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ABSTRACT 

 
Due to progress in high dynamic range (HDR) capture 
technologies, the HDR image or video display on 
conventional LCD devices has become an important topic. 
Many tone mapping algorithms are proposed for rendering 
HDR images on conventional displays, but intensive 
computation time makes them impractical for video 
applications. In this paper, we present a real-time block-based 
gradient domain HDR compression for image or video applications. 
The gradient domain HDR compression is selected as our tone 
mapping scheme for its ability to compress and preserve details. 
We divide one HDR image/frame into several equal blocks and 
process each by the modified gradient domain HDR compression. 
The gradients of smaller magnitudes are attenuated less in each 
block to maintain local contrast and thus expose details. By 
solving the Poisson equation on the attenuated gradient field block 
by block, we are able to reconstruct a low dynamic range image. A 
real-time Discrete Sine Transform (DST) architecture is proposed 
and developed to solve the Poisson equation. Our synthesis results 
show that our DST Poisson solver can run at 50MHz clock and 
consume area of 9 mm2 under TSMC 0.18um technology. 
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1. INTRODUCTION 

 
The luminance ratio of the natural scenes is about 100,000,000:1 
while traditional displays can only show images in dynamic range 
of 100~1000:1. Due to the technological advances in the HDR 
capture, high dynamic range images or video become available. 
Compared with the low dynamic range images, the HDR images 
show   the real scene information much better [2]. However, we 
are confronted by two challenges. The first is how to display high 
dynamic range images on the low dynamic range devices, for 
example, monitors, TV displays, and printers. The second is how 
to maintain the details of images and to show the complete 
information in the scene. 

Tone mapping or tone reproduction is an image processing 
technique to render the high dynamic range images on 
conventional displays. Over the past few years, a considerable 
number of studies have been made on tone mapping. They are 
commonly classified into global and local tone mappings. Chiu, et 
al., discover that mapping each pixel of images by global tone 

operators results in common artifacts because human vision system 
is nonlinear [3]. They believe that tone mapping based on the 
feature of pixels results in better effects. However, there is no ideal 
tone mapping curve that can be applied to every pixel. A method 
that emphasizes the variety in local areas of images is needed. 
Because their algorithm is based on local operators, it consumes 
much computing resource. Furthermore, it is developed based on 
experimental results rather than theoretical derivations. 

In 1998, Pattanail, et al., developed a technique to represent 
patterns, luminance and color processing in human visual systems.  
They proposed a real scene tone mapping computing model. Their 
model could process HDR images with perception of scenes at 
threshold and supra-threshold [4]. Because this algorithm took the 
adaptability of colors into account, it consumed large amount of 
computing resource. Nevertheless, it had better sensitivity 
compared with other tone mapping algorithms. 

In 2002, Fattal, et al., proposed a simple and effective method 
to render high dynamic rage images [1]. Their approach 
manipulated the gradient field of luminance (illumination 
differences) and attenuated the magnitudes of large gradients. A 
new low dynamic range image was obtained by solving a Poisson 
equation on the modified gradient field. It achieved drastic 
dynamic range compression and well preserved the fine details. 

   Human eyes are more sensitive to the luminance than to 
colors. Therefore, most HDR compressions process the images on 
the luminance channel. We adopt the gradient domain high 
dynamic range compression proposed by Fattal, etc.  The reason is 
that human visual system is more sensitive to illumination 
differences than to absolute luminance reaching the retina, based 
on the retinex theory by Land and McCann in 1971[5]. However, 
the gradient domain HDR compression consumes significant 
computational time. In [6], it shows that 45.5 sec is required to 
process a 1600x1200 image on Apple iBook with a G3 processor 
running at 800MHz. This kind of processing speed cannot meet the 
requirement for real-time HDR video display. 

In this paper, we present a block-based gradient domain high 
dynamic range compression scheme for real-time applications. 
Instead of processing the whole image at a time, we manipulate the 
gradient computations block by block. This  enhances the 
processing speed significantly. A fully pipelined fast discrete sine 
transform (DST) is also presented to solve the Poisson equation. 
The block-based gradient compression is presented in section II. 
The hardware implementation and the DST-based Poisson solver 
are described in section III. The implementation results are shown 
in section IV. Finally, section V gives a brief conclusion. 

 
 

III - 5611-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



2. BLOCK-BASED GRADIENT COMPRESSION 
 
2.1 Gradient Domain HDR Compression 
 
The gradient domain high dynamic range compression is shown in 
Figure 1. The human visual system is not sensitive to absolute 
luminance; it is sensitive to luminance changes of both local and 
global contrasts. The algorithm is based on the simple observation 
that any drastic change in the luminance in a high dynamic range 
image results in the rise of the magnitude of luminance gradients. 
On the contrary, the magnitude of gradients of fine texture in the 
image is smaller. Therefore, the idea is to identify large gradients, 
and then attenuate their magnitudes at various scales [7] while 
keeping their direction unchanged. The attenuation must shrink 
larger gradients more than smaller ones. Hence, it can compress 
drastic luminance changes and preserve the fine details. The LDR 
image is reconstructed by solving a partial differential equation 
from the attenuated gradient fields.  
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Figure  1: Gradient Domain High Dynamic Range Compression 
 

We compute the gradients in the logarithm domain because 
the logarithm of the luminance is a better approximation of the 
perceived brightness [1]. Denote the logarithm of the luminance in 
the HDR image as H(x,y). To avoid spatial distortions in the image, 
we change only the magnitudes of the gradients and keep their 
directions unaltered. This goal is achieved by applying a spatially 
variant attenuating function , we compute 

 
( , ) ( , ) ( , )              ( 1 )G x y H x y x y  

 
Here, H(x,y) is the gradient of the logarithm image and G(x,y) is 
the gradient image after attenuation. The gradient is approximated 
by the forward difference values. 
 

( , ) ( ( 1, ) ( , ), ( , 1) ( . ))      (2)H x y H x y H x y H x y H x y  
 
The attenuation function will be discussed in section 2.2. After 
attenuating the gradient, we compute the differential of attenuated 
gradient (Gx,Gy) to get the divergence. We use the following 
backward difference to get the approximations of the divergence. 
 

( , ) ( 1, ) ( , ) ( , 1)    (3)x x y ydivG G x y G x y G x y G x y  

 
According to [8], we can reconstruct a LDR image I by solving the 
following Poisson Equation 

2           (4)I div G  
where 

  
2 2
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and 

                     yx GGdivG
x y

 

  
The 2  is the Laplacian operator. The 2I  is obtained from the 
following standard finite difference approximation.  
 

2 ( , ) ( 1, ) ( 1, ) ( , 1) ( , 1) 4 ( , )  (5)I x y I x y I x y I x y I x y I x y  
 
To solve the partial differential equation (PDE), we must assign 
boundary conditions, and then find the integration constant in 
general solutions. At the boundaries, we assume that the 
derivatives around the original image grid are zeros.  
The numerical solution of the PDE can be obtained through the 
Discrete Sine Transform [9]. Finally, we compute the luminance 
by the exponential operation, and transform the processed 
luminance to RGB colored image by the following equation [1]. 
 

              (6)
s
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out out

in

CC L
L

 

 
In this equation, the C presents the R, G, B color component. The 
Cin and Cout are the R, G, B values before and after the HDR 
compression.  The Lin and Lout are the gray-scaled luminance 
before and after HDR compression. The exponent s controls the 
color saturation of the resulting image, and it is assigned as 0.5.
 
2.2 Gradient Attenuation Function 

 
The HDR compression can be achieved by attenuating the 
gradients of each pixel in the image by the attenuated factor. The 
attenuation factor is obtained from the modified gradient as 

 

( 1, ) ( 1, ) ( , 1) ( , 1),    (7)
2 2m

H x y H x y H x y H x yH  

 
The attenuation factor for each pixel is determined by the 
magnitude of the modified gradient, as the following equation 
 

( , )
( , )    (8)
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x y
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The function has two parameters  and which determine how to 
attenuate the gradient of each pixel. The relation between gradient 
magnitude and attenuation is shown in Figure 2 and Figure 3.  

Figure 2 shows the relation between gradient magnitude and 
attenuation factor for different  with a fixed . We attenuate the 
gradient of a pixel if its magnitude is bigger than , preserve it if 
its magnitude is equal to , and magnify it if its magnitude is 
smaller than . In order to achieve attenuation, the value of  must 
be smaller than one. Figure 3 shows that the attenuation factor 
curve is shaper if  is smaller. 
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Figure 2:   Relation between gradient magnitude and attenuation factor for 
different  and =0.85. 

 
Figure 3:   Relation between gradient magnitude and attenuation factor for 
different  and = 0.12 
 
2.3 Block-Based Gradient Compression Algorithm 
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Figure 4:  Block-Based Gradient Domain HDR Compression Procedure 
 

The procedure of the block-based gradient domain HDR 
compression is shown in Figure 4. The HDR input can be in any 
HDR format such as RGBE, XYZE or LogLuv etc.. In this paper, 
we use the 32-bit per pixel RGBE format with 76 orders of 
dynamic range. The RGBE HDR image is converted into three 32-
bit floating point RGB channels. The image is further divided into 
blocks of the same size NxN. Then we extend the block by copying 
pixels from four boundaries as shown in Figure 5. The extended 
block size becomes (N+2)x(N+2). The extended block is for the 
approximation of the divergence and Laplacian. Then we apply the 
gradient domain HDR compression scheme described in section 
2.1 to each block. Finally the compressed RBG channels are 
normalized, passed through the Gamma correction and mapped to 
the range of 0~255. 

 
Figure 5:  Extended block with boundary points 

 

3. HARDWARE IMPLEMENTATIONS 
 

Figure 6 shows the architecture of the block-based gradient domain 
HDR compression. The input is the extended block (size 
(N+2)*(N+2)) obtained from the high dynamic range image. The 
detail data flow includes the logarithm luminance calculation, the 
one-level attenuation, and reconstruction through the PDE. The 
output is the compressed LDR block of size N*N. Among all the 
operations, the PDE block consumes most of the computation time. 
We propose the DST-based Poisson solver. The algorithm of the 
DST-based Poisson solver is described below. 
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Figure 6:  Block-based Gradient Domain HDR Compression Prccedure 

 
3.1 Solving Poisson Equation by DST  

 
The discrete model of the Poisson equation (4) can be written as 
the following linear system.   

U                       ( 9 )T F  
In the equation, vector U is an approximation of  the reconstructed 
LDR image I(x,y). The matrix T  is  a ’1 1 -4 1 1’tridiagonal 
matrix, and the F is a Right Hand Side Matrix which includes 
boundary conditions. We can solve the discrete Poisson equation 
by the Discrete Sine Transform (DST) via the eigensystem [9]. 

The data flow of solving the DST-based Poisson solver is 
shown in Figure 7. We apply the 2-D DST on the right hand side 
matrix F and call the result as the matrix B. The 2-D DST/IDST is 
done through two 1-D DST/IDST and the matrix transposition.  
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Figure 7:  Solving the Poisson Equation by the DST 

 
Then we divide the result Bij by the system eigenvalues to get Aij, 
as  follows:  
 
 
 
 
Note that the denominator in the equation above is the eigenvalue. 
The j and i are the column and row indexes. Next, we apply the 2-
D IDST to the matrix A to get the reconstructed image in the 
logarithm domain. The definition and implementation of the 1-D 
DST are described below. 
 
3.2  DST Hardware Architecture 
 
Given v=(v0 ,…..,vN-1) NR ,we say that the vector w, where  
w=(w0 ,….,wN-1)T, is the Discrete Sine Transform of v, as  

1

0

( 1) ( 1)s in [ ]       ( 1 1 )
1

N

k n
n

n kw v
N

 

ij
i j

B
A    (1 0 )j i2 c o s ( ) -2   2 c o s ( ) -2

N N
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We can rewrite the 1-D DST above into matrix form w=Sv, where 
S is the DST transform matrix. The IDST is the DST in Eq. (11) 
multiplied by 2/(N+1). 

We design a new hardware architecture to implement the N-
point 1-D DST. The architecture is very simple and contains only 
few additions and multiplications. We decompose the w k into the 
even and odd indexes. The N point DST can be decomposed into 
the sum of two N/2 point DST[10]. Figure 8(a) is the 8-point DST 
architecture with 4-stage pipeline. Figure 8(b) ~ 8(e) shows the 
architectures for stage 1, stage 2, stage3 and stage 4 respectively. 
The a

bC  denotes c o s ( )a
b

, and a
bS  denotes s in ( )a

b
 in the 

Figure 8(b) ~ 8(e) . 
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Figure 8(a): 8-point DST architecture with 4-stage pipeline, where 8/10  
indicates 8 pixels input and 10 pixels output and so on. 
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Figure 8(b)~(e): The architecture for every stage in 8-point DST/IDST 

 
4. IMPLEMENTATION RESULTS 

 
The software simulation of the block-based gradient domain HDR 
compression with block size of 8x8 is shown in Figure 9(a). The 
input is a HDR image with size of 512x768. The dynamic range of   
RGB components of the HDR image are 600000:1, 550000:1, and 
800000:1 respectively.  The fine details of the compressed LDR 
image are still well preserved. Furthermore, there is no blocking 
effect in the reconstructed image.  

We implement the Poisson Solver by taking the consideration 
of speed and area. The data bus for each pixel used in the Poisson 
block is 24-bit wide. The eigenvalues are stored in the memory and 
obtained through the look up table. We implement the transpose 
buffer and controller to read the pixels from memory in parallel for 
the matrix transposition. The reconstructed image obtained from 
the hardware implementation is shown in Figure 9(b). The image 
quality is close to that of the software realization. The synthesis 
result shows that the whole Poisson Solver can run at 50 MHz and 
consume area of 9 mm2 under TSMC 0.18um technology. 

 
5. CONCLUSION  

 
In this paper, we present a real-time block-based gradient domain 
HDR compression architecture. The implementation results show 
that real-time gradient domain HDR compression is possible. 
Moreover, the local details of pixels are well preserved. Since our 
approach is block-based so we can reduce the computation time 

and save the chip area. We propose a fully-pipeline DST-based 
Poisson solver for the PDE equation.  Our synthesis results show 
that our DST Poisson solver can run at 50 MHz clock and consume 
9 mm2 area under TSMC 0.18um technology.  

 

 
                       (a)                                                     (b) 
   Figure 9:  (a) and (b) are software simulation result and  hardware 
implementation result respectively 
 

ACKNOWLEDGEMENTS 
 

     CTC acknowledges support from National Science Council 
project No. NSF-95-2220-E-007-033. We also acknowledge 
support from Information and Communication Research 
Laboratories, and SoC  Technology Center, ITRI. 
 
REFERENCES 
[1] R.Fattal, D.Lischinski and M. Werman, ”Gradient Domain 

High Dynamic Range Compression”, ACM SIGGRAPH, 2002. 
[2] P. E. Debevec and J. Malik,”Recovering High Dynamic Range 

Radiance Maps from Photographs”, ACM SIGGRAPH,1997. 
[3] K.Chiu, M.Herf, P.Shirley, S.Swamy, C.Wang, and K. 

Zimmerman, ”Spatially Nonuniform Scaling Functions for 
High Contrast Images”, In Graphics Interface '93, pp.245-244, 
May 1993.  

[4] S.N. Pattanaik, J.A. Ferwerda, M.D. Fairchild, and D.P. 
Greenberg,"A Multiscale Model of Adaptation and Spatial 
Vision for Realistic Image Display", Proc. of SIGGRAPH 98, 
pp.287-298,1998. 

[5] E.Land and J.McCann, ”Lightness and Retinex Theory”, 
Journal of the Optical Society of America, vol. 61, issue 1, 
pp.1-11,1971. 

[6] E.Reinhard, G.Ward, S.Pattanaik and P.Debevec, ”High 
Dynamic Range Imaging”,MORGAN KAUFMANN 
PUBLISHERS ,2006. 

[7] P.J.Burt and E.H.Adelson,” The Laplacian Pyramid as a 
Compact Image Code”, IEEE Trans. on Comm. ,vol.31,pp.532-
540, April 1983. 

[8] David R. Kincaid, "Celebrating Fifty Years of David M. 
Young's Successive Overrelaxation Iterative Method", 
Numerical Mathematics and Advanced Applications, M. 
Feistauer, V. Dolejsi, P. Knobloch, K. Najzar (Eds.), 
Springer-Verlag, 2004, pp. 549-558. 

[9]  S.N. Wansundara, ”Solving The Discrete Poisson Equation 
Using the Fast Fourier Transform Technique”, Memorial 
University of Newfoundland ,2002. 

[10] J.C. Yao and C. Y. Hsu , ”New Approach For Fast Sine 
Transform”, ELECTRONICS LETTERS 16th July 1992 
vol.28 NO.15 , 1992. 

III - 564


