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In the multi−view video coding, both temporal and inter−view redundancies can be exploited by using standard block−based

motion estimation (BBME) technique. In this paper, an extensive review of BBME algorithms proposed within the last three

decades is presented. Algorithms are divided into five categories: 1) based on the search position number reduction;

2) multiresolution; 3) based on the simplification of matching criterion; 4) fast full search; 5) computation−aware. Algo−

rithms are compared in terms of their efficiency and computational complexity.
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1. Introduction

In the video sequence coding, motion estimation (ME) plays

a vital role in a temporary redundancy reduction between

frames. Due to its simplicity and efficiency [1], block−based

ME (BBME) [2] has been adopted in several international

video coding standards such as MPEG−x, H.26x, and VC−1

[3,4]. In BBME, the current frame is divided into N×N−

−pixel−size macroblocks (MBs) and for each MB a certain

area of the reference frame is searched to minimize a block

difference measure (BDM), which is usually a sum of abso−

lute differences (SAD) between the current and the refer−

ence MB. The displacement within the search area (SA)

which gives the minimum BDM value is called a motion

vector (MV). MVs together with transformed and quantized

block differences (residua) are entropy−coded into the video

bitstream. If maximum search range (SR) within the refer−

ence frame (RF) is set to d, (2d + 1)2 search points (SPs)

have to be evaluated when the full search (FS) strategy is

employed. Assuming that typical MB size is 16×16 pixels

and SR for CIF (352×288) resolution video is ±32 pixels,

the required amount of computation to meet real time 30

frames per second (fps) processing exceeds 35 giga opera−

tions per second (GOPS). For HD720 (1280×720) resolu−

tion and ±128−pixel SR, this value increases to almost 5 tera

operations per second (TOPS). When the multi−view video

sequence coding is considered [5], the amount of computa−

tion related to ME increases since not only the inter−frame

redundancy within a single view has to be taken into

account but also the inter−view redundancy between neigh−

bouring views. To decrease such a huge computational bur−

den, within the last three decades many fast BBME algo−

rithms have been proposed. In this paper, selected algo−

rithms belonging to different categories are reviewed and

compared in terms of computational complexity and

efficiency.

With the development of video coding standards, basic

BBME scheme was extended by several additional tech−

niques such as sub−pixel, variable block size, and multiple

reference frame ME [3]. Due to the limited space, these

techniques are not addressed in this paper.

The rest of the paper is organized as follows: in Sect. 2,

the selected algorithms are characterized; in Sect. 3, the

comparison based on the results found in the literature is

presented; Section 4 gives the conclusion.

2. Characterization of algorithms

In the paper, five types of fast BBME algorithms are distin−

guished: 1) based on the search position number reduction;

2) multi−resolution; 3) based on the simplification of match−

ing criterion; 4) fast full search; 5) computation−aware. In

contrast with classification proposed by Huang et al. [6], the

usage of spatiotemporal correlations is considered only as

a supporting technique not as a separate class of ME

algorithms.

2.1. Algorithms based on the search position number

reduction

This is the most widespread class of BBME algorithms. It is

based on the assumption about the unimodality of the error

surface, which means that the BDM value monotonically

increases with the distance from the point corresponding to

the global minimum. This assumption often does not hold

strictly, especially for large SRs, however, sub−optimal

results can be obtained.

Jain and Jain introducing BBME concept in Ref. 2, pro−

posed two dimensional logarithmic (2DLOG) search proce−

dure [(Fig. 1(a)]. At each step, four SPs are checked arran−
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ged in the cross (+) pattern around the centre. Initial step

size is d/4, where d is the maximum displacement. The step

size is halved only when the minimum distortion is at the

centre of the pattern or at the boundary of the search win−

dow. When the step size is equal to 1 – eight points around

the centre are checked.

In Ref. 7, Koga et al. proposed simple and regular three

step search (TSS) which utilizes the square search pattern

with eight SPs around the centre at each step [(Fig. 1 (b)].

The initial step size is d/2 and is halved in the subsequent

steps. When d equals 7, the number of steps is 3 and the

number of used SPs is 25. For larger SRs, TSS can be easily

extended to n steps with the number of SPs equal to

1 + 8[log2(d + 1)].

Several modifications of the original TSS scheme have

been proposed. In Ref. 8, the set of thresholds is introduced

to determine the motion activity of a block and decide

whether to perform the next step of TSS or to finish.

New three step search (NTSS) [9], exploits the cen−

tre−biased characteristic of the MV distribution in most

real−world video sequences. Thus, eight extra SPs around

the centre are checked in the first step [(Fig. 1(c)]. Addition−

ally, the algorithm incorporates a half−way stop technique in

order to fast identify and estimate the motion of stationary

and quasi−stationary blocks. If the minimum BDM value in

the first step occurs at the search window centre, the search

stops. If the minimum BDM point in the first step is one of

the eight SPs surrounding the window centre, the search in

the second step will be performed only for eight neighbour−

ing points of the minimum and then stopped. Otherwise, the

search goes exactly as for TSS.

Four step search (4SS) [10] uses more compact search

pattern than TSS with the initial step size set to d/4 [(Fig. 2

(a)]. The step size is maintained constant through steps 1 to

3. Similarly to NTSS, the algorithm incorporates a half−way

stop technique. If in the second step, the minimum BDM

point is centre located, the search goes to the final step

where step size is reduced to 1.

Less known TSS−based schemes include: fast three step se−

arch (FTSS) [11], adaptive centre non−linear three step search

(ACNTSS) [12] and efficient three step search (E3SS) [13].

One−at−a−time search (OTS) algorithm [14] performs

search first in the horizontal direction using three adjacent

SPs [(Fig. 2(b)]. When the minimum BDM value is found at

the central point, the search direction changes to vertical and

the search is continued up to the moment when the minimum

BDM value is located at the centre of the search pattern.

Orthogonal search algorithm (OSA) [15] starts with

three horizontally arranged SPs: one at the centre and two in

d/2 distance [(Fig 2(c)]. Next, two vertically arranged SPs

are checked around the minimum BDM point, the step size

is halved and the procedure is repeated until the step size

equals 1. For d = 7, the required number of SPs equals 13;

for larger displacements: 1 + 4[log2(d + 1)].
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Fig. 1. Example search path of: (a) 2DLOG, (b) TSS, and (c) NTSS algorithm.

Fig. 2. Example search path of: (a) 4SS, (b) OTS, and (c) OSA algorithm.



Cross search algorithm (CSA) [16] [(Fig. 3(a)], first

checks the zero motion point (ZMP) and compares the

BDM value with a predefined threshold to decide whether

the block is stationary or not. The search continues only in

the second case. In the subsequent steps, four SPs arranged

in a (×) cross shape are checked and the step size is halved

starting form d/2. When the step size reaches the length of

one, additional step is carried out with a (+) cross search pat−

tern if the minimum BDM point of the previous step is

either the centre, upper left or lower right SP. Otherwise, (×)

cross search pattern is used. Number of required SPs (if the

stop condition is not met) is 5 + 4[log2(d + 1)].

Parallel hierarchical one−dimensional search (PHODS)

[17], is one of the first ME algorithms designed specifically

for hardware implementation. The search along x and y axis

is carried out independently and pipeline interleaving the x

and y axis searches is possible when the hardware realiza−

tion is taken into consideration. The algorithm uses the

same search pattern as OSA and the distance between SPs is

halved at each step as well. As the final solution, MV com−

posed form displacements found along x and y axis is taken.

Dynamic search−window adjustment and interlaced

search (DSWA/IS) [18], uses alternatively (×) and (+) cross

shape search patterns. The step size at each step is not fixed

but determined by the parameter which describes the speed

of convergence towards the global minimum. The parame−

ter is calculated as the difference between the smallest and

second smallest BDM value found at the present stage of the

process and compared with a predefined threshold. At the

last step, 3×3 SPs are checked around the up−to−date mini−

mum BDM point.

Block−based gradient descent search (BBGDS) [19],

uses 3×3 SPs square search pattern at each step. Number of

search steps is unrestricted and the search stops when the

minimum BDM point is located at the centre.

Diamond search (DS) [20,21], employs two search pat−

terns: small diamond search pattern (SDSP) and large dia−

mond search pattern (LDSP) composed of five and nine

SPs, respectively [(Fig. 3(b)]. First, the search is performed

with LDSP until the minimum BDM point is found at the

centre of LDSP. Then, at the last step, SDSP is applied.

Several more complex DS−based schemes have been

proposed. Cross−diamond search (CDS) [22] incorporates

the cross search pattern at the first step to utilize cross−cen−

tre−biased MVs distribution observed in many real−world

video sequences. Small−cross−diamond search (SCDS) [23]

and kite−cross−diamond search (KCDS) [24] are designed

mainly for the small−motion activity video sequences such

as videoconferencing and utilize the small cross and kite

search patterns combined with a half−way stop technique to

save more computation.

Adaptive motion tracking block matching described in

Ref. 25 utilizes correlation between MVs of adjacent MBs.

MVs of four neighbours are used to compute the search cen−

tre. First, the difference between each of neighbouring MVs

and their mean is computed, and if the maximum value is

smaller than a predefined threshold, the minimum differ−

ence between neighbouring MV and the mean is taken as

the search centre. Otherwise, ZMP is used as the search cen−

tre. Then any fast block−matching algorithm, such as TSS or

BBGDS, can be applied.

Circular zonal search (CZS) [26] [Fig. 3(c)] and its later

modifications: modified circular zonal search (MCZS) [27]

and advanced diamond zonal search (ADZS) [28, 29]

exploit spatiotemporal correlations among MVs. To deter−

mine the search centre, the set of predictors is used includ−

ing MVs of left, top and top right neighbours and MV of the

co−located MB from the previous frame. Other predictors,

like neighbouring MVs of the co−located MB are also con−

sidered [29]. The search is performed around the search cen−

tre using either circular− [26,27] or diamond−shape zones

[28,29]. Fixed or adaptive threshold is used to determine

whether the up−to−date minimum BDM value can be consi−

dered as optimal.

Hilbert scanning search algorithm (HSSA) [30] transfers

the 2D space of the search window into a 1D space of

Hilbert curve and employs the binary search to locate the

global optimal MV. Both one−candidate and multiple−candi−

date schemes can be used.

1D gradient descent search (1DGDS) [31] first checks

ZMP and MVs of four neighbouring MBs to determine the

search direction and the step size. If the distance between

the initial SP and ZMP is smaller than 3 – the step size is set
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Fig. 3. Example search path of: (a) CSA, (b) DS, and (c) CZS algorithm.



to 1, otherwise – to 2. Then, search is performed along

a direction pointed by the vector between the origin and the

initial MV. Two SPs surrounding the initial one are checked

until the minimum is found between them. Then, a conju−

gate direction is searched in the same way.

Two−path search (2PS) [32] in contrast to the previous

algorithms, which take into account only the best candidate

at each step, considers the second closest candidate, as well.

The 3×3 SPs window is used at each step. If the best BDM

point is at the centre of the first step – the search stops. In the

second step, two 3×3 sets of SPs are checked around the two

best points from the previous step. Then, either TSS is per−

formed around one selected point or the second step is

repeated. If MV found after this step is considered as the

optimal – the search stops. Otherwise, TSS is employed to

find the final MV.

Hexagon−based search (HEXBS) algorithm [33] em−

ploys the same search scheme as DS, however, instead of

LDSP the large hexagon is used. Later modifications of

HEXBS introduce search centre prediction and more detai−

led inner search of the final large hexagon shape [34–36].

Several BBME algorithms belonging to this category

applied different search patterns or basic algorithms depen−

ding on the estimated motion activity of a given MB.

Adaptive fast block−matching (A−TDB) [37] combines

TSS, DS and BBGDS algorithms to track fast, moderate and

slow motion MBs, respectively. The decision about charac−

ter of the motion is made on the basis of the initial BDM

value at ZMP. Then, all the MBs are sorted according to the

initial BDM value and divided into three groups (fast, mod−

erate and slow) using predefined thresholds. Switching bet−

ween the algorithms is threshold−controlled, as well.

Adaptive hierarchical motion estimation (AHMEA) [38]

tracks the history of the motion activity of blocks in the

frame and classifies them to a low, medium, and high mo−

tion activity group according to a predefined threshold. The

motion activity is estimated at the frame and the sequence

level, as well. This information is used to determine number

of predictors used as candidates for the search centre (ZMP,

neighbouring MVs, their mean and median), the number of

reference frames, and SR. To perform the search, SDSP,

LDSP, and switching search pattern are used. Switching

search pattern is the (×) cross shape with ±1 range and is

used to switch between SDSP and LDSP. The threshold−

−controlled early−stop technique is adopted.

Motion classification−based search (MCS) [39] employs

adaptively several search patterns such as SDSP, LDSP, and

exhaustive logarithmic search pattern (ELSP) which is an

extension of TSS. Two early−stop criteria are adopted.

A linear classifier is used for a pattern selection which bases

on the set of selected features such as the median of MVs of

neighbouring MBs, ZMP, MV of the co−located block from

the previous frame, homogeneity and dispersion of neigh−

bouring MVs, the SAD to cost ratio for the predicted MV,

and the Lagrangian multiplier.

2.2. Multiresolution (hierarchical) algorithms

Hierarchical search is based on the idea of searching the initial

best match at the coarser level of a sub−sampled SA and using

it as the starting point for the refinement at the finer level [40]

(see Fig. 4). Since the number of SPs at each level is highly re−

duced, the computational complexity is substantially lower

than in case of one−level search. Usually, two or three search

levels are used. The size of a block can be kept constant at each

level or scaled according to a sub−sampling ratio. In the first

case, an initial estimate is obtained for a larger block at the

coarser level. Thus, the estimate is more noise resistant than

that obtained for a smaller block. However, since a larger

block at the coarser level covers several blocks at the finer

level, an initial estimate obtained for a larger block may be in−

accurate when each of these blocks moves in a different direc−

tion. In the second case, when a block size is scaled along with

SA resolution, the more accurate initial estimate can be ob−

tained in the case of complex motion. However, the obtained

MV may be less robust to noise.

In Ref. 41, a 3−level hierarchical ME algorithm is pro−

posed. Levels are numbered from 2 to 0, where 2 represents

the coarsest and 0 the finest level. At the level 2 and 1, the

image is sub−sampled with 16:1 (4:1 in a horizontal and ver−

tical direction) and 4:1 ratio, respectively. One step of TSS

is performed to get an initial estimation for the next level.

The size of the block is scaled according to the sub−sam−

pling ratio. Apart from sub−sampling, low−pass filtering by

simple averaging of pixels at the coarser levels is applied to

reduce the noise influence.

Additionally, multiple−candidate scheme at each step

can be used to improve the performance.

Fast ME algorithm based on multiresolution−spatio−tem−

poral correlations (MRST) [42] uses MVs of spatially and

temporally neighbouring MBs to determine the best candi−

date to start the process. Four levels of the hierarchy are

used, and averaging of 2×2 blocks of pixels is employed to

generate coarser levels. At the coarsest level FS is per−

formed. At the subsequent levels fast search is applied with

3×3 search window. Predefined thresholds are used to test

early−stop conditions.
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Multi−resolution motion search (MRMCS) [43] algo−

rithm and its modification [44] use three levels of the hierar−

chy with 16:1 and 4:1 sub−sampling at level 2 and 1, respec−

tively. At the coarsest level FS is performed and two best

MVs are selected as candidates for the refinement at the

level 1 together with the median predictor obtained from

neighbouring MVs. At the level 1 the search is performed

around these three candidates within ±2−pixel SR. The best

MV form the level 1 is used at the level 0 as the search cen−

tre for search within ±2−pixel SR. The block size is scaled at

each level.

In the hardware−oriented parallel multi−resolution ME

(PMRME) algorithm [45] three levels of the hierarchy are

searched in parallel with the 4:1 sub−sampling at level 2 and

1. Level 2 and 1 are centred at ZMP to make possible an

effective data reuse. Level 0 is centred at the motion vector

predictor (MVP) obtained as the median from MVs of spa−

tially−adjacent MBs: left, top and top right. Two MVs with

the lowest SAD from each level are taken for the detailed

check.

The hardware−oriented multiresolution ME algorithm

proposed in Ref. 46 uses three levels of hierarchy, as well.

FS algorithm at the level 2 is employed and local FS around

multiple candidates (four best MVs and MVP) at the level 1

within ±10−pixel horizontal and ±6−pixel vertical SR. At the

level 0, local FS is performed only around the best MV from

the previous level within ±14−pixel horizontal and ±8−pixel

vertical SR.

2.3. Algorithms based on simplification of matching

criterion

In this category of BBME algorithms, two sub−classes can

be distinguished. In the first one, the simplification relies on

the pixel bit precision reduction. In the second one, only

a selected part of current and candidate block pixels is used

for the BDM calculation.

2.3.1. Pixel bit precision reduction algorithms

Since the block matching process performed on the low−bit

resolution images requires less computation and hardware

resources, the original eight−bit resolution of pixels can be

reduced by truncating a certain number of the least signifi−

cant bits or transforming the pixels into a 1−bit representa−

tion. Particularly, binary ME algorithms use an exclusive−or

(XOR) Boolean block−matching criterion instead of the

integer criterion.

In Ref. 47, the binarization of each pixel of SA and the

current MB are performed by comparison with the mean

pixel value of SA and MB, respectively. Then, FS is per−

formed over the bit−plane search window to select the best

candidates using an adaptive threshold. Next, full−resolution

BDM is calculated for these best candidates. The algorithm

incorporates the starting point prediction by using MVs of

neighbouring MBs and the adaptive SR adjustment.

In Ref. 48. a block matching is performed on the binary

edge maps obtained from the reference and the current frame.

If there are too few edge pixels inside a given MB, MV of the

current, MB is interpolated by using neighbouring MVs.

In Ref. 49, the convolution kernel is applied to the cur−

rent and the reference frame to obtain their filtered versions.

Then, filtered and unfiltered frames are compared and if the

unfiltered pixel value is larger than the filtered one, value 1

is assigned to the binary version of the frame. Next, any

BBME algorithm, such as FS or TSS, can be applied.

The fast binary pyramid ME (FBPME) algorithm [50]

combines the hierarchical approach to ME with binary

block matching. The 4−level hierarchy is used. Levels from

4 to 2 are constructed by the binarization of the image

through filtering, sub−sampling, and up−sampling by inter−

polation. Then the difference between original and up−sam−

pled version of an image is compared with a threshold to get

a binary version. At level 1, the sub−sampled version of the

original frame is used. The search starts from the top level

with blocks of different sizes (8×8, 8×4, 4×8, and 4×4). The

best MVs from each block size are propagated to the next

level and refined. At the level 2, four vectors from higher

levels are refined but only for the 8×8 block size. The best

one is projected to level 1 and refined by using 3×3 search

window and 16×16 block size.

To improve the ME accuracy obtained with 1−bit repre−

sentation, Erturk and Erturk proposed 2−bit transform for bi−

nary BBME in Ref. 51. The first and the second bit plane are

obtained through comparison of each pixel value with the lo−

cal mean and the mean plus standard deviation, respectively.

The matching criterion is defined by using Boolean XOR and

OR operators. It is possible to make XOR comparisons for

each bit plane of the current and reference frame in parallel to

speed up the computation process.

In Ref. 52, the reduced bit mean absolute difference

(RBMAD) is proposed as BDM. With the bit precision

reduction from one to seven bits, the results are close to

those obtained with full−resolution MAD. The significant

hardware resource reduction and the speed−up ratio (57%

and 34% with 4−bit RBMAD, respectively) are reported.

In Ref. 53, this idea is extended to adaptive bit−reduced

mean absolute difference (ABRMAD), where the number of

bits for MAD calculation is selected adaptively according to

the position of the first non−zero bit of the pixel with the

largest intensity in the current block. The performance of

ABRMAD is superior to RBMAD, especially for a low−bit

resolution (1 – 3 bits) cases. In Fig. 5, a comparison of pixel

bits’ selection for 8−bit MAD, 4−bit RBMAD, and 4−bit

ARBMAD is presented.

Lee et al. [54] proposed the low−resolution quantization

motion estimation (LRQME) algorithm. First, the mean of

the current block is subtracted from each pixel value of the

search window and the block itself. The result is adaptively

quantized into a 2−bit code. Then, the search is performed on

the low−bit−resolution image and a set of candidate MVs is

selected to calculate the full 8−bit−resolution BDM, how−

ever, with 4:1 sub−sampling to reduce the computation.
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2.3.2. Block sub-sampling algorithms

In order to reduce computations associated with the BDM

calculation, various types of sub−sampling can be applied to

the current and reference block. In Ref. 40, every second

pixel of these blocks is selected in both horizontal and verti−

cal directions.

In Ref. 55, Liu and Zaccarin, instead of the fixed deci−

mation pattern, proposed a set of four patterns with 4:1

sub−sampling which are altered during the search process to

reduce the influence of sub−sampling on the ME accuracy

(Fig. 6).

Hierarchical partial distortion search (HPDS) algorithm

[56] uses hierarchical sub−sampling with three levels of

hierarchy. At each level, the number of candidate MVs

taken into account decreases and the number of pixels taken

for the BDM calculation increases. These two parameters

can be adjusted to balance the speed and the accuracy of the

ME process.

Globally adaptive pixel−decimation (GAPD) [57]

applies Hilbert scan to convert a 2D block into a 1D Hilbert

sequence. Adaptive thresholding is employed to select pix−

els belonging to the edge and highly structured regions

which are used for the BDM calculation.

Pixel decimation scheme proposed in Ref. 58 is based

on N−queen lattice which is obtained by placing N queens

on a chessboard. Only pixels at the positions occupied by

the queens are selected for the BDM calculation. The

scheme guarantees that at least one pixel is selected from

each row, column, and diagonal. In Fig. 7, the fixed 4:1

sub−sampling pattern is compared with a 4−queen pattern.

In Ref. 59, several decimation patterns are proposed based

on the boundary approach (observation that new objects
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calculation are grey−coloured.



enter an MB through its boundary regions) and N−queen

lattices. Genetic algorithms are employed for the optimal

pattern selection.

2.4. Fast full-search algorithms

BBME algorithms which belong to this category can obtain

exactly the same results as FS with a significant reduction of

computational complexity which is achieved by an early

detection of non−optimal solution and by skipping unneces−

sary computations. With an appropriate selection of the

search starting point, most of the unnecessary calculations

can be avoided.

In the partial distortion elimination (PDE) algorithm

[60], recommended for the H.263 standard, the current

BDM value is gradually accumulated and the partial distor−

tion is compared with the previously found minimum BDM

value. All candidate blocks for which the partial distortion is

already larger than the current minimum distortion are

skipped. Successive elimination algorithm (SEA) [61] uti−

lizes the reversed triangle inequality for the fast rejection of

the most candidate blocks. Particularly, the candidate block

is rejected if the absolute difference between the sums of

samples within compared blocks is larger than the up−to−

−date smallest mean absolute difference (MAD). As the ini−

tial SP, MV of the co−located MB from the previous frame is

proposed.

The fast full search block−matching algorithm described

in Ref. 62, prior to calculation of the full BDM value, tests

three fast matching error measures based on the reduced

representation of compared blocks. The representations are

calculated as massive, vertical, and horizontal integral pro−

jections of a block. If any of the fast matching criteria holds,

further calculations can be skipped and a candidate block

discarded.

The algorithm proposed in Ref. 63 can be considered as

the combination of PDE and SEA algorithms since the SEA

criterion is evaluated not only once for the whole block, but

also for its subsampled versions (1×1, 2×2, 4×4, and 8×8).

Thus, the rejection at an earlier stage is possible. The same

approach is adopted in the multilevel successive elimination

algorithm (MSEA) [64].

In Ref. 65, a PDE modification is based on the observa−

tion that BDM value is proportional to the gradient magni−

tude of the reference block. It allows for the early selection

of more significant pixels for BDM calculation, which

increases the probability of the fast rejection of inappropri−

ate candidates. Similar approach is applied in Ref. 66; how−

ever, the pixel selection order is determined by the arrange−

ment of pixel differences calculated at ZMP according to

their contribution into the BDM value.

Fine granularity successive elimination algorithm

(FGSEA) [67] successively checks for up to 85 conditions

(levels) for early rejection of inappropriate candidates. Each

level is formed by the incremental computation of the SADs

between the parts of the candidate and the current block,

from 1×1 to 16×16. To determine the order of the pixel

selection, the complexity of each sub−block is estimated by

using the gradient magnitude. Additionally, to save compu−

tations, the prediction of the starting level is employed,

which utilizes information about the rejection level of the

preceding block. Other modifications of SEA are: extended

SEA (ESEA) [68], extended MSEA (EMSEA) [69] and

adaptive MSEA (AdaMSEA) [70].

2.5. Computation-aware algorithms

Computation−aware BBME algorithms [71] employ adap−

tively different techniques and algorithms to achieve opti−

mal or suboptimal results in a computation−limited and com−

putation−variant environment. Previously described BBME

algorithms do not take into account the available computa−

tional resources and stop only when all necessary SPs are

checked. By this time, the available computational power

may be exhausted, making real−time implementation impos−

sible. When the search procedure is interrupted to meet

real−time requirements, obtained results may be far from the

optimum. On the other hand, when computational resources

are abundant, traditional BBME algorithms are not able to

utilize the excess efficiently. Computation−aware algo−

rithms can fulfil real−time requirements without any signifi−

cant performance degradation and improve the performance

when additional resources are available.

Tai et al. [71] proposed the frame− and block−level com−

putation distribution scheme. The frame−level computation

distribution bases on the information about computation

usage in the previous frames. The block−level computation

allocation is proportional to the BDM value at the initial SP.

Then, blocks are arranged in the descending order of BDM

value and one step of the algorithm (e.g., TSS) is performed

for each block. After first step, blocks are sorted again and

the procedure is repeated until the resources are exhausted.

To avoid multiple allocations and sorting, Chen et al.

[72] proposed one−pass scheme which operates in a block−

−by−block manner. All computational resources are divided

equally between frames and distributed among MBs. Each

MB receives the same basic amount of computation and

some extra resources according to the ratio of SAD at the

initial SP, which is the median of left, upper and right−upper

MVs of neighbouring MBs, to average minimum SAD of

the previously processed MBs. An adaptive search strategy

selection is employed which uses variation of neighbouring

MVs around the median to determine the motion activity

and selects either DS or TSS algorithm (see Fig. 8). If an

early−stop condition is not met and some resources are still

available – FS algorithm is invoked. For further speed up,

2:1 subsampling for BDM calculation can be applied. Simi−

lar approach is adopted in the multi−path search (MPS) algo−

rithm [73,74], where the initial SP is selected from the pre−

diction set containing MVs of left, left−upper, upper, and

right−upper neighbour, ZMP, and the co−located block in the

previous frame. Search strategy is selected among TSS, DS

and KCDS depending on the estimated block motion

activity and the available computation.
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The configurable complexity−bounded motion estima−

tion (CCBME) algorithm [75] can use a different number of

predictors (from two to five, including ZMP and four neigh−

bouring MVs) and three types of subsampling for BDM cal−

culation: 4:1, 2:1, and 1:1. When the search centre is deter−

mined, a recursive search is performed by using SDSP.

Number of search steps can vary from zero to four, which is

another parameter of the process. Six best configurations of

the parameters are selected on the basis of experiments to

trade the complexity for the performance.

Fully−adaptive distance−dependent thresholding search

(FADTS) algorithm [76] uses diamond−shaped zones aro−

und the search centre to advance the search process. Either

the origin or the mean of neighbouring MVs, depending on

the correlation between them, is used as the search centre.

Number of zones determines the quality and the usage of

computation and is controlled by an adaptive threshold cal−

culated every four frames to meet the speed and quality

constrains.

2.6. Other approaches to BBME: genetic algorithms,

fuzzy logic, Kalman filtering

Some of the BBME algorithms developed through the last

three decades do not fit into any of the above−mentioned

categories.

In Refs. 77–79, the concept of genetic algorithm is ada−

pted to BBME. Search points are selected randomly from

the initial population usually concentrated around the search

centre and represented by their binary “chromosomes”. The

selected group of SPs undergoes the crossover and mutation

procedures to produce the next generation of SPs.

In Refs. 80 and 81, the fuzzy−reasoning−based procedure

is employed for the initial SP prediction.

In Ref. 82, the 1D and 2D autoregressive model for the

initial MV prediction is used. The model is combined with

Kalman filtering in order to obtain the final solution.

2.7. Motion and disparity estimation in multi-view

video sequences

A multi−view video sequence is composed of several sin−

gle−view video sequences captured at the same time from

different viewpoints. To reduce the inter−frame and the

inter−view redundancies present in this type of sequences,

a motion and disparity estimation is performed. For this pur−

pose, standard BBME algorithms, described in the previous

subsections, can be directly applied [83]. However, to ob−

tain further reduction of computational complexity of the

process, inter−view geometrical relationships are often

utilized.

In Ref. 84, the epipolar constrain is imposed on the

median MVP. Two images of a single scene are related by

the epipolar geometry, which can be described by a 3×3 sin−

gular matrix called the essential or fundamental matrix,

depending on whether the images internal parameters (e.g.,

the focal length, the coordinates of the principal point) are

known or not [85]. According to the epipolar geometry, pro−

jection of a a point P on an image plane is constrained to lie

on a line called the epipolar line. The authors assume that

the horizontal component of MVP is more reliable than the

vertical one (since horizontal motion is much more inten−

sive than vertical motion for most typical multi−view cam−

era setups) and lies on the epipolar line. Thus, only the verti−

cal component of MVP requires rectification. When a new

MVP is derived, FS is performed within highly reduced SR

(±4 pixels). The reported PSNR degradation is below 0.05

dB with about triple speed−up compared to the case when

the raw MVP is used with full SR.

In Ref. 83, Lai and Ortega describe disparity than

motion (DtM) and motion than disparity (MtD) schemes in

which one of the processes (disparity or motion estimation)

is performed first to obtain a set of predictors for the second

one. At the next stage, the search is performed around the

predictors within ±1−pixel SR and around mean of the pre−

dictors, within a 4×4 search window. MtD scheme gives

better results than DtM. The reported degradation with

respect to dual search (when both motion and disparity are

estimated separately) is 0.1–0.2 dB and the improvement

with reference to simulcast (when each view is coded sepa−

rately) is about 1.5 dB.

The SR adjustment method proposed in Ref. 86 is based

on two MVPs. The first one is the ordinary median predictor

obtained from MVs of spatially adjacent blocks. The second

one is derived from the geometrical relationships between

the views. The search is performed within a reduced SR

which is directly proportional to the difference between

these two predictors. Obtained results are almost the same

as with full SR with about 4−time speed−up.

In Ref. 87, the disparity is estimated first within a re−

duced SR predicted on the basis of geometrical relationships
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between the views. Next, a relation between disparity and

motion is utilized to determine SR for motion estimation.

Additionally, the early stop condition is provided to limit

the number of RFs. The initial RF for a given block is the

same as used by the majority of neighbouring blocks. If the

Lagrangian cost obtained in this RF is smaller than a certain

threshold, this RF is taken as the optimal and other refer−

ences are not searched. Obtained results are only tenths of

dB in PSNR and less than 1% in the bitrate worse than

obtained with the scheme implemented in the joint multi−

−view video model (JMVM) [88] software with over double

speed−up.

In Ref. 89, in order to adjust SR, the motion homogene−

ity is measured as deviation of MVs of 4×4 blocks with

respect to their mean. Blocks taken for motion homogeneity

estimation come from location of the corresponding MB in

the previously coded view obtained by means of a global

disparity vector and from its eight neighbouring MBs. Then,

obtained value of the motion homogeneity is compared with

two predefined thresholds to determine whether MB is

located in a homogenous, moderately homogenous, or com−

plex motion region, and SR is adjusted accordingly. The

method achieves almost the same results as JMVM with two

to five speed−up ratio.

3. Comparison of algorithms

In this section, selected BBME algorithms are compared on

the basis of results published in several papers. Since the

experiments were conducted with different video sequen−

ces, search ranges, block sizes, numbers of frames, and spa−

tial/temporal resolutions, the results are not always consis−

tent. However, some general conclusions can be drawn.

The widest comparison of BBME algorithm belonging

to the first category can be found in Refs. 37, 90, and 91. In

Ref. 37, TSS, NTSS, 4SS, BBGDS, and DS algorithms are

compared by using two 100−frame QCIF (176×144) (“Fore−

man” and “Mother and daughter”) and four 300−frame SIF

(352×240) (“Football”, “Flower garden”, “Table tennis”,

and “Mobile calendar”) video sequences. The sequences

represent different types of motion activity, from low (“Mo−

ther and daughter”), through moderate (“Foreman”,

“Flower garden”, “Mobile calendar”), to high (“Football”,

“Table tennis”). SR is set to ±7 and ±15 for QCIF and SIF

resolution, respectively. The block size is 16×16 and IPPP

GOP structure is used. In Table 1, motion−compensated

PSNR values and averaged numbers of SPs per MB for each

algorithm are presented. It is clear that there is no single

algorithm which performs equally well for all the types of

sequences. However, DS and BBGDS can be distinguished

as combining relatively good performance with low compu−

tational complexity. Only for the Foreman sequence these

algorithms are distinctly outperformed by TSS, FSS, and

NTSS. Foreman is also the only sequence for which the

performance of TSS is not the poorest one.

In Ref. 90, NTSS, 4SS, DS, CDS, KCDS, and HEXBS

algorithms are compared by using four 200−frame QCIF

(“Akiyo”, “Car phone”, “Foreman”, “Stefan”) and three

100−frame CIF (352×288) (“Flower garden”, “Mobile cal−

endar”, “Football”) video sequences. The block size is set to

16×16 and SR to ±7 for all sequences. The comparison in

terms of motion−compensated PSNR and an averaged num−

ber of SPs per MB is presented in Table 2. In this compari−

son, CDS and HEXBS appear as the algorithms which

maintain a relatively good performance and low computa−

tional complexity for all the types of sequences. For high−

−motion activity sequences (“Stefan”, “Football”), NTSS

outperforms the remaining algorithms, however, at the ex−

pense of increased computational complexity. KCDS mani−

fests the lowest computational complexity, but for most of

the sequences the performance degradation is not accept−

able. Only the videoconferencing materials such as “Akiyo”

seem to be suitable for this algorithm.

In Ref. 91, 2DLOG, 4SS, BBGDS, DS, CDS, and

HEXBS algorithms are compared using ten CIF sequences:

“Football”, “Coastguard”, “Akiyo”, “Foreman”, “Sean”,
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Table 1. Performance and complexity comparison of FS, TSS, 4SS, NTSS, BBGDS, and DS [37].

Sequence
Algorithm

FS TSS 4SS NTSS BBGDS DS

Flower garden
PSNR [dB] 23.92 21.18 23.39 21.93 23.52 23.61

SPs 859.45 30.52 19.03 20.54 14.03 16.89

Football
PSNR [dB] 23.08 21.82 22.27 22.02 22.08 22.24

SPs 859.45 30.52 19.19 21.66 15.15 17.11

Foreman
PSNR [dB] 30.65 30.16 29.83 30.23 29.73 29.83

SPs 184.56 21.66 16.70 18.37 12.47 14.50

Mobile calendar
PSNR [dB] 22.61 22.31 22.51 22.58 22.58 22.54

SPs 859.45 30.52 15.88 18.04 10.73 12.60

Mother and daughter
PSNR [dB] 39.71 39.59 39.63 39.65 39.62 39.63

SPs 184.56 21.66 14.94 15.42 8.43 11.85

Table tennis
PSNR [dB] 27.49 25.82 26.42 26.26 26.25 26.61

SPs 859.45 30.52 18.31 20.71 12.71 15.54



“News”, “Silent”, “Stefan”, “Mobile calendar”, and “Con−

tainer”. The block size is set to 16×16 and SR to ±16 pixels.

The results are shown in Table 3. This comparison confirms

efficiency of DS and CDS algorithms. Results obtained by

both algorithms are very similar. However, CDS uses less

SPs than DS.

For most of the sequences, 4SS exhibits similar perfor−

mance as DS and CDS or even outperforms them (“Foot−

ball”, “Stefan”), but requires more computational resources.

BBGDS is the fastest among the compared algorithms, and

its performance is in the most cases comparable with DS

and CDS. In general, DS and CDS can be considered as the

most versatile and robust algorithms. In the case when the
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Table 2. Performance and complexity comparison of FS, NTSS, 4SS, DS, CDS, KCDS, and HEXBS [90].

Sequence
Algorithm

FS NTSS 4SS DS CDS KCDS HEXBS

Akiyo
PSNR [dB] 44.94 44.94 44.94 44.94 44.94 44.79 44.92

SPs 184.6 14.68 14.66 13.01 8.222 4.620 9.65

Car phone
PSNR [dB] 33.70 33.63 33.52 33.6 33.55 32.59 33.31

SPs 184.6 16.75 15.61 14.63 11.00 6.441 10.36

Foreman
PSNR [dB] 32.4 32.29 32.17 32.22 32.14 30.64 31.75

SPs 184.6 16.88 15.89 14.81 11.09 6.731 10.51

Stefan
PSNR [dB] 25.21 25.02 24.75 24.72 24.67 22.3 24.68

SPs 184.6 19.28 16.72 16.74 14.62 7.64 11.70

Flower garden
PSNR [dB] 25.63 25.62 25.51 25.61 25.62 18.35 25.52

SPs 204.3 18.47 17.13 15.28 12.98 6.088 11.53

Mobile calendar
PSNR [dB] 23.89 23.86 23.72 23.81 23.84 22.74 23.64

SPs 204.3 17.99 16.20 14.07 11.40 7.28 10.70

Football
PSNR [dB] 23.36 22.99 22.79 22.76 22.67 20.9 22.57

SPs 204.3 20.93 18.40 17.81 15.89 10.20 12.61

Table 3. Performance and complexity comparison of FS, 2DLOG, 4SS, HEXBS, BBGDS, CDS, and DS [91].

Sequence
Algorithm

FS 2DLOG 4SS HEXBS BBGDS CDS DS

Football
PSNR [dB] 25.84 24.91 25.06 24.66 24.71 24.83 24.88

SPs 858.46 33.00 27.48 16.14 20.76 21.50 21.82

Coastguard
PSNR [dB] 30.04 29.40 29.76 29.79 29.81 29.88 29.88

SPs 868.33 33.00 26.02 13.04 13.72 15.68 16.54

Akiyo
PSNR [dB] 43.04 42.92 42.94 42.82 43.04 43.01 43.03

SPs 868.33 33.00 23.24 10.34 8.52 8.70 11.29

Foreman
PSNR [dB] 32.84 31.92 32.00 31.42 32.14 32.01 32.10

SPs 868.33 33.00 26.29 13.71 16.73 16.69 17.93

Sean
PSNR [dB] 39.46 39.31 39.33 39.30 39.45 39.41 39.42

SPs 868.33 33.00 23.44 10.48 8.92 9.15 11.66

News
PSNR [dB] 37.00 36.61 36.70 36.55 36.66 36.68 36.69

SPs 868.33 33.00 23.54 10.67 9.25 9.52 11.90

Silent
PSNR [dB] 36.24 35.85 35.88 35.56 35.56 35.57 35.66

SPs 868.33 33.00 23.76 10.96 9.98 10.14 12.46

Stefan
PSNR [dB] 25.68 24.04 24.62 23.93 23.58 23.95 24.03

SPs 868.33 33.00 25.94 13.87 15.52 16.96 17.61

Mobile calendar
PSNR [dB] 24.34 23.95 24.03 24.00 24.28 24.25 24.24

SPs 868.33 33.00 23.70 10.85 10.67 10.34 12.81

Container
PSNR [dB] 38.45 38.45 38.45 38.45 38.45 38.45 38.45

SPs 868.33 33.00 23.34 10.42 8.58 8.84 11.42



processing speed is a critical factor, BBGDS can be recom−

mended. Additionally, the performance of each algorithm

can be improved by introducing the search centre prediction

based on spatially and/or temporally adjacent MVs [6].

Several multiresolution (hierarchical) algorithms are

compared in Ref. 43, where MRMCS is compared with

MRMC using four candidates at each level, MRST and

one−level TSS algorithm. Four 300−frame CIF (“Mother and

daughter”, “News”, “Car phone”, “Foreman”) and three

300−frame SIF (“Flower garden”, “Football”, “Table ten−

nis”) video sequences were used. SR was set to ±16 pixels.

In Table 4, the motion−compensated PSNR value and com−

putational complexity (CC), with respect to FS, for each

algorithm are presented. In most cases, the computational

complexity of multi−resolution algorithms is higher than

TSS, however, the PSNR values obtained with TSS are even

1–2 dB lower (“Car phone”, “Foreman”, “Flower garden”,

“Table tennis”). MRST seems to be a good compromise

between the speed and the performance achieving results

only tenths of dB away from FS and MRMCS. Note that

both MRST and MRMCS utilize the spatiotemporal cor−

relations between MVs.

Considering the results from Table 1, where TSS is com−

pared with other BBME algorithms based on the search

position number reduction, it might be expected that

BBGDS and DS can achieve results comparable with multi−

resolution algorithms with lower computational burden.

ME algorithms based on the reduced pixel bit precision

representations of frames are dedicated for customized

hardware implementations to reduce the amount of compu−

tation and the gate count. For this reason, the speed gain is

highly implementation−dependent and only the efficiency in

terms of motion−compensated PSNR is compared. In Ref.

53, the adaptive bit−reduced mean absolute difference

(ABRMAD) criterion is compared with full 8−bit MAD,

binary block matching (BBM) [48], binary block matching

with 1−bit transform (1BT) [49], reduced−bit mean absolute

difference (RBMAD) [52], and low−resolution quantization

motion estimation algorithm (LRQME) [54]. Four CIF

video sequences were used in the experiments (“Miss Ame−

rica”, “Car phone”, “Foreman”, “Claire”), 100 frames each

with SR set to ±16 pixels. The results in Table 5 show that

for all 1− and 2−bit criteria the PSNR drop exceeds 2 dB

which is unacceptable value. For RBMAD criterion, 2−bit

truncation does not create significant deterioration of the

search results. For ARBMAD even four bits can be safely

truncated.

In Ref. 92, motion−compensated PSNR obtained with

full eight−bit pixel resolution is compared with results for

1BT and 2−bit transform (2BT) [51]. Five CIF video se−

quences were used in the experiments (“Coastguard”, “Mo−

bile calendar”, “Football”, “Flower garden”, and “Bowing”)

with SR set to ±8 pixels. The results are presented in Table

6. The performance obtained with 1BT and 2BT is similar

with the exception of the Bowing sequence for which the

0.8 dB difference is observed. However, the increased com−

putational effort related to 2BT seems to be too high regard−

ing only a moderate improvement. It is characteristic that

the biggest discrepancy between the results obtained with

the 8− and reduced−bit resolution picture representation is

observed for sequences with low motion activity and small

amount of details such as “Claire” or “Miss America”. In

general, truncating more than five least significant bits

causes too large performance deterioration. However, from

two to five bits truncation can be considered as an efficient

way to reduce the hardware complexity and the power

consumption of an ME unit.

The comparison of a few pixel decimation schemes can

be found in Refs. 57 and 59. In Ref. 57, Hilbert−scan−based

globally adaptive pixel−decimation (HSPD) scheme using
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Table 4. Performance and complexity comparison of FS, TSS, MRMC, MRST, and MRMCS [43].

Sequence
Algorithm

FS TSS MRMC MRST MRMCS

Mother and daughter
PSNR [dB] 40.10 39.64 40.03 40.05 40.09

CC [%] 100 3.2 4.6 2.1 4.7

News
PSNR [dB] 36.12 35.70 36.03 35.99 36.11

CC [%] 100 3.2 4.6 1.9 4.7

Car phone
PSNR [dB] 32.37 31.28 31.96 32.19 32.30

CC [%] 100 3.2 4.6 4.8 4.7

Foreman
PSNR [dB] 32.53 30.78 32.10 32.35 32.50

CC [%] 100 3.2 4.6 5.2 4.7

Flower garden
PSNR [dB] 25.26 22.49 24.65 25.11 25.25

CC [%] 100 3.2 4.6 4.6 4.7

Football
PSNR [dB] 22.74 21.64 22.57 22.55 22.71

CC [%] 100 3.2 4.6 3.6 4.7

Table tennis
PSNR [dB] 29.75 27.47 29.14 29.53 29.70

CC [%] 100 3.2 4.6 3.2 4.7



variable number of pixels is compared with fixed [40] and

alternating [55] 4:1 sub−sampling (Table 7). Four CIF se−

quences were used in the experiments (“Salesman”,

“Claire”, “Football”, and “Table tennis”) with block size set

to 16×16 and SR to ±8. As the complexity measure, the

number of pixels taken for the BDM calculation was taken.

The fixed subsampling is the most regular among the com−

pared decimation schemes and its performance is the poor−

est one as well, especially for low−motion activity sequen−

ces – “Claire” and “Salesman”. Alternating subsampling

allows to obtain similar results as HSPD by using compara−

ble number of pixels, however, the second scheme is more

flexible and able to maintain good performance for smaller

numbers of pixels used for distortion calculation.

In Ref. 59, boundary−based and N−queen decimation

schemes are compared with 4− and 8−queen schemes [58].

Four video sequences were used in the experiments: “Con−

tainer”, “Foreman” (QCIF), “Stefan” (CIF), and “Football”

(SIF) with the block size and SR set to 16×16 and ±16,

respectively. Motion−compensated PSNR and speed−up

ratio (SUR) values are shown in Table 8. B4Q4 and BVQ8

are the schemes which combine boundary−based approach

with 4− and 8−queen (4Q, 8Q) scheme, respectively. The let−

ters BV denote that the number of horizontal and vertical

layers for the boundary−based approach is not identical.

This comparison shows that more sophisticated subsam−

pling schemes can achieve similar performance as N−queen

patterns with a higher speed−up ratio. The performance and

the speed−up ratio of BVQ8 seems to be comparable with

HSPD, considering the difference in PSNR for the “Foot−

ball” sequence when HSPD uses 31.3 pixels per block

which gives approximately 8.18−time speed−up. This type of

simplification of a matching criterion is, in general, less

harmful for the performance than the pixel bit precision

reduction.

The comparison of several fast full search algorithms

can be found in Ref. 67. In the experiments, 11 QCIF and

CIF video sequences, 100−frame each were used (“Car pho−
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Table 5. Performance comparison of bit precision reduced BDMs: BBM, 1BT, LRQME, RBMAD, and ARBMAD [53].

Algorithm
Sequence

Miss America Car phone Foreman Claire

MAD 8b PSNR [dB] 39.47 29.85 28.39 38.55

BBM 1b PSNR [dB] 35.31 25.92 25.45 33.99

1BT 1b PSNR [dB] 35.76 26.51 24.35 31.74

LRQME 2b PSNR [dB] 35.57 27.37 26.40 35.95

RBMAD

1b PSNR [dB] 28.37 21.33 21.92 24.36

2b PSNR [dB] 33.80 25.98 25.27 29.50

3b PSNR [dB] 35.08 28.15 27.36 32.40

4b PSNR [dB] 36.39 29.34 28.07 34.00

5b PSNR [dB] 37.69 29.59 28.27 36.90

6b PSNR [dB] 38.83 29.91 28.32 38.04

7b PSNR [dB] 39.31 29.90 28.37 38.43

8b PSNR [dB] 39.47 29.85 28.39 38.55

ARBMAD

1b PSNR [dB] 37.34 27.49 25.90 35.26

2b PSNR [dB] 37.89 29.09 27.60 36.53

3b PSNR [dB] 38.75 29.58 27.98 36.68

4b PSNR [dB] 39.23 29.76 28.26 37.48

5b PSNR [dB] 39.37 29.83 28.32 38.07

6b PSNR [dB] 39.46 29.83 28.32 38.44

7b PSNR [dB] 39.46 29.89 28.37 38.44

8b PSNR [dB] 39.47 29.85 28.39 38.55

Table 6. Performance comparison of 1BT and 2BT [92].

Algorithm
Sequence

Coast guard Mobile Football Flower garden Bowing

MAD 8b PSNR [dB] 36.37 35.33 35.30 35.28 42.07

1BT 1b PSNR [dB] 35.67 35.07 34.96 35.05 39.04

2BT 2b PSNR [dB] 35.66 35.07 34.97 35.11 39.86



ne”, “Coastguard”, “Flower garden”, “Foreman”, “Grand−

mother”, “Hall monitor”, “Miss America”, “Mother and

daughter”, “Stefan”, “Suzie”, and “Table tennis”). SEA

[61], MSEA [63,64], and FGSE [67] algorithm performan−

ces were compared. The block size and SR were set to

16×16 and ±16, respectively.

Since the performance in terms of PSNR of all the algo−

rithms is the same as FS, only the speed−up ratios are pre−

sented in Table 9. It shows that the speed gain for this type

of algorithms can be even higher than for some search posi−

tion reduction algorithms such as TSS. However, it is highly

content−dependent. For instance, speed−up of FGSE can

vary from 6.3 (“Table tennis”) to 43.7 (“Car phone”). Thus,

this type of fast BBME algorithms can be a good choice for

quality−oriented video compression systems.

The performance of computation−aware BBME algo−

rithms is usually visualized in the form of charts such as in

Fig. 9, where changes of quality, measured by MSE or

PSNR, are presented as the function of available computa−

tional resources. To simplify the comparison, the perfor−

mance of selected algorithms is presented only at selected

operating points which characterize an algorithm capability

to converge to the optimal solution. In Ref. 73, the computa−

tion−aware multi−path search (MPS) algorithm is compared

with Chen’s one−pass scheme [72] (OPS) and three search

position reduction algorithms: NTSS, DS, and HEXBS.

Since except MPS and OPS the rest of the algorithms do not

provide computational scalability feature, their work is in−

terrupted after reaching a targeted number of SPs. The

results for target number of 10 and 15 SPs per MB are pre−

sented in Table 10. Five CIF sequences were used for the

experiments, 90 frames each: “Coastguard”, “Football”,

“Foreman”, “Paris”, and “Stefan”, the block size and SR

were set to 16×16 and ±15 pixels, respectively.
Table 9. Speed−up ratios of fast full search algorithms: SEA,

MSEA, and FGSE [67].

Block−based motion estimation algorithms – a survey

98 Opto−Electron. Rev., 21, no. 1, 2013 © 2013 SEP, Warsaw

Table 7. Performance and complexity comparison of pixel decimation patterns: fixed 4:1, alternated 4:1, and HSPD with variable number

of pixels [58].

Sequence
Algorithm

No decimation Fixed 4:1 Alternating 4:1 HSPD

Claire
PSNR [dB] 42.31 39.31 42.26 42.25 42.23 42.10 42.00

Pixels/Block 256 64 64 73.0 61.3 36.7 30.8

Football
PSNR [dB] 23.66 23.52 23.61 23.57 23.56 23.42 23.34

Pixels/Block 256 64 64 75.0 64.3 36.2 31.3

Salesman
PSNR [dB] 35.43 34.56 35.33 35.37 35.36 35.18 35.16

Pixels/Block 256 64 64 73.2 62.6 36.5 30.4

Table tennis
PSNR [dB] 28.56 28.42 28.49 28.49 28.48 28.40 28.30

Pixels/Block 256 64 64 73.4 65.7 36.5 28.6

Table 8. Performance and complexity comparison of pixel decimation patterns: 4−queen (4Q), 8−queen (8Q), B4Q4, and BVQ8 [57].

Sequence
Algorithm

No decimation 4Q 8Q B4Q4 BVQ8

Container
PSNR [dB] 43.09 43.08 43.00 43.08 43.00

SUR 1 4.0 8.1 6.4 9.2

Foreman
PSNR [dB] 31.84 31.76 31.57 31.65 31.52

SUR 1 4.0 8.1 6.4 9.2

Stefan
PSNR [dB] 25.90 25.82 25.62 25.69 25.54

SUR 1 4.0 8.1 6.4 9.2

Football
PSNR [dB] 22.88 22.72 22.41 22.47 22.26

SUR 1 4.0 8.1 6.4 9.2

Fig. 9. Performance changes along with available computational re−

sources for MPS algorithm [73].



Sequence
Algorithm

SEA MSEA FGSE

Car phone Speed up 3.9 32.5 43.7

Coastguard Speed up 2.8 24.6 34.3

Flower garden Speed up 3.2 6.1 8.9

Foreman Speed up 4.5 18.9 27.0

Grandmother Speed up 4.6 20.0 22.8

Hall monitor Speed up 4.2 12.0 19.5

Miss America Speed up 3.9 10.4 17.4

Mother and daughter Speed up 7.2 24.9 35.7

Stefan Speed up 2.7 15.7 22.2

Suzie Speed up 3.3 5.8 10.2

Table tennis Speed up 1.8 3.6 6.3

It is clear that computation−aware algorithms perform

significantly better for all types of sequences and amounts

of available resources than the rest of algorithms. Particu−

larly, for high−motion activity sequences, such as “Football”

and “Stefan”, the difference at 10 SPs/MB is between 3 to 4

dB. Also, the speed of convergence to the full−search limit is

the highest. Even at 10 SPs/MB the difference seldom

exceeds 1 dB (“Football”). Good performance and flexibil−

ity is the result of starting SP prediction using spatiotem−

poral correlations between MVs, adaptive search strategy

selection according to the available number of SPs, and esti−

mated motion activity within a sequence. Note that among

regular algorithms, HEXBS demonstrates the highest speed

of convergence. It results from the large hexagon search pat−

tern used by HEXBS, which is slightly wider than LDSP.

In Ref. 75, configurable complexity−bounded motion

estimation algorithm (CCBME) is compared with DS and

HEXBS. The tests were performed using three CIF video

sequences: “Coastguard”, “Foreman”, and “News”. The

block size and SR were set to 16×16 and ±16, respectively.

The authors define complexity measurement unit (CCMU)

to determine the amount of used computation which can be

regarded as equivalent to one SP. For DS and HEXBS, only

the final results are presented in Table 11. For CCBME, the

first and the final operating points are selected for the com−

parison. As in the previous comparison, it can be observed

that CCBME uses less SPs than regular algorithms and

achieves better results in terms of PSNR. Computation−

−aware algorithms seem to be very attractive, especially for

the systems operating in a computation−constrained en−

vironment.

From all above comparisons, the general observation is

that BBME algorithms tend to evolve from simple and regu−

lar strategies, such as FS and TSS, to more complex and

sophisticated, such as MPS and CCBME. This trend is

driven by an increasing demand for performance and sup−

ported by rapid progress of silicon technology. The possibil−

ity of integration of hundreds of millions of elements in one

silicon chip allows for implementations of complex ME

modules with unpredictable data flow and irregular memory

access. In practice, the BBME algorithm selection is highly

application−dependent.
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Table 10. MPS, OPS, NTSS, DS, and HEXBS performance at 10 and 15 SPs per MB [73].

Sequence
Algorithm

MPS OPS NTSS DS HEXBS FS limit

Coastguard
PSNR@10 SPs/MB [dB] 29.64 29.11 26.62 28.45 28.37

29.73
PSNR@15 SPs/MB [dB] 29.68 29.52 27.02 28.84 29.14

Football
PSNR@10 SPs/MB [dB] 25.76 24.04 22.11 22.34 22.91

27.29
PSNR@15 SPs/MB [dB] 26.32 25.34 23.71 23.31 24.25

Foreman
PSNR@10 SPs/MB [dB] 33.07 32.26 31.02 31.09 31.16

33.52
PSNR@15 SPs/MB [dB] 33.25 33.09 31.52 32.39 32.20

Paris
PSNR@10 SPs/MB [dB] 30.36 29.81 29.54 29.29 29.01

30.70
PSNR@15 SPs/MB [dB] 30.56 30.46 29.66 30.08 30.20

Stefan
PSNR@10 SPs/MB [dB] 25.68 24.60 21.35 22.98 23.10

25.89
PSNR@15 SPs/MB [dB] 25.73 25.27 21.93 23.74 23.99

Table 11. Performance comparison of CCBME, DS, and HEXBS [75].

Sequence
Algorithm

CCBME DS HEXBS

Coastguard PSNR [dB] 29.72@2.6 SPs/MB 30.17@10.4 SPs/MB 29.95@15.1 SPs/MB 29.84@13.0 SPs/MB

Foreman PSNR [dB] 29.74@2.8 SPs/MB 31.01@11.2 SPs/MB 30.07@17.7 SPs/MB 29.79@13.5 SPs/MB

News PSNR [dB] 33.48@2.2 SPs/MB 34.35@9.1 SPs/MB 34.33@12.6 SPs/MB 34.27@10.6 SPs/MB



For instance, KCDS is well suited for estimating motion

in videoconferencing materials but performs poorly for

high−motion activity sequences. TSS is simple and regular

but its performance is mediocre in comparison with newer

algorithms such as DS. Multiresolution techniques are very

attractive for applications with large frame sizes and search

ranges. Algorithms based on the pixel bit precision reduc−

tion are dedicated mainly to custom hardware architectures.

Fast full search algorithms seem to be most useful for qual−

ity−oriented compression systems where stable processing

time is not a critical factor. Computation−aware algorithms

are most flexible but require more sophisticated hardware

architectures.

4. Conclusions

Motion estimation usually consumes the most computation

in a video coding system. In this paper, many fast BBME

algorithms belonging to different categories are character−

ized. Performance and computational complexity of selec−

ted algorithms is compared to facilitate the choice of an

appropriate algorithm to a specific application.
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