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Abstract

Multimodal representation learning is gaining more and more
interest within the deep learning community. While bilin-
ear models provide an interesting framework to find subtle
combination of modalities, their number of parameters grows
quadratically with the input dimensions, making their prac-
tical implementation within classical deep learning pipelines
challenging. In this paper, we introduce BLOCK, a new mul-
timodal fusion based on the block-superdiagonal tensor de-
composition. It leverages the notion of block-term ranks,
which generalizes both concepts of rank and mode ranks
for tensors, already used for multimodal fusion. It allows
to define new ways for optimizing the tradeoff between the
expressiveness and complexity of the fusion model, and is
able to represent very fine interactions between modalities
while maintaining powerful mono-modal representations. We
demonstrate the practical interest of our fusion model by us-
ing BLOCK for two challenging tasks: Visual Question An-
swering (VQA) and Visual Relationship Detection (VRD),
where we design end-to-end learnable architectures for repre-
senting relevant interactions between modalities. Through ex-
tensive experiments, we show that BLOCK compares favor-
ably with respect to state-of-the-art multimodal fusion mod-
els for both VQA and VRD tasks. Our code is available at
https://github.com/Cadene/block.bootstrap.pytorch.

1 Introduction

In many of the most recent tasks tackled by artificial intelli-
gence, multiple sources of information need to be taken into
account for decision making. Problems such as visual ques-
tion answering (Goyal et al. 2017), visual relationship detec-
tion (Lu et al. 2016), cross-modal retrieval (Kiros, Salakhut-
dinov, and Zemel 2015) or social-media post classification
(Duong, Lebret, and Aberer 2017) require, at a certain level
and to some extent, the fusion between multiple modalities.

For classical mono-modal tasks, linear models constitute
a handful building block to transform the input x and to
match it with the desired output y. When dealing with two
modalities, not only do we need to properly transform each
input x1 and x2 into a representation that fits the prob-
lem, we also want to model the interactions between these
modalities. A natural candidate to extend linear models for
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two inputs are bilinear models. However, the number of pa-
rameters of a bilinear model is quadratic in the input di-
mensions: as a linear model is characterized by a matrix

W ∈ R
dim(x)×dim(y), a bilinear model is defined by a ten-

sor T ∈ R
dim(x1)×dim(x2)×dim(y). When the input dimen-

sions grow (thousand or more), learning a full tensor T be-
comes quickly intractable. The main issue is to reduce and
control the numbers of parameters representing T . Usually,
when working with linear models, restricting the complex-
ity is done by constraining the rank of the matrix W . Un-
fortunately, it is much more complicated when it comes to
bilinear models, since it requires notions of multi-linear al-
gebra. While a lot of work has been done in extending the
notion of complexity to higher-order tensors (Harshman et
al. 2001), (Carroll and Chang 1970), (Tucker 1966), it is not
clear whether the simple extension of rank should be used
to constrain a bilinear model.

In this paper, we tackle the general problem of learn-
ing end-to-end bilinear models. We propose BLOCK, a
Block Superdiagonal Fusion framework for multimodal rep-
resentation based on the block-term tensor decomposition
(De Lathauwer 2008). As it has been studied in the signal
processing literature (Cichocki et al. 2015), the focus was
on having uniqueness properties to ensure a physically inter-
pretable decomposition. We study here this decomposition
under a machine learning perspective instead, and use it as
a fully learnable tensor of parameters. Interestingly, this de-
composition leverages the notion of block-term ranks to de-
fine a tensor’s complexity. It encapsulates both concepts of
rank and mode ranks, at the basis of Candecomp/PARAFAC
(Harshman et al. 2001) and Tucker decomposition (Tucker
1966). This complexity analysis is capitalized on to provides
a new way to control the tradeoff between the expressive-
ness and complexity of the fusion model. More precisely,
BLOCK enables to model very rich (i.e. full bilinear) inter-
actions between groups of features, while the block structure
limits the whole complexity of the model, which enables to
keep expressive (i.e. high dimensional) mono-moodal repre-
sentations.

The BLOCK model is used for solving two challenging
applications: Visual Question Answering (VQA) and Visual
Relationship Detection (VRD). For both tasks, the number
of blocks and the size of each projection in the BLOCK
fusion will be adapted to balance between fine interaction
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modeling and low number of parameters. We embed our bi-
linear BLOCK fusion strategy into deep learning architec-
tures ; through extensive experiments, we validate the rele-
vance of the approach as we provide an extensive and sys-
temic comparison of many state-of-the-art multimodal fu-
sion techniques. Moreover, we obtain very competitive re-
sults on three commonly used datasets: VQA 2.0 (Goyal
et al. 2017), TDIUC (Kafle and Kanan 2017) and the VRD
dataset (Lu et al. 2016).

2 BLOCK fusion model

In this section, we present our BLOCK fusion strategy and
discuss its connection to other bilinear fusion methods from
the literature.

A bilinear model takes as input two vectors x1 ∈ R
I and

x2 ∈ R
J , and projects them to a K-dimensional space with

tensor products:

y = T ×1 x
1 ×2 x

2 (1)

where y ∈ R
K . Each component of y is a quadratic form of

the inputs: ∀k ∈ [1,K],

yk =

I
∑

i=1

J
∑

j=1

T ijk.x
1
i .x

2
j (2)

A bilinear model is completely defined by its associated ten-
sor T ∈ R

I×J×K , the same way as a linear model is defined
by its associated matrix.

2.1 BLOCK model

In order to reduce the number of parameters and constrain
the model’s complexity, we express T using the block-term
decomposition. More precisely, the decomposition of T in
rank (L,M,N) terms is defined as:

T :=
R
∑

r=1

Dr ×1 Ar ×2 Br ×3 Cr (3)

where ∀r ∈ [1, R], Dr ∈ R
L×M×N , Ar ∈ R

I×L,Br ∈
R

J×M and Cr ∈ R
K×N . This decomposition is called

block-term because it can be written as

T = D
bd ×1 A×2 B ×3 C (4)

where A = [A1, ...,AR] (same for B and C), and

D
bd ∈ R

LR×MR×NR the block-superdiagonal tensor of
{Dr}1≤r≤R, as illustrated in Figure 1. Applying this struc-
tural constraint to T in Eq. (1), we can express y with re-
spect to x1 and x2. Let x̂1 = Ax1 ∈ R

LR and x̂2 =
Bx2 ∈ R

MR. These two projections are merged with a fu-

sion parametrized by the block-superdiagonal tensor D
bd.

Each block in this tensor merges together chunks of size L
from x̂1 and of size M from x̂2 to produce a vector of size
N :

zr = Dr ×1 x̂
1
rL:(r+1)L ×2 x̂

2
rM :(r+1)M (5)

where x̂i:j is a vector of dimension j− i containing the cor-
responding values in x̂. Finally, all the zr vectors are con-
catenated to produce z ∈ R

NR. The final prediction vector
is y = Cz ∈ R

K .

Figure 1: BLOCK framework. The third-order interaction
tensor is decomposed in R rank-(L,M,N) terms. We give
here the two equivalent representations of the block-term de-
composition, presented in this paper. On the left, we show
the formulation with the block-superdiagonal tensor decom-
position that corresponds to Eq. (4). On the right, we express
it as a sum of small decompositions, as written in Eq. (3).
Through the R number of blocks and the dimensions of the
A,B and C projections, we can handle the trade-off be-
tween model complexity and expressivity.

To further reduce the number of parameters in the model,
we add a constraint on the rank of each third order slices
matrices of the blocks Dr, as it was done in some recent
VQA applications (see Section 3).

Discussion When working with a linear model, a usual
technique to restrict the hypothesis space and number of pa-
rameters is to constrain the rank of its associated matrix.
The formal notion of matrix rank quantifies how complex
a linear model is allowed to be. However, when it comes to
restricting the complexity of a bilinear model, multiple alge-
braic concepts can be used. We give two examples that are
related to the block-term decomposition.

The Candecomp/PARAFAC (CP) decomposition (Carroll
and Chang 1970), (Harshman et al. 2001) of a tensor T ∈
R

I×J×K is the linear combination of rank-1 terms

T :=

R
∑

r=1

ar ◦ br ◦ cr (6)

where ◦ denotes the outer product, and the vectors ar ∈
R

I , br ∈ R
J and cr ∈ R

K represent the elements of the
decomposition. The rank of T is defined by the minimal
number R of triplet vectors so that the Eq. (6) is true. Thus,
restricting the hypothesis space for T to the set of tensors
defined by Eq. (6) guarantees that the rank is upper-bounded
by R.

Applying this constraint on T , Eq. (1) is simplified into

y = C
((

x1⊤A
)

∗
(

x2⊤B
))

(7)

where A = [a1, ...,aR] ∈ R
I×R, B = [b1, ..., bR] ∈

R
J×R and C = [c1, ..., cR] ∈ R

K×R, and ∗ denotes
element-wise product. This decompositioncan be seen as a
special case of the block-term decomposition where L =
M = N = 1, reducing D

bd to a super-diagonal identity
tensor.

Another way to restrict a three-way tensor’s complexity
is through its mode ranks. The rank-(L,M,N) Tucker decom-
position (Tucker 1966) of T ∈ R

I×J×K is defined as

T := D ×1 A×2 B ×3 C (8)
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where D ∈ R
L×M×N , A ∈ R

I×L, B ∈ R
J×M

and C ∈ R
K×N . This decomposition assumes a con-

straint on the three unfolding matrices of T , such that
Rank (T JK×I) = L, Rank (T KI×J) = M and
Rank (T IJ×K) = N (following the notations in (De Lath-
auwer 2008)).

Applying this constraint to T , Eq. (1) can be re-written
as:

y = C
(

D ×1

(

x1⊤A
)

×2

(

x2⊤B
))

(9)

This decomposition can be seen as a special case of the
block-term decomposition where there is only R = 1 block
in the core tensor.

As was studied by (De Lathauwer 2008), the notion of
tensor complexity should be expressed not only in terms of
rank or mode ranks, but using the number of blocks and the
mode-n ranks of each block. It appears that CP and Tucker
decompositions are two extreme cases, where only one of
the two quantities is used. For the CP, the number of blocks
corresponds to the rank, but each block is of size (1,1,1).
The monomodal projections can be high-dimensional and
thus integrate rich transformation of the input, but the inter-
actions between both projections is relatively poor as a di-
mension from one space is only allowed to interact with an-
other. For the Tucker decomposition, there is only one block
of size (L,M,N). The interaction modeling is very rich since
all inter-correlations between feature dimensions of the dif-
ferent modalities are considered. However, this quantity of
possible interactions limits the dimensions of the projected
space, which can cause a bottleneck in the model.

BLOCK being built on the block-term decomposition, we
constrain the tensor using a combination of both concepts,
which provides a richer modeling of the interactions be-
tween modalities. This richness is ensured by the R tensors
Dr, each parametrizing a bilinear function that takes as in-
puts chunks of x̃1 and x̃2. As this interaction modelling is
done by chunks and not for every possible combination of
components in x̃1 and x̃2, we can reach high dimensions in
the projections A and B without exploding the number of

parameters in D
bd. This property of having a fine interac-

tion modeling between high dimensional projections is very
desirable in our context where we need to model complex in-
teractions between high-level semantic spaces. As we show
in the experiments, performance of a bilinear model strongly
depends on both the number and the size of the blocks Dr

that parametrize the system.

3 BLOCK fusion for VQA task

The task of Visual Question Answering (Antol et al. 2015),
(Goyal et al. 2017) has been a fertile playground for re-
searchers to investigate on how bilinear models should be
used. In the classical setup for VQA, shown in Figure 2,
image and question have to be merged with a multimodal
fusion technique, which can be implemented as an instance
of bilinear model. The answer is predicted through a clas-
sification layer that follows the fusion module. In MCB
(Fukui et al. 2016), the bilinear interaction is simplified us-
ing a sketching technique. However, more recent techniques
tackle this complexity issue from a tensor decompositions

standpoint: MLB (Kim et al. 2017) and MUTAN (Ben-
Younes et al. 2017) constrain the tensor of parameters us-
ing respectively the CP and Tucker decomposition. In MFB
(Yu et al. 2017b), the tensor is viewed as a stack of matrices,
and a classical matrix rank constraint is imposed on each
of them. Finally in MFH (Yu et al. 2018), multiple MFB
blocks are cascaded to model higher-order interactions be-
tween inputs. Most recent techniques embed some of these
fusion strategies into more elaborated architecture that in-
volve multiple types of visual features (Jiang et al. 2018), or
specific modules (Zhang, Hare, and Prügel-Bennett 2018)
designed for precise question types. In this section, we com-
pare BLOCK to the other multimodal fusion techniques, and
show how it surpasses them both in terms of performance
and number of parameters.

3.1 VQA architecture

Our VQA model is based on a classical attentional architec-
ture (Fukui et al. 2016), enriched by our proposed merging
scheme. Our fusion model is shown in Figure 2. We use the
Bottom-up image features provided by (Teney et al. 2018),
consisting of a set of detected objects and their representa-
tion (see (Mordan et al. 2017; Durand et al. 2017) for fur-
ther insights on detection and localization). To get a vec-
tor embedding of the question, words are preprocessed and
then fed into a pretrained Skip-thought encoder (Kiros et al.
2015). The outputs of this language model are used to pro-
duce a single vector representing the whole question, as in
(Yu et al. 2018). We use a BLOCK fusion to merge the ques-
tion and image representations. The question vector is used
as a context to guide the visual attention. Saliency scores are
produced using a BLOCK fusion between each image vector
and the question embedding.

Details: For the BLOCK layers, we set L = M = N =
80, R = 20 and constrain the rank of each mode-3 slices
of each block to be less than 10. We found these hyperpa-
rameters with a a cross-validation on the val set. As in (Yu
et al. 2018), we consider the 3000 most frequent answers.
As in (Ben-Younes et al. 2017), we use a cross-entropy loss
with answer sampling. We jointly optimize the parameters
of our VQA model using Adam (Kingma and Ba 2015) with
a learning rate of 1e−4, without learning rate decay or gra-
dient clipping, and with a batch size of 200. We early stop
the training of our models according to their accuracy on a
holdout set.

3.2 Fusion analysis

In Table 1, we compare BLOCK to 8 different fusion
schemes available in the literature on the commonly used
VQA 2.0 Dataset (Goyal et al. 2017). This dataset is com-
posed of 658,111 image-question-answers triplets for train-
ing and validation (trainval set), and 447,793 triplets for
evaluation (test-std set). We train on trainval minus a small
subset used for early-stopping, and report the performance
on test-dev set. For each fusion strategy, we run a grid search
over its hyperparameters and keep the model that performs
best on our validation set. We report the size of the model,
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Figure 2: Architecture for VQA that embeds the BLOCK
bilinear fusion. To make this system more efficient, we inte-
grate the fusion in an attentional framework.

corresponding to the number of parameters between the at-
tended image features, the question embedding, and the an-
swer prediction. We briefly describe the different fusion
schemes used for the comparison:

– (1) the two vectors are projected on a common space,
and their summation is projected to predict the answer;

– (2) the vectors are concatenated and passed at the input
of a 3-layer MLP;

– (3) a bilinear interaction based on a count-sketching
technique that projects the outer product of between inputs
on a multimodal space;

– (4) a bilinear interaction where the tensor is expressed
as a Tucker decomposition;

– (5) a bilinear interaction where the tensor is expressed
as a CP decomposition;

– (6) a bilinear interaction where each 3rd mode slice ma-
trix of the tensor is constrained by its rank;

– (7) a bilinear interaction where the tensor is expressed
as a Tucker decomposition, and where its core tensor has the
same rank constraint as (6);

– (8) a higher order fusion composed of cascaded (6);

– (9) our BLOCK fusion.

From the results in Table 1, we see that the simple sum
fusion (1) provides a very low baseline. We also note that
the MLP (2) doesn’t provide the best results, despite its
non-linear structure. As the MLP should be able to find
that two different modalities are used and that it needs to
look for interactions between them, this is in practice dif-
ficult to obtain. Instead, top performing methods are based
on a bilinear model. The structure imposed on the param-
eters highly influences the final performance. We can see
that (3), which simplifies the bilinear model using random
projections, has efficiency issues due to the count-sketching
technique. These issues are alleviated in the other bilinear
methods, which use the tensor decomposition framework to
practically implement the interaction. Our BLOCK method
(9) gives the best results. As we saw, the block-term decom-
position generalizes both CP and Tucker decompositions,
which is why it is not surprising to see it surpass them. More-
over, the fact that it integrates the 3rd order slices rank con-

straint gives it the advantages of (6) and (7). Interestingly,
it even surpasses (8) which is based on a higher-order in-
teraction modeling, while using 30M less parameters. This
strongly indicates that controlling a bilinear model through
its block-term ranks provides an efficient trade-off between
modeling capacities and number of parameters. To further
validate this hypothesis, we evaluate a BLOCK fusion with
only 3M parameters. This model obtained 64.91%. Unsur-
prisingly, it does not surpasses all the methods against which
we compare. However, it obtains competitive results, im-
proving over 5 out of 8 methods that all use far more pa-
rameters.

3.3 Comparison to leading VQA methods

We compare our model with state-of-the-art VQA archi-
tecture on two datasets: the widely used VQA 2.0 Dataset
(Goyal et al. 2017) and TDIUC (Kafle and Kanan 2017). On
this more recent dataset, evaluation metrics are provided to
assess the robustness of the model with respect to answer im-
balance, as well as to account for performance homogeneity
across the difference question types.

As we show in Table 2, our model is able to outperform
the preceding ones on TDIUC by a large margin for every
metrics, especially those which account for bias in the data.
We notably report a gain of +1.7 in accuracy, +3.95 in A-
MPT, +5.05 in H-MPT, +16.12 in A-NMPT, +15.45 in H-
NMPT, over the best scoring model in each metric. The high
results in the harmonic metrics (H-MPT and H-NMPT) sug-
gest that BLOCK performs well across all question types,
while the high scores in the normalized metrics (A-NMPT
and H-NMPT) denote that our model is robust to answer
imbalance type of bias in the dataset.

In Table 3, we see that our fusion model obtains com-
petitive results on VQA 2.0 compared to previously pub-
lished methods. As we are outperformed by (Zhang, Hare,
and Prügel-Bennett 2018), whose proposition rely on a com-
pletely different architecture, we believe that both our con-
tributions are orthogonal. Still, our model performs better
than (Teney et al. 2018) and (Yu et al. 2018), with whom
we share the global VQA architecture. In further details, we
point out that BLOCK surpasses (Yu et al. 2018) reaching a
+1.78 improvement in the overall accuracy on test-dev, even
though the latter encompasses the current state-of-the-art fu-
sion scheme. Furthermore, we use the same image features
than (Teney et al. 2018) and are able to achieve a +2.26 gain
on test-dev and +2.25 on test-std.

4 VRD task

The task of Visual Relationship Detection aims at predicting
triplets of the type ”subject-predicate-object” where subject
and object are localized objects, and predicate is a label cor-
responding to the relationship that links them (for example:
”man-riding-bicycle”, ”woman-holding-phone”). To predict
this relationship, multiple types of information are available,
for both the subject and object regions: classes, bounding
box coordinates, visual features, etc. However, this context
being more recent than VQA, fusion techniques are less for-
malized and more ad-hoc. In (Hanwang Zhang 2017), the
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Table 1: Comparison of the fusion schemes on VQA2 test-dev set. |Θ| is the number of parameters learned in the fusion
modeling. All is the overall Open Ended accuracy (higher is better). Yes/no, Numbers and Others are subsets that correspond to
answers types. In the descriptions, the letter B corresponds to a bilinear model.

Description Reference |Θ| All Yes/no Number Other

(1) Linear Sum 8M 58.48 71.89 36.56 52.09
(2) Non-linear Concat MLP 13M 63.85 81.34 43.75 53.48
(3) B + count-sketching MCB (Fukui et al. 2016) 32M 61.23 79.73 39.13 50.45
(4) B + Tucker decomp. Tucker (Ben-Younes et al. 2017) 14M 64.21 81.81 42.28 54.17
(5) B + CP decomp. MLB (Kim et al. 2017) 16M 64.88 81.34 43.75 53.48
(6) B + low-rank on the 3rd mode slices MFB (Yu et al. 2017a) 24M 65.56 82.35 41.54 56.74
(7) Combination of (4) and (6) MUTAN (Ben-Younes et al. 2017) 14M 65.19 82.22 42.1 55.94
(8) Higher order fusion MFH (Yu et al. 2018) 48M 65.72 82.82 40.39 56.94

(9) B + Block-term decomposition BLOCK 18M 66.41 82.86 44.76 57.3

Table 2: State-of-the-art comparison on the TDIUC testing set. * scores reported from (Kafle and Kanan 2017).

Model Accuracy A-MPT H-MPT A-NMPT H-NMPT

Most common answer (Kafle and Kanan 2017) 51.15 31.11 17.53 15.63 0.83
Question only (Kafle and Kanan 2017) 62.74 39.31 25.93 21.46 8.42

NMN* (Andreas et al. 2016) 79.56 62.59 51.87 34.00 16.67
MCB* (Fukui et al. 2016) 81.86 67.90 60.47 42.24 27.28

RAU* (Noh and Han 2016) 84.26 67.81 59.00 41.04 23.99

BLOCK 85.96 71.84 65.52 58.36 39.44

relation is predicted by a substractive fusion between sub-
ject and object representations, each consisting in a linear
function of relative coordinates, class distributions and vi-
sual features. (Li et al. 2017) predicts the relationship by a
complex message passing structure between subject and ob-
ject representations, and (Dai, Zhang, and Lin 2017) uses
a formulation inspired from Conditional Random Fields to
perform joint recognition between the subject, object and
predicate classes. We adopt in the following a very simple
architecture, to put emphasis on the fusion module between
different information sources.

4.1 VRD Architecture

Our VRD architecture is shown in Figure 3. It takes as inputs
a subject and an object bounding box. Each of them is rep-
resented as their 4-dimensional box spatial coordinates xs

s

and xs
o (normalized between 0 and 1), their object classes

xc
s and xc

o, and their semantic visual features xf
s and xf

o . To
predict the relationship predicate, we use one fusion module
for each type of features following Eq. (10).

x = [fs (xs
s,x

s
o) , f

c (xc
s,x

c
o) , f

f
(

xf
s ,x

f
o

)

] (10)

where f can be implemented as BLOCK, or any other mul-
timodal fusion. Each fusion module outputs a vector of
dimension d, all concatenated into a 3d-dimensional vec-
tor that will serve as an input to a linear layer predictor
y = Wx. The system is trained with back-propagation on
a binary-crossentropy loss.

An other important component is the object detector. As
usually done, we first train a Faster-RCNN on the object
boxes of the VRD dataset. For Predicate prediction, we use

Figure 3: Architecture of our visual relationship detection
system

it as a features extractor given the ground truth bounding
boxes. For Phrase detection and Relationship detection, we
use it to extract the bounding boxes with their associated
features.

For a system to perform well on Phrase and Relationship
detection, it should have been also trained on pairs of (sub-
ject, object) boxes that are not linked together by any rela-
tionship. During training, we randomly sample half of all
possible negative pairs, and assign them an all-zeros label
vectors.

4.2 Dataset

The VRD dataset (Lu et al. 2016) is composed of 5,000 im-
ages with 100 object categories and 70 predicates. It con-
tains 37,993 relationships with 6,672 unique triplets and an
average of 24.25 predicates per object category. The dataset
is divided between 4,000 images for training and 1,000 for
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Table 3: State-of-the-art results on VQA2 testing sets. The models were trained on the union of VQA 2.0 trainval split and
VisualGenome (Krishna et al. 2017) train split. All is the overall OpenEnded accuracy (higher is better). Yes/no, Numbers and
Others are subsets that correspond to answers types. Only single model scores are reported. * scores reported from (Goyal et
al. 2017)

Model

VQA2 Test-dev VQA2 Test-std

All Yes/no Num. Other All Yes/no Num. Other

Most common answer (Goyal et al. 2017) - - - - 25.98 61.20 0.36 1.17
Question only (Goyal et al. 2017) - - - - 44.26 67.01 31.55 27.37

Deep LSTM* (Lu et al. 2015) - - - - 54.22 73.46 35.18 41.83
MCB* (Fukui et al. 2016) - - - - 62.27 78.82 38.28 53.36

ReasonNet (Ilievski and Feng 2017) - - - - 64.61 78.86 41.98 57.39
TipsAndTricks (Teney et al. 2018) 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26

MFH (Yu et al. 2018) 65.80 - - - - - - -
Counter (Zhang, Hare, and Prügel-Bennett 2018) 68.09 83.14 51.62 58.97 68.41 83.56 51.39 59.11

BLOCK 67.58 83.6 47.33 58.51 67.92 83.98 46.77 58.79

testing. Three different settings are commonly used to eval-
uate a model on VRD: (1) Predicate prediction: the coor-
dinates and class labels are given for both subject and ob-
ject regions. This setup allows to assess the model’s ability
to predict a relationship, regardless of the object detection
stage. (2) Phrase detection: a predicted triplet <subject,
predicate, object> matches a ground-truth if the three la-
bels match and if the union region of its bounding boxes
matches the union region of the ground-truth triplet, with
IoU above 0.5. (3) Relationship detection: more challeng-
ing than (2), this one requires that both subject and object
intersect with an IoU higher than 0.5. For each of these set-
tings, performance is usually measured with Recall@50 and
Recall@100

4.3 Fusion analysis

To show the effectiveness of the BLOCK bilinear fusion,
we run the same type of experiment we did in the previ-
ous section. For each fusion technique, we use the architec-
ture described in Equation 10 where we replace f by the
corresponding bilinear function. As we did for VQA, we
cross-validate the hyperparameters of each fusion technique
and keep the best model each time. In Table 4, we see that
BLOCK still outperforms all previous methods on each of
the three tasks. We can remark that for this task, the non
linear MLP perform relatively well compared to the other
methods. It is likely that an MLP can model the interactions
at stake for VRD more easily than those for VQA. However,
we can improve over this strong baseline using a BLOCK
fusion.

In the next experiments, we validate the power of our
BLOCK fusion, and analyze how it behaves under different
setups. We randomly split the training set into three train/val
sets, and plot the mean and standard deviation of the re-
call@50 calculated over them. In Figure 4a, we fix the di-
mension of the block-superdiagonal tensor to RL = RM =
RN = 500 and vary the number of blocks used to fill this
tensor. When R = 1, which corresponds to the Tucker de-
composition, the number of parameters in the core tensor
is equal to 5003 = 125M , making the system arduously

(a) (b)

Figure 4: Performance of BLOCK with respect to the struc-
ture of the block-superdiagonal tensor. Scores are given on
a holdout validation set. 4a: The size of the core tensor is
fixed to RL = RM = RN = 500. 4b: The total number of
parameters in the block-diagonal tensor is fixed to 555K.

trainable on our dataset. On the opposite, when R = 500,
the number of parameters is controlled, but the mono-modal
projections are only allowed to interact through an element-
wise multiplication, which makes the interaction model-
ing relatively poor. The block-term decomposition provides
an in-between working regime, reaching an optimum when
R ≈ 20.

In Figure 4b, we keep the number of parameters fixed.
As the number of chunks increases, the dimensions of the
mono-modal projections also increases. Once again, an op-
timum is reached when R ≈ 20. These results confirm our
hypothesis that the way the parameters are distributed within
the tensor, in terms of size and number of blocks, has a real
impact on the system’s performance.

4.4 Comparison to leading VRD methods

In Table 5, we compare our system to the state-of-the-art
methods on VRD. On predicate prediction, our fusion out-
performs all previous methods on R@50, including (Yu et
al. 2017a) that uses external data. On R@100, the BLOCK
fusion is only marginally outperformed by (Yu et al. 2017a),
but we perform better than all methods that don’t use ex-
tra data. These results validate the efficiency of the block-
term decomposition to predict a predicate by fusing infor-
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Table 4: Comparative study of the different multimodal fusion strategies on the VRD test-set. The reported metrics are the
Recall@K in %.

Description |Θ|
Predicate Phrase Relationship
Prediction Detection Detection

R@50 R@100 R@50 R@100 R@50 R@100

(1) Linear 2.5M 82.99 89.68 14.44 16.94 9.73 11.34
(2) Non-linear 2M 84.47 91.6 21.9 24.69 15.79 17.83
(3) B + count-sketching 2M 82.23 89.07 13.42 15.8 9.17 10.79
(4) B + Tucker decomp. 3M 83.25 89.77 11.23 14.09 7.37 9.00
(5) B + CP decomp. 4M 85.96 91.66 23.67 26.50 16.41 18.59
(6) B + low-rank on the 3rd mode slices 15M 85.21 91.06 25.31 28.03 17.83 19.77
(7) Combination of (4) and (6) 30M 85.65 91.33 25.77 28.65 18.53 20.38
(8) Higher order fusion 16M 85.58 91.3 26.09 28.73 18.81 20.63

(9) Block-term decomposition 5M 86.58 92.58 26.32 28.96 19.06 20.96

Table 5: State-of-the-art results on the VRD testing set. The reported metrics are the Recall@K in %.

Model
External

data

Predicate Phrase Relationship
Prediction Detection Detection

R@50 R@100 R@50 R@100 R@50 R@100

Yu et. al (Yu et al. 2017a) ✓ 85.64 94.65 26.32 29.43 22.68 31.89

Li et. al (Li et al. 2017) ✗ - - 22.78 27.91 17.32 20.01
Liang et. al (Liang, Lee, and Xing 2017) ✗ - - 21.37 22.60 18.19 20.79

Zhang et. al (Hanwang Zhang 2017) ✗ 44.76 44.76 19.42 22.42 14.07 15.20
Lu et. al (Lu et al. 2016) ✗ 47.87 47.87 16.17 17.03 13.86 14.70

Peyre et. al (Peyre et al. 2017) ✗ 52.6 52.6 17.9 19.5 15.8 17.1
Dai et. al (Dai, Zhang, and Lin 2017) ✗ 80.78 81.90 19.93 23.45 17.73 20.88

BLOCK ✗ 86.58 92.58 26.32 28.96 19.06 20.96

mation coming from ground truth subject and object boxes.
On phrase detection, our BLOCK fusion achieves better re-
sults than all previous models in R@50. Notably, the scores
obtained for phrase detection are lower than for predicate
prediction, since the ground truth regions are not provided
in this setup. Finally, on relationship detection, BLOCK sur-
passes all previous methods without extra data in R@50, and
gives similar performance than (Dai, Zhang, and Lin 2017)
in R@100. The scores for relationship detection are lower
than for phrase detection: in this setup, a prediction is posi-
tive if both subject and object boxes match the ground truth.
On contrary, in phrase detection, the comparison between
prediction and ground truth is done on the union between
subject and object regions. Lastly, unlike some of the meth-
ods reported in Table 5, we do not fine-tune or adapt the
detection network to the visual relationship tasks.

5 Conclusion
In this work, we introduce BLOCK, a bilinear fusion model
whose tensor of parameters is structured using the block-
term decomposition. BLOCK aims at optimizing the trade-
off between complexity and modeling capacities, and com-
bines the strengths of the CP and Tucker decompositions.
It offers the possibility to model rich interactions between

groups of features, while still using high-dimensional mono-
modal representations.

We apply BLOCK for two challenging computer vision
tasks: VQA and VRD, where the parameters of our BLOCK
fusion model are learned. Comparative experiments show
that BLOCK improves over previous fusion schemes includ-
ing linear, bilinear and non-linear models. We also show that
BLOCK is able to maintain competitive performances with
very compact parametrization.

In future works, we plan to extend the BLOCK idea to
other applications. In particular, we want to explore the
use of multiple input and output modalities, and to apply
BLOCK for interpreting and explaining the behaviour of
the multimodal deep fusion model (Engilberge et al. 2018;
Carvalho et al. 2018).

Acknowledgements This work has been supported within
the Labex SMART supported by French state funds man-
aged by the ANR within the Investissements d’Avenir pro-
gramme under reference ANR-11-LABX-65.

8108



References

Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016.
Neural module networks. In CVPR.

Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zit-
nick, C. L.; and Parikh, D. 2015. VQA: Visual Question
Answering. In ICCV.

Ben-Younes, H.; Cadène, R.; Thome, N.; and Cord, M.
2017. Mutan: Multimodal tucker fusion for visual question
answering. ICCV.

Carroll, J. D., and Chang, J.-J. 1970. Analysis of individual
differences in multidimensional scaling via an n-way gener-
alization of “eckart-young” decomposition. Psychometrika.

Carvalho, M.; Cadène, R.; Picard, D.; Soulier, L.; Thome,
N.; and Cord, M. 2018. Cross-modal retrieval in the cook-
ing context: Learning semantic text-image embeddings. In
SIGIR.

Cichocki, A.; Mandic, D. P.; Phan, A. H.; Caiafa, C. F.;
Zhou, G.; Zhao, Q.; and Lathauwer, L. D. 2015. Tensor de-
compositions for signal processing applications: From two-
way to multiway component analysis. IEEE Signal Process-
ing Magazine.

Dai, B.; Zhang, Y.; and Lin, D. 2017. Detecting visual rela-
tionships with deep relational networks. In CVPR.

De Lathauwer, L. 2008. Decompositions of a higher-order
tensor in block terms — part ii: Definitions and uniqueness.
SIAM J. Matrix Anal. Appl. 30(3):1033–1066.

Duong, C. T.; Lebret, R.; and Aberer, K. 2017. Multimodal
classification for analysing social media. ECML-PKDD.

Durand, T.; Mordan, T.; Thome, N.; and Cord, M. 2017.
WILDCAT: weakly supervised learning of deep convnets for
image classification, pointwise localization and segmenta-
tion. In CVPR.

Engilberge, M.; Chevallier, L.; Pérez, P.; and Cord, M. 2018.
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