate consequence of the ergodicity of the source plus the fact that SB coding of a stationary

ergodic process results in another process which is jointly stationary and ergodic with the initial process.

On the other hand, similar reasoning proves that ∆ defined in (13) scales linearly with n. Therefore,

overall, combining these two observations, for large values of n and fixed kf , the transition probabilities

of the non-homogeneous MC defined by the simulated annealing algorithm incorporated in Algorithm 3

are independent of n. This does not mean that the convergence rate of the algorithm is independent of

n, because for achieving the rate-distortion function one needs to increase kf and n simultaneously to

infinity.

Remark 1: There is a slight difference between SB codes proposed in [37], and our entropy-constrained

SB codes. In [37], it is assumed that after the encoder converts the source process into the coded process,
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with no more encryption, it can be directly sent to the decoder via a channel that has capacity of R

bits per transmission. Then the decoder, using another SB code, converts the coded process into the

reconstruction process. In our setup on the other hand, the encoder directly converts the source process

into the reconstruction process, which has lower entropy, and then employs a universal lossless coder

to describe the coded sequence to the decoder. The decoder then applies the corresponding universal

lossless decoder to retrieve the reconstruction sequence.

VI. SIMULATION RESULTS

In this section we present some experimental results. Sections VI-A and VI-B demonstrate the perfor-

mance of the proposed algorithms on simulated 1-D and real 2-D data, for block and sliding-block codes,

respectively. Section VI-C studies the effects of different parameters on the algorithm’s performance.

Since, as described before, Hk(·) is not a length function, in the 1-D simulations, instead of the

conditional empirical entropy function, we use the kth order arithmetic codeword length to measure the

rate. For a binary sequence yn, its kth order arithmetic codeword length is defined as

Lk(yn) , − log
∏

bk∈{0,1}k

n0,bk(yn)!n1,bk(yn)!(
n0,bk(yn) + n1,bk(yn) + 1

)
!
, (20)

where, for β ∈ {0, 1} and bk ∈ {0, 1}k, nβ,bk counts the number of occurrences of the (k + 1)-tuple

[bk, β] in yn, i.e., nβ,bk , (n− k)mβ,bk .

A. Block coding

In this section, some of the simulation results obtained by applying Alg. 1 of Section IV to real and

simulated data are presented. The algorithm is easy to apply, as is, to both 1-D and 2-D data .

As the first example, consider a Bern(p) i.i.d source. Fig. 1 and Fig. 2 compare the optimal rate-

distortion tradeoff against the rate-distortion performance of Alg. 1 for p = 0.5 and p = 0.1, respectively.

In Fig. 1 the coding parameters are n = 15 × 103, k = 8, βt = (1/γ)dt/ne, where γ = 0.9, r = 10n,

and α = 4 : −0.5 : 1. Each point corresponds to the average performance over N = 50 simulations, i.e.,

N = 50 input sequences. At each simulation, the algorithm starts from α = 4, and gradually decreases

the coefficient by 0.5 at each step. Moreover, except for α = 4 where x̂n is initialized by xn, for other

values of α, the algorithm is initialized by the quantized sequence found at the previous step. In Fig. 2,

k = 10, n = 5× 104, α = (5, 4.5, 4, 3.5, 2), and r, βt and γ are as before.

As another example, Fig. 3 shows the performance of Alg. 1 when applied to a binary symmetric

Markov source (BSMS) with transition probability p = 0.25. Here the parameters are: n = 2 × 104,
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k = 8, βt = (1/γ)dt/ne, γ = 0.8, r = 10n and α = 5 : −0.5 : 3. The figure also shows the performance

of the heuristic lossy compression algorithm proposed in [29]. The parameters are: n = 2× 104, k = 8,

and M = 20 paths.

The Shannon lower bound, which is shown in the same figure, states that for a BSMS with transition

probability p, R(D) ≥ RSLB(D) , h(p) − h(D). There is no known explicit characterization of the

rate-distortion tradeoff for a BSMS except for very low distortions. It has been proven that for D < Dc,

where Dc = 0.5 − 0.5
√

1− p2/(1− p)2, the SLB holds with equality. For D > Dc, a strict inequality

holds, and R(D) > RSLB [41]. In our case where p = 0.25, Dc = 0.0286. For distortions beyond Dc, an

upper bound on the rate-distortion function, derived based on the results of [6], is shown for comparison.

To illustrate the encoding process, Fig. 4 depicts the evolutions of Hk(x̂n), dn(xn, x̂n), and E(x̂n) =

Hk(x̂n) + αdn(xn, x̂n) during coding iterations. It can be observed that, as time proceeds, while the

complexity of the sequence has an overall decreasing trend, as expected, its distance with the original

sequence increases. Here the source is binary Markov with transition probability p = 0.2. The algorithm

parameters are n = 104, k = 7, α = 4, r = 10n, and βt = (1/γ)dt/ne, where γ = 0.8.

Finally, consider applying the algorithm to the n× n binary image shown in Fig. 5 , where n = 252.

Let N , n2 denote the total number of pixels in the image. Fig. 6(a) and Fig. 6(b) show the coded

version after r = 50N iterations for α = 0.1 and α = 3.3 respectively. The algorithm’s cooling process

is βt = (1/γ)dt/ne with γ = 0.99. Fig. 7 shows the 2-D context used for constructing the count matrix

of the image that is used by the algorithm. In the figure, the solid black square represents the location

of the current pixel, and the other marked squares denote its 6th order causal context that are taken into

account.

Fig. 6(a), the empirical conditional entropy of the image has decreased from 0.1025 to 0.0600 in the

reconstruction image, while an average distortion of D = 0.0337 per pixel is introduced. Comparing the

required space for storing the original image as a PNG file with the amount required for the coded image

reveals that in fact the algorithm not only has reduced the conditional empirical entropy of the image

by 41.5%, but also has cut the size of the file by around 39%. Fig. 8 shows the size of the compressed

image in terms of the size of the original image when α varies as 0.1 : 0.4 : 3.3.

B. Sliding block coding

Consider applying Alg. 3 of Section V to the output of a BSMS with p = 0.2. Fig. 9 shows the

algorithm output along with Shannon lower bound and lower/upper bounds on R(D) from [6]. Here the

parameters are: n = 5× 104, k = 8, βt = Kfα log(t+ 1) and r = 10Kf . Red squares correspond to SB
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window length of 2kf +1 = 9, and slope values α = 5.8, 5.6, 5.5, 5.4, 5.2, 5, 4.8. Blue circles correspond

to window length of 2kf + 1 = 11, and slope values α = 5.4, 5.3, 5.25, 5.2, 5.1, 5, 4.7.

In all of the presented simulation results, it is the empirical conditional entropy of the final recon-

struction block that we are comparing to the rate-distortion curve. It should be noted that, though this

difference vanishes as the block size grows, for finite values of n there would be an extra (model) cost

for losslessly describing the reconstruction block to the decoder.

C. Discussion on the choice of different parameters

1) Context length k and block length n: As stated in Theorem 1, in order to achieve the optimal

performance, we need k to grow with n to infinity as o(log n). For a given block length n, in order to get

a good performance, it is crucial to choose k appropriately. Note that the order k determines the order

of the count matrix m which is used to measure the complexity of the quantized sequence. Choosing

k to be too big or too small compared to the length of our sequence are both problematic. If k is too

small, then the count matrix m will not capture all useful structures existing in the sequence. These

structures potentially help the universal lossy coder to describe the sequence with fewer number of bits.

On the other hand, if k is too large compared to the block length n, then Hk(yn) gives an unreliable

underestimate of the complexity of the sequence. In that case, while Hk(x̂n) might be small suggesting

that x̂n can be described efficiently, an actual lossy coder might need a much higher rate to describe it.

Hence, we need to make a balanced choice between the two extremes.

In order to demonstrate this interaction between k and n, Fig. 10 shows the average performance of

Alg. 1 when applied to a BSMS with transition probability p = 0.25. Here the block length is n = 2×104,

and each point corresponds to the average performance over 50 simulations. The performances are shown

for k = 6, k = 7 and k = 8. At each simulation, a sequence of length n is generated, and is coded

by Alg. 1 using the three different values of k. For each value of k, and each simulated sequence, the

algorithm starts from α = 5 and step by step decreases α to α = 3, while using the quantized sequence

of the previous step as an initial point, except for α = 5. At α = 5, the algorithm is initialized at xn.

The cooling schedule is fixed to βt = (1/γ)dt/ne with γ = 0.8.

Fig. 10(a) shows the final cost in terms of Hk(x̂n) + αdn(xn, x̂n), for different values of k, and

Fig. 10(b) shows the real cost which is measured as Lk(x̂n) + αdn(xn, x̂n). It can be observed that

while increasing the context length k almost always reduces the minimized cost Hk(x̂n) +αdn(xn, x̂n),

it uniformly increases the real cost in all cases examined. This confirms that, for a fixed block length,

increasing the context length does not necessarily help the performance. In other words, while using
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larger values of k might result in the reduction of the achieved conditional empirical entropy, but, unless

it is done carefully, it can in fact deteriorate the overall performance.

2) Cooling schedule {βt}: In all of our simulations the cooling schedule follows the generic form of

βt = β0(1/γ)dt/ne, for some γ < 1, but usually > 0.7. This is a common schedule used in simulated

annealing literature. By this scheme, the running time is divided into intervals of length n, and the

temperature remains constant during each interval, and decreases by a factor γ in the next interval.

Hence larger values of γ correspond to slower cooling procedures. The specific values of γ and β0 can

be chosen based on the signal to be coded.

3) Number of iterations r: Although we have not yet derived a convergence rate for Alg. 1, from

our simulations results, we suspect that for large classes of natural signals, r = mn iterations, where

m = O(log n), is enough for deriving a reasonable approximation of the solution to the exhaustive search

algorithm. However, we do not expect a similar result to hold for all signals, and there might exist sources

for which the convergence rate of simulated annealing is too slow.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, two new implementable block and SB lossy compression algorithms are proposed. The

algorithms are based on simulated annealing and Gibbs sampling, and are shown to be capable of getting

arbitrarily closely to the rate-distortion curve of any stationary ergodic source. For coding a source

sequence xn, the block coding algorithm starts from some initial reconstruction block, and updates one

of its coordinates at each iteration. The algorithm can be viewed as a process of systematically introducing

‘noise’ into the original source block, but in a biased direction that results in a decrease of its description

complexity.

In practice, the proposed algorithms, in their present form, are only applicable to the cases where the

size of the reconstruction alphabet, |X̂ |, is small. The reason is twofold: first, for larger alphabet sizes

the contexts will be too sparse to make the empirical entropy a useful measure of compressibility, even

for small values of k. Second, the size of the count matrix m grows exponentially with |X̂ | which makes

storing it for large values of |X̂ | impractical. Despite these facts, there are practical applications where

this constraint is satisfied. An example is lossy compression of binary images, like the one presented in

Section VI. Another application for lossy compression of binary data is shown in [42] where one needs

to compress a stream of 0 and 1 bits with some distortion. Moreover, surprisingly, in lossy compression

of continuous sources, as shown in [43], in many cases the optimal reconstruction alphabet is discrete

and has small cardinality. In those cases, the approach proposed here can be applied and in fact has
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already been explored and shown to be effective in [44].

The convergence rate of the new algorithms and the effect of different parameters on it is a topic for

further study. As an example, one might wonder how the convergence rate of the algorithm is affected

by choosing an initial point other than the source output block itself. Although our theoretical results on

universal asymptotic optimality remain intact for any initial starting point, in practice the choice of the

starting point might significantly impact the number of iterations required.

Finally, note that in the non-universal setup, where the optimal achievable rate-distortion tradeoff is

known in advance, this extra information can be used as a stopping criterion for the algorithm. For

example, we can set it to stop after reaching optimum performance to within some fixed distance.

APPENDIX A: PROOF OF THEOREM 1

From part (1) of Theorem 5 in [29],

lim inf
n→∞

[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
≥ min

D≥0
[R(D,X) + αD] , (A-1)

almost surely. (A-1) states that the probability that a sequence of codes asymptotically outperforms the

fundamental rate-distortion limit is zero.

In order to establish the upper bound, we split the cost function into two terms as[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
=
[

1
n
`LZ(X̂n)−Hkn(X̂n)

]
+
[
Hkn(X̂n) + αd(Xn, X̂n)

]
. (A-2)

From [35], for kn = o(log n) and any given ε > 0, there exists Nε ∈ N such that for any individual

infinite-length sequence x̂ = (x̂1, x̂2, . . .) and any n ≥ Nε,[
1
n
`LZ(x̂n)−Hkn(x̂n)

]
≤ ε. (A-3)

Hence, the first term on the right hand side of (A-2) can be made arbitrary small.

Now consider an arbitrary point (R(D,X), D) on the rate-distortion curve corresponding to source X.

For any δ > 0, there exists a process X̃ such that (X, X̃) are jointly stationary ergodic such that [7]

1) H̄(X̃) ≤ R(D,X),

2) E[d(X0, X̃0)] ≤ D + δ.

On the other hand, since for each source block Xn, the reconstruction block X̂n minimizes Hk(x̂n) +

αd(Xn, x̂n), it follows that

Hkn(X̂n) + αd(Xn, X̂n) ≤ Hkn(X̃n) + αd(Xn, X̃n). (A-4)
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For a fixed k, from the definition of the kth order entropy, we have

Hk(X̃n) =
∑
uk∈X̂ k

‖m·,uk(X̃n)‖1H
(
m·,uk(X̃n)

)
. (A-5)

But, since X̃ is a stationary ergodic process,

muk+1,uk(X̃
n) =

1
n− k

n∑
i=k+1

1X̃i
i−k=uk+1

n→∞−→ P
(
X̃0
−k = uk+1

)
, (A-6)

almost surely. Therefore, combining (A-5) and (A-6), as n goes to infinity, Hk(X̃n) converges to

H(X̃0|X̃−1
−k) with probability one. From the monotonicity of Hk(x̂n) in k, (A-4), and the convergence

we just established, it follows that, for any x̂n and any k,

Hkn(X̂n) + αd(Xn, X̂n) ≤ H(X̃0|X̃−1
−k) + ε+ αd(Xn, X̃n), eventually a.s. (A-7)

On the other hand, since X and X̃ are jointly stationary and ergodic,

d(X̃n, Xn) =
1
n

n∑
i=1

d(Xi, X̃i)
n→∞−→ E[d(X̃0, X0)] ≤ D + δ, a.s. (A-8)

Combining (A-2), (A-3), (A-7), and (A-8) yields

lim sup
n→∞

[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
≤ H(X̃0|X̃−1

−k) + 2ε+ α(D + δ) a.s. (A-9)

The arbitrariness of k, ε and δ, and the fact that H̄(X̃) = limk→∞H(X̃k+1|X̃k) ≤ R(D,X) implies

lim sup
n→∞

[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
≤ R(D,X) + αD, a.s. (A-10)

Since the point (R(D,X), D) was chosen arbitrarily, it follows that

lim sup
n→∞

[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
≤ min

D≥0
[R(D,X) + αD]. (A-11)

Finally, combining (A-1), and (A-11) we get the desired result:

lim
n→∞

[
1
n
`LZ(X̂n) + αd(Xn, X̂n)

]
= min

D≥0
[R(D,X) + αD]. (A-12)
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Fig. 1. Comparing the performance of Alg. 1 with the optimal rate-distortion tradeoff for an i.i.d. Bern(p) source. ( p = 0.5,
n = 15× 103, k = 8, βt = (1/γ)dt/ne, γ = 0.9, r = 10n and α = 4 : −0.5 : 1).
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Fig. 2. Comparing the performance of Alg. 1 with the optimal rate-distortion tradeoff for an i.i.d. Bern(p) source. ( p = 0.1,
n = 5× 104, k = 10, βt = (1/γ)dt/ne, γ = 0.9, r = 10n and α = (5, 4.5, 4, 3.5, 2)).
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Fig. 3. Comparing the rate-distortion performance of Alg. 1 with the heuristic approach proposed in [29], when both algorithms
are applied to a BSMS(p) (p = 0.25, n = 2× 104, k = 8, βt = (1/γ)dt/ne, γ = 0.8, r = 10n and α = 5 : −0.5 : 1)
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Fig. 4. Sample paths demonstrating evolutions of the empirical conditional entropy, average distortion, and energy function
when Alg. 1 is applied to the output of a BSMS source, with p = 0.2 (n = 104, k = 7, α = 4, r = 10n, and βt = (1/γ)dt/ne,
where γ = 0.8 ).



24

Fig. 5. Original image with empirical conditional entropy of 0.1025
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(a) Reconstruction image with empirical conditional entropy of
0.0600 and average distortion of 0.0337 per pixel (α = 0.1).

(b) Reconstruction image with empirical conditional entropy of
0.0824 and average distortion of 0.0034 per pixel (α = 3.3).

Fig. 6. Applying Alg. 1 to a 2-D binary image (βt = (1/γ)dt/ne, where γ = 0.99, r = 50N )

Fig. 7. The 6th order context used in coding of 2-D images
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Fig. 8. Size of the compressed image in terms of the entropy of the original image (in percentage) versus distortion (α = 0.1 :
0.4 : 3.3, βt = (1/γ)dt/ne, where γ = 0.99, r = 50N ).
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Fig. 9. Comparing the algorithm rate-distortion performance with the Shannon lower bound for a BSMS(p). Red squares and
blue circles correspond to kf = 4 (Kf = 29) and kf = 5 (Kf = 211), respectively. (p = 0.2, n = 5 × 104, k = 8, and
βt = Kfα log(t+ 1).)
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Fig. 10. Effect of parameter k on the performance of Alg. 1 while coding a BSMS(p). (p = 0.25, βt = (1/γ)dt/ne, where
γ = 0.8, n = 2× 104 and r = 10n).
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