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Abstract—A length n group code over a groupG is a subgroup ofGn

under component-wise group operation. Two-level group codes over the
class of generalized quaternion groups,Q2 ; m � 3, are constructed
using a binary code and a code overZ

2
, the ring of integers modulo

2
m�1, as component codes and a mappingf from Z2�Z2 to Q2 .

A set of necessary and sufficient conditions on the component codes is
derived which will give group codes overQ2 . Given the generator
matrices of the component codes, the computational effort involved in
checking the necessary and sufficient conditions is discussed. Starting
from a four-dimensional signal set matched toQ2 , it is shown that
the Euclidean space codes obtained from the group codes overQ2

have Euclidean distance profiles which are independent of the coset
representative selection involved inf . A closed-form expression for the
minimum Euclidean distance of the resulting group codes overQ2 is
obtained in terms of the Euclidean distances of the component codes.
Finally, it is shown that all four-dimensional signal sets matched toQ2

have the same Euclidean distance profile and hence the Euclidean space
codes corresponding to each signal set for a given group code overQ2

are automorphic Euclidean-distance equivalent.

Index Terms—Coded modulation, group codes, multilevel construction.

I. INTRODUCTION

The concept of geometrically uniform codes introduced by Forney
[1] generalizes Slepian’s signal sets [2] and several other known
classes of good codes like Ungerboeck’s trellis codes, coset codes,
and lattice codes [3], [4]. An important ingredient in the recipe given
in [1] for construction of geometrically uniform codes is a group
code over a groupG. A group code over a groupG is a subgroup,
under component-wise operation ofGI , where I is an index set,
finite or infinite. The caseI being infinite corresponds to trellis-coded
modulation andI being finite corresponds to block-coded modulation.
This correspondence deals with block-coded modulation using group
codes over generalized quaternion groups which are non-Abelian. The
generalized quaternion group with2m elements,m � 3, denoted by
Q2 , is given by the presentation [5]

Q2 = hx; yjx2 = 1; x2 = y
2
; y
�1
xy = x

�1i:
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Note that m = 3 gives the familiar quaternion group of eight
elements.

A signal set is a finite set of points in an Euclidean space of finite
dimension. A signal setS in IRN is said to be matched to a group
G if there exists a mapping� from G onto S such that for allg
and g0 in G

dE(�(g); �(g
0)) = dE(�(g

�1
g
0); �(e))

wheredE(a; b) denotes the Euclidean distance betweena, b, ande is
the identity element ofG [6]. For coded communication systems, the
capacity of the signal set [7] is a more relevant performance index of a
signal set as compared to the average probability of error of the signal
set. It has been shown that the capacity of the signal sets matched
to Abelian groups are upper-bounded by the so-called phase-shift
keying (PSK) limit [6]. Signal sets matched to non-Abelian groups
that exceed PSK limit exist [6], [8]. This motivates the study of signal
sets matched to non-Abelian groups and group codes over them.

Imai and Hirakawa [9] introduced the notion of multilevel con-
struction of codes by combining conventional error-correcting codes,
called component codes. Fig. 1 shows a two-level construction of
codes overQ2 with a binary code and a code overZ

2
as com-

ponent codes. Several authors have studied multilevel construction for
group codes [10], [13]. Ginzburg [14] has generalized the approach
of Imai and Hirakawa. One of the important aspects in multilevel
construction is the conditions on the component codes that lead to the
resulting code being a group code over a group. In [11] this problem
has been addressed to obtain linear codes over cyclic groups. Garello
and Benedetto [13] give conditions for the multilevel constructed
code to be a group code over a semidirect product group. We obtain
necessary and sufficient conditions on the component codes that lead
to a group code overQ2 . Note thatQ2 cannot be obtained as a
semidirect product of its subgroups.

Block-coded modulation schemes have been studied primarily
for PSK signal sets by several authors [15]–[17]. In [18] a four-
dimensional signal set with eight points has been indexed with the
elements of the Quaternion group of eight elements without any
mention of matching between the signal set and the group. We
describe signal sets in four dimensions matched toQ2 for any
m and for m = 3 this coincides with the one given in [18].
The two-level group codes overQ2 are used to obtain Euclidean
space codes with this four-dimensional signal set as the basic signal
set. Multilevel construction is closely related to the notion of set
partitioning process [14], [17], [19] and for group partitioning the
performance of the resulting signal space code depends on the
selection of coset representative [15]. We show that, in our case,
the performance is independent of the coset representative. Also, we
give the minimum Euclidean distance of the multilevel group codes
in terms of the minimum distance of the component codes.

The four-dimensional signal sets used can be obtained as Slepian
signal sets by the action of orthogonal matrix groups, which are
faithful irreducible representations ofQ2 , on an initial vector. We
show that the initial vector problem does not arise in the case ofQ2 .

This correspondence has been organized as follows: Section II
describes the four-dimensional signal set matched toQ2 . The
necessary and sufficient conditions on the generator matrices of the
component codes to result in a multilevel group code overQ2 is
derived in Section III. The relation between the minimum Euclidean
distance of the multilevel group code and the minimum Euclidean
distances of the component codes is discussed in Section IV. Section

0018–9448/99$10.00 1999 IEEE



366 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

Fig. 1. Two-level construction of group codes overQ2 .

Fig. 2. A signal set matched toQ2 .

V discusses the initial vector problem and the automorphic Euclidean
distance equivalence [20] of the Euclidean space codes obtained
from the group codes overQ2 . Some general remarks and possible
directions for further work are given in Section VI.

II. SIGNAL SETSMATCHED TO THEGENERALIZED QUATERNION GROUP

In this section we describe four-dimensional signal sets matched
to Q2 for all m � 3 and demonstrate that these signal sets can be
obtained as Slepian signal sets. In Section V, these signal sets will
be viewed as Slepian signal sets and the initial vector problem will
be discussed.

Fig. 2 shows a signal setS in IR4 matched toQ2 , where

S = (cos k�; sin k�; 0; 0); (0; 0; cos k�; � sin k�);

0 � k � 2m�1 � 1; � =
2�

2m�1
: (1)

The mapping�: Q2 �! S is given by

�(xk) = (cos k�; sin k�; 0; 0)

�(yxk) = (0; 0; cos k�; � sin k�); 0 � k � 2m�1 � 1:

It is a straightforward calculation to check thatS is matched toQ2 .
The mapping� naturally extends to�n: Qn2 �! Sn component-

wise. This associates to every lengthn code overQ2 a signal set
in 4n dimensions.

The Euclidean weight of an elementyjxk in Q2 , is defined as

wE(y
jxk) =

j exp(2�ki=2m�1)� 1j2; if j = 0
2; if j = 1.

The Euclidean weight of ann-tuple inQn2 is then the sum of the
Euclidean weight of its components. For a group code overQ2 the

Euclidean distance distribution is the Euclidean weight distribution
of the code [1].

Slepian [2] describes a class of signal sets which he called “group
codes” as a signal set inIRN which is the orbit of a point inIRN

under a finite group of orthogonal transformations ofIRN . Loeliger
[6] has shown that a signal set is matched to a group, if and only if
it is a translate of a Slepian signal set. To be specific, if a Slepian
signal set has its centroid at the origin then it is a signal set matched
to its generating group.

Note that the signal setS defined in (1) can be obtained as the
orbit of the point(1; 0; 0; 0) under the group of orthogonal matrices
of IR4 given by

G =

cos kp � sin kp 0 0
sin kp cos kp 0 0

0 0 cos kp sin kp
0 0 � sin kp cos kp

;

0 0 � cos kp sin kp
0 0 � sin kp � cos kp

cos kp sin kp 0 0
� sin kp cos kp 0 0

;

0 � k � 2m�1 � 1 :

III. M ULTILEVEL CODES OVERQ2

In this section, we characterize two-level group codes overQ2

that are obtained from the component codes overZ2 andZ
2

.
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TABLE I
DEFINITION OF THE MAPPING f

Z2nZ2 0 1 � � � 2
m�2 � � � 2

m�1 � 1

0 1 x � � � x2 � � � x2 �1

1 y yx � � � yx2 � � � yx2 �1

We define a one–one, onto mappingf : Z2 � Z2 �! Q2 as
f(a; b) = yaxb wherea 2 Z2 andb 2 Z2 as shown in Table I.

Let the component codes be a codeC2 of lengthn overZ2 and a
codeC2 of lengthn overZ2 . We construct a set denoted by
C2C2 called an extension ofC2 andC2 given by

C2C2 = fab = (a1b1; a2b2; � � � ; anbn)j

� a = (a1; a2; � � � ; an) 2 C2;

b = (b1; b2; � � � ; bn) 2 C2 g:

That is, an elementab in C2C2 is obtained by component-wise
juxtaposition of an elementa in C2 and an elementb in C2 .
Notice that, for each componentaibi of ab, ai and bi are just two
symbols placed next to each other.

By extending the mappingf to f 0 as shown below, fromC2C2

to Qn

2

f
0: C2C2 �! Q

n

2

ab =(a1b1; a2b2; � � � ; anbn) �!

(f(a1; b1); f(a2; b2); � � � ; f(an; bn)) 2 Q
n

2

we associate a subset ofQn

2 with C2C2 . Let this subset, image
of C2C2 underf 0, be C2 � C2 . In general,C2 � C2

need not be a subgroup ofQn

2 , i.e., it need not be a group code
over Q2 . Fig. 1 describes this construction.

In the following theorem, we characterize the component codesC2

andC2 for which C2 � C2 is a group code overQ2 .

Theorem 1: (A preliminary version of this theorem appears in
[21]). Given a codeC2 over Z2 and a codeC2 over Z2 ,
the setC2 � C2 is a group code overQ2 , if and only if

1) C2 is a group code overZ2;

2) C2 is a group code overZ2 ;

3) 2C2 � (2
m�3C2 �2 C2 ) � C2

where�2 denotes component-wise addition modulo2m�1

and � denotes component-wise integer multiplication.

Proof: (=)) Let

1) C2 be a group code overZ2;

2) C2 be a group code overZ2 ;

3) 2C2 � (2
m�3C2 �2 C2 ) � C2 ,

i.e.,
2a � (2m�3b �2 c) 2 C2

for all codewordsa; b 2 C2 and c 2 C2 .

Let

r1 =(r11; r12; � � � ; r1n)

r2 =(r21; r22; � � � ; r2n) 2 C2

and

s1 =(s11; s12; � � � ; s1n)

s2 =(s21; s22; � � � ; s2n) 2 C2

so that

f
0(r1s1); f

0(r2s2) 2 C2 � C2

.
SinceQn

2 is a finite group, if

f
0(r1s1) ? f

0(r2s2) 2 C2 � C2

for all r1; r2 2 C2 ands1; s2 2 C2 , where? denotes the group
operation ofQn

2 then C2 � C2 is a subgroup ofQn

2 and
hence, a group code overQ2 .

We have

r1 s1 =(r11s11; r12s12; � � � ; r1ns1n)

= (r1is1i)
n

i=1 2 C2C2

r2 s2 =(r21s21; r22s22; � � � ; r2ns2n)

= (r2is2i)
n

i=1 2 C2C2

f
0(r1 s1) = (f(r11; s11); f(r12; s12); � � � ; f(r1n; s1n))2Q

n

2

f
0(r2 s2) = (f(r21; s21); f(r22; s22); � � � ; f(r2n; s2n))2Q

n

2 :

Now, any element inQ2 is of the form

y
a
x
b
; a = 0; 1 b = 0; 1; � � � ; 2m�1 � 1:

Let

y
a
x
b
; y

a
x
b
; a1; a2 = 0; 1; b1; b2 = 0; 1; � � � ; 2m�1 � 1

be any two elements inQ2 . Checking the four different cases of
(a1; a2) separately, one easily obtains the formula

(ya x
b )(ya x

b )

= y
a � a

x
b � b 	 2a (2 a � b )

for all a1; a2 = 0; 1; b1; b2 = 0; 1; � � � ; 2m�1 � 1. Hence (see
equations at the bottom of this page). SinceC2 andC2 are group
codes overZ2 and Z2 , we haves1 �2 s2 2 C2 and
r1 �2 r2 2 C2.

Also, we are given that,

2C2 � (2
m�3

C2 �2 C2 ) � C2

for all codewords inC2 andC2 . In particular,

2r2 � (2
m�3

r1 �2 s1) 2 C2 :

That is,

s1 �2 s2 	2 2r2 � (2
m�3

r1 �2 s1) 2 C2

i.e.,

r1 �2 r2 s1 �2 s2 	2 2r2 � (2m�3r1 �2 s1)

2 C2C2

f
0(r1 s1) ? f

0(r2 s2) = (f(r1i; s1i))
n

i=1(f(r2i; s2i))
n

i=1

= f(r1i �2 r2i; s1i �2 s2i 	2 2r2i(2m�3r1i �2 s1i))
n

i=1

= f
0(r1 �2 r2 s1 �2 s2 	2 2r2 � (2m�3r1 �2 s1))
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i.e.,

f
0(r1 s1) ? f

0(r2 s2) 2 C2 � C2

for all r1; r2 2 C2 and s1; s2 2 C2 which implies that
C2 � C2 is a subgroup ofQn

2 and hence, a group code over
Q2 .
((=) Conversely, given thatC2 � C2 = f 0(C2C2 ) is a

subgroup ofQn
2 . We have

f
0(r1 s1) ? f

0(r2 s2)

= f
0(r1 �2 r2 s1 �2 s2 	2 2r2 � (2m�3r1 �2 s1))

2 C2 � C2

for all r1; r2 2 C2 ands1; s2 2 C2 . That is,r1�2 r2 2 C2 and

s1 �2 s2 	2 2r2 � (2
m�3

r1 �2 s1) 2 C2

for all r1; r2 2 C2 and s1; s2 2 C2 .
We now observe that the identity element ofQn

2 belongs to
C2 � C2 . So,f 0(0 0) belongs toC2 � C2 . Therefore, both
C2 and C2 contain the all-zero vector. Puttingr2 = 0 in the
expression

s1 �2 s2 	2 2r2 � (2
m�3

r1 �2 s1) 2 C2

we get thats1 �2 s2 2 C2 for all s1; s2 2 C2 . We
already know thatr1 �2 r2 2 C2 for all r1; r2 2 C2. ThusC2 is
a subgroup ofZn

2 andC2 is a subgroup ofZn
2

. That is,C2

andC2 are group codes overZ2 andZ2 , respectively.
Now

s1�2 s2	2 2r2 � (2m�3r1�2 s1)	2 s1�2 s2

2C2

i.e.,

�2r2 � (2
m�3

r1 �2 s1) 2 C2

for all r1; r2 2 C2 and s1; s2 2 C2 . That is,

2C2 � (2
m�3

C2 �2 C2 ) � C2 :

Example 1: For m = 3, let C2 = f(00); (11)g, C4 = f(00),
(01), (02), (03), (20), (21), (22), (23)g be length-2 block
codes overZ2 and Z2 , respectively. Then the extension code
C2�C2 = f(1 1), (1x), (1x2), (1x3), (x2 1), (x2 x), (x2 x2),
(x2 x3), (y y), (y yx), (y yx2), (y yx3); (yx2 y), (yx2 yx),
(yx2 yx2), (yx2 yx3)g � Q2

8 is a group code overQ8. Under
the mappingf this code gives an eight-dimensional signal set with
16 codewords with squared Euclidean distances2, 4, 6, and8, with
multiplicities, respectively,4, 6, 4, and1.

A. Selection of Coset Representative

In our definition of f : Z2 � Z2 �! Q2 the elements
f(0; i) = xi; 0 � i � 2m�1 form a subgroup ofQ2 , sayH.
The elementsf(1; i); 0 � i � 2m�1 then form a coset ofH,
namely,yH. In our definition off , we have choseny as the coset
representative, i.e.,

f(1; i) = yf(0; i) = yx
i
; 0 � i � 2m�1

:

Suppose had we chosen any other element ofyH as the coset
representative, would the necessary and sufficient condition for
C2�C2 be still the same as in the above theorem? The answer is
yes. This becomes clear when we note that every element in the coset
yH is of order4. Moreover, ifz is any other element inyH thenz is
of the formyxj for somej and soz�1xz = (yxj)�1x(yxj) = x�1.

Thus x and z generateQ2 and hence, redefining the functionf
in terms of x and z would not alter the necessary and sufficient
conditions.

SupposeC2 �C2 is a group code overQ2 . Is its Euclidean
distance distribution independent of the coset representative we
choose in the definition off? The answer is again yes. This is clear
when we observe that if a codewordc in C2�C2 has a component
from yH, then in that component the squared Euclidean distance from
the identity element ofQ2 is 2. Thus the Euclidean weight of the
codeword is independent of the coset representative we choose in the
definition of f .

B. Computational Complexity

Now, suppose we are given a group codeC2 of length n over
Z2 and a group codeC2 of length n over Z2 . Let their
generator matrices be of orderk� n andk0 � n, respectively. Then,
clearly, jC2j = 2k and jC2 j � 2k . To check ifC2 � C2

is a group code overQ2 , we need to check that the condition
2C2 � (2

m�3C2 �2 C2 ) is true, i.e.,

2a � (2m�3
b�2 c) 2 C2 ; 8a; b 2 C2; c 2 C2 :

If checking2a�(b�2 c) 2 C2 is taken to be a single operation
for a givena; b 2 C2 andc 2 C2 , then to check the condition for
all codewords would take at least2k+k operations. We now show
that we require far less.

Let A be the generator matrix of a group codeC2 of lengthn over
Z2 andB be the generator matrix of a group codeC2 of length
n over Z2 . We augment the generator matricesA andB each
by a row of all-zero entries. We denote these augmented matrices by
A0 and B0, respectively.

Lemma 1: Let 2a � (2m�3b �2 c) 2 C2 , for all a; b; c
wherea; b are rows ofA0 andc is a row ofB0. Then2g �(2m�3f) 2
C2 8g; f 2 C2.

Proof: Let the order of the augmented generator matricesA0

andB0 be k � n andk0 � n, respectively. Let

g = l1v1 �2 l2v2 �2 � � � �2 lkvk; li = 0; 1

f =m1v1 �2 m2v2 �2 � � � �2 mkvk; mi = 0; 1

wherevi’s are the rows ofA0.

2g � (2m�3
f) = 2(l1v1 �2 � � � �2 lkvk)

� f2m�3(m1v1 �2 � � � �2 mkvk)g

=2m�2(�2
k
i=1(�2

k
j=1(livi) � (mjvj)))

=�2

k

i=1(�2

k

j=1(limj)

� f2vi � (2
m�3

vj �2 0)g):

But, 2vi � (2m�3vj �2 0) 2 C2 for eachi; j. So,

2g � (2m�3
f) = �2

k

i=1(�2

k

j=1(limj)f2vi

� (2m�3
vj �2 0)g) 2 C2 :

Lemma 2: Let 2a � (2m�3b �2 c) 2 C2 for all a; b; c,
wherea; b are rows ofA0 and c is a row ofB0. Then,2g � (f) 2
C2 , whereg is a row ofA0 andf is any codeword inC2 .

Proof: Let the order of the augmented generator matricesA0

andB0 be k � n andk0 � n, respectively. Let

f = n1u1 �2 n2u2 �2 � � � �2 nk uk ;

0 � ni � 2m�1 � 1
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(a) (b)

Fig. 3. (a) The binary signal set and (b) the2m�1-PSK signal set.

whereui’s are the rows ofB0. Then

2g � f =2g � (n1u1 �2
� � � �

2
nk uk )

= 2g � (n1u1)�2
� � � �

2
2g � (nk uk )

=n1f2g � (2
m�30�

2
u1)g�2

� � � �
2

nk f2g � (2
m�30�

2
uk )g:

But, 2g � (2m�30�
2

ui)2C2
for eachi by Lemma 1. So

2g � f =n1f2g � (2
m�30�

2
u1)g �2

� � � �
2

nk

� f2g � (2m�30�
2

uk )g 2 C
2

:

Hence, proved.

Theorem 2: The condition2C2 � (2
m�3C2�2

C
2

) is true,
if and only if, 2x � (2m�3y �

2
z) 2 C

2
for all x, y, andz

wherex, y are rows of the augmented generator matrixA0 andz is
a row of the augmented generator matrixB0.

Proof:
(=)) If the condition2C2 � (2

m�3C2�2
C
2

) is satisfied
by all codewords ofC2 andC

2
, then it is trivially satisfied for

rows of the augmented generator matrices ofC2 andC
2

, because
the rows of the augmented generator matrices ofC2 andC

2
are

codewords ofC2 andC
2

.
((=) Conversely, let us be given that2x � (2m�3y �

2
z) 2

C
2

for all x; y; and z; wherex; y are rows of the augmented
generator matrixA0 andz is a row of the augmented generator matrix
B0.

We need to show that for any arbitrarya, b 2 C2 andc 2 C
2

,
2a � (2m�3b�

2
c) 2 C

2
. In light of Lemma 1, it is enough

to show that,

2a � c 2 C
2

:

We show it by induction. Let the order of the augmented generator
matrix A0 andB0 be k � n andk0 � n, respectively. Let

a = m1v1 �2 m2v2 �2 � � � �2 mkvk; mi = 0; 1:

We can view(m1; m2; � � � ; mk); mi = 0; 1 as an orderedn-
tuple with decreasing order of significance fromm1 to mk. Clearly,
for the base case(0; 0; � � � ; 0; 1) we have2vk � c 2 C

2
by

Lemma 2. Now, we assume that2a0 � c 2 C
2

for all a0 such that,

a0 = m0

1v1 �2 m
0

2v2 �2 � � � �2 m
0

kvk

and

(m0

1; m
0

2; � � � ; m
0

k) < (m1; m2; � � � ; mk):

Let the least significant nonzero of(m1; m2; � � � ; mk) be at position
t, i.e.,

(m1; m2; � � � ; mk) = (m1; m2; � � � ; mt�1; 0; 0; � � � ; 0)

+ (0; 0; � � � ; 0; 1

t

; 0; 0; � � � ; 0

n�t

):

Let v = m1v1 �2 m2v2 �2 � � � �2 mt�1vt�1. Then,

2a � c =2(v �2 vt) � c

=2(v �
2

vt 	2
2v � vt) � c

=2v � c�
2

2vt � c	2
2vt � (2v � c):

Now, 2v � c 2 C
2

by the induction hypothesis. So,2vt � (2v �
c); 2vt � c 2 C

2
by Lemma 2, i.e.,

2a � c = 2v � c�
2

2vt � c	2
2vt � (2v � c) 2 C

2
:

Hence, proved.

Example 2: For m = 3, let C2 andC4 be length-3 block codes
with generators[0 0 0] and [1 1 2], respectively. Then, the extension
codeC2 � C4 is a group code overQ8.

Example 3: For m = 5, let C2 andC16 be length-2 block codes
with generators[1 0] and[0 1]; [4 1], respectively. Then, the extension
codeC2 � C16 is a group code overQ32 with 128 codewords.

IV. M INIMUM EUCLIDEAN DISTANCE

Given the minimum Hamming distance of the component codes,
a lower bound for the minimum Euclidean distance for the resultant
multilevel group code is well known [15], [17]. In this section, we
derive the minimum Euclidean distance of the group code overQ2

given the minimum Euclidean distances of the component codesC2

and C
2

.
Let us now assume binary signal set forZ2 and the2m�1-PSK

signal set forZ
2

. TheEuclidean weightof an elementa of Z
2

is defined aswE(a) = j exp (2�ai=2m�1)�1j2, which is the squared
Euclidean distance from the pointa to the point0 as shown in Fig. 3,
and the weight of ann-tuplev 2 Zn

2
is defined as the sum of the

weights of the components. The minimum squared Euclidean distance
of group codes overZ2 andZ

2
are then the weights of codewords

with minimum Euclidean weight [17].

Theorem 3: Let C2 and C
2

be group codes overZ2 and
Z
2

, respectively, that satisfy the conditions of Theorem 1. Let
d2E and d2E be the minimum squared Euclidean distance of the
group codesC2 and C

2
, respectively, of lengthn. Then the
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minimum squared Euclidean distance of the group codeC2�C2

over Q2 of length n is given by

d2E = min �
d2E
2
; d2E :

Proof: Let c = (x1y1; x2y2; � � � ; xnyn) be any codeword
in C2 � C2 formed from x = (x1; x2; � � � ; xn) 2 C2 and
y = (y1; y2; � � � ; yn) 2 C2 with x 6= 0.

Let the Euclidean distance ofx from 0 be d. Then the Hamming
distance ofx from 0 is d2=4. That is, the codewordx has1’s in
exactlyd2=4 places. So, exactlyd2=4 components in the codeword
c of C2�C2 would lie in theX3–X4 plane (see Fig. 1) and the
remaining(n � d2=4) components would lie in theX1–X2 plane.
So, the squared Euclidean distance ofc from 0 in IR4 is at least
2d2=4 = d2=2.

Thus the squared minimum Euclidean distance of any codeword
c in C2 � C2 (formed from a nonzero codewordx in C2) from
0 is at leastd2E =2.

Now, we take the codewordy = 0 2 C2 and a codeword
x = (x1; x2; � � � ; xn) in C2 with Euclidean weightdE . Then
clearly, the codewordc = (x10; x20; � � � ; xn0) has Euclidean
weightd2E =2. Thus the minimum squared Euclidean distance of any
codewordc in C2 � C2 (formed from a nonzero codeword in
C2) is d2E =2.

Now, let us consider all the codewords inC2 � C2

that are formed from the all-zero codeword ofC2, i.e., c =
(0y1; 0y2; � � � ; 0yn), y = (y1; y2; � � � ; yn) 2 C2 . Clearly,
the minimum squared Euclidean distance of all codewords from0
is d2E .

Now, we observe that the set of all codewords inC2�C2 may
be partitioned (disjoint union) into i) the set of codewords formed
from 0 from C2 and any arbitrary codeword fromC2 and ii) the
set of all codewords formed from any nonzero codeword fromC2

and any arbitrary codewords fromC2 .
Hence,d2E = min fd2E =2; d2E g.

V. INITIAL VECTOR PROBLEM

A finite group of orthogonal transformations ofIRN is the real
representation of degreeN of a group. For an introduction to the
representation theory of groups one might like to read Serre [22] or
Blake and Mullin [23].

Given a representation� of degreeN of a finite groupG, what
is the vectorx 2 IRN that maximizes the minimum distance of the
signal set? This is the initial vector problem of group codes. Biglieri
and Elia [24] have solved the initial vector problem for arbitrary
representations of cyclic groups. Mitelholzer and Lahtonen [25] have
partially solved this problem for faithful, irreducible representations
of finite reflection groups.

Moreover, even if we know the optimal initial vector for a
particular representation ofG, how can we be sure that no other
representation of the same groupG gives a better minimum distance
for some initial vector? We will now show that in the case of the
generalized quaternion group, this problem does not arise if we
consider only faithful, irreducible representations.

The conjugacy classes ofQ2 are f1g, fx2 = y2g,
fyxj ; 8 j 6= 0; 2m�2g, fxi; x�ig8 i 6= 0; 2m�2. There are
2m�2 + 3 conjugacy classes in all. We note that

12 + 12 + 12 + 12 + 22 + 22 + � � �+ 22

(2 �1) times)

= 2m:

TABLE II
CHARACTERS OF 1;  2;  3;  4

x y

 1 1 1

 2 1 �1

 3 �1 1

 4 �1 �1

There are four complex irreducible representations of degree1 and
2m�2 � 1 complex irreducible representations of degree2. The four
complex representations of degree1 are obtained by letting�1
correspond tox and y in all possible ways. Their characters 1,
 2,  3,  4 are given by Table II.

Clearly, the above representations of degree1 are not faithful
because�(x2) = �(1) in all the four cases.

Next, we consider the complex irreducible representations of
degree2. Put! = e2�i=q, whereq = 2m�1 and leth be an arbitrary
integer. We define a representation�h by setting

[�h(xk)] =
[!hk 0
0 !�hk

and

[�h(y)] =
0 �1
1 0

; if h is odd

[�h(y)] =
0 1
1 0

; if h is even:

A direct calculation shows that this is indeed a representation.
Moreover,�h = �q+h. The corresponding characters�h are given by

�h(xk) =!hk + !�hk = 2 cos
2�hk

q

�h(y) = 0:

For representations over fields of character zero, two representations
are equivalent if and only if they have the same character. So,�h �=
�q�h. Also, for 0 � h � q=2, we have different values of�. But,
theh = 0 andh = q=2 cases are reducible, with characters 1 + 2

and  3 +  4, respectively. On the other hand, for0 < h < q=2,
the representation�h is irreducible: since!h 6= !�h, the only lines
stable under�h(x) are the coordinate axes and these are not stable
under�h(y). Thus we have accounted for all the complex irreducible
representations ofQ2 (up to equivalence)—four of degree1 and
2m�2 � 1 of degree2.

In the above representations the cases whenh is even are not
faithful for �h(y2) = �h(1). But, all the representations withh odd
are faithful. We consider only these cases.

The corresponding real irreducible representations of degree4 are

[�h(x)] =

cos hp � sin hp 0 0
sin hp cos hp 0 0

0 0 cos hp sin hp
0 0 � sin hp cos hp

[�h(y)] =

0 0 �1 0
0 0 0 �1
1 0 0 0
0 1 0 0

where p = 2�=q.
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Now, we note that�h(x) = �1(xh) and �h(y) = �1(y) for all
oddh between0 andq=2. Hence, the matrices of the representation
�h are really the same as those of�1, except that they appear in a
different order. Thus the signal sets they generate for a given initial
vector would be the same.

Now, if w = (w1; w2; w3; w4) is any initial vector inIR4 with
norm1 (i.e.,w2

1+w
2

2+w
2

3+w
2

4 = 1), such that it is not an eigenvector
of any of the matrices of the representation�h, we have

[�h(xk)][w]

=

cos hkp � sin hkp 0 0
sin hkp cos hkp 0 0

0 0 cos hkp sin hkp
0 0 � sin hkp cos hkp

w1

w2

w3

w4

=

w1 cos hkp� w2 sin hkp
w1 sin hkp+ w2 cos hkp
w3 cos hkp+ w4 sin hkp

�w3 sin hkp+ w4 cos hkp

and

[�h(yxk)][w]

=

0 0 � cos hkp sin hkp
0 0 � sin hkp � cos hkp

cos hkp sin hkp 0 0
� sin hkp cos hkp 0 0

w1

w2

w3

w4

=

�w3 cos hkp+ w4 sin hkp
�w3 sin hkp� w4 cos hkp
w1 cos hkp+ w2 sin hkp

�w1 sin hkp+ w2 cos hkp

:

Thus the distance profile of the signal set is

d2E([�
1(xm)][w]; [�1(xn)][w]) = 2(1� cos (m� n)p)

d2E([�
1(yxm)][w]; [�1(yxn)][w]) = 2

� (1� cos (m� n)p) for all m andn

d2E([�
1(xm)][w]; [�1(yxn)][w]) = 2

which is independent of the initial vectorw, providedw is not an
eigenvector of any of the matrices of the representation�h. Hence,
every signal set matched toQ2 would have the same Euclidean
distance profile.

We have shown that, except for labeling the signal points with the
elements of the groupQ2 , two four-dimensional signal sets matched
to Q2 are equivalent from the Euclidean distance point of view.

Caire and Biglieri [20] have defined a notion of equivalence of
Euclidean distance for codes over cyclic groups. Here, we extend
their notion of equivalence for the case of codes overQ2 .

Definition 1: Automorphic Euclidean-Distance (AED) equiva-
lence: letS be a signal set matched to a generalized quaternion
groupQ2 , and let�: Q2 �! S denote the matching function.
Two codesC andC0 overQ2 are called AED-equivalent if there
exists an automorphismf of the groupQ2 which mapsC to C 0

such that the composition map(�n �f(�n)�1) is a symmetry ofSn.
If C 0 = f(C), then the two codesC = �(C) andC 0 = �(C 0)

are equivalent from the Euclidean distance point of view.
It is easy to check that ifS1 andS2 are two signal sets matched to

Q2 obtained from two different initial vectors, where�1(Q2 ) =

S1, �2(Q2 ) = S2, andC is a group code overQ2 of lengthn
then�n1 (C) and�n2 (C

0) are AED-equivalent [26].

VI. DISCUSSION

We have characterized group codes overQ2 that are obtainable
as multilevel codes and discussed certain aspects of the Euclidean
distance of the resulting Euclidean space codes. The characterization
is the counterpart of results available in [26]–[28] for the case of
multilevel group codes over dihedral groups.

It will be interesting to obtain the capacity curves by simulation
for the signal sets matched toQ2 that have been described in this
correspondence in line with those described in [6]–[8]. For the case of
multilevel group codes over semidirect product groups an algebraic
characterization is given in [13, Theorem 2]. Similar algebraic
characterization for the codes discussed in this correspondence would
help in understanding the algebraic structure of the codes.
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Comment on “Relations Between
Entropy and Error Probability”

Jovan Dj. Golíc

The first part of the above correspondence1 contains the tight
upper and lower bounds on the equivocation in terms of the Bayes
error probability. The upper bound is said to be known, whereas
the lower bound is claimed to be new. However, the lower bound
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259–266, Jan. 1994.

is also known and has been independently determined in [5] and
[6]. Unlike the remark from the above correspondence,1 it is the
upper bound that follows from the Kuhn–Tucker conditions, whereas
the lower bound is derived from the set of extremal points of the
corresponding polyhedron. The lower bound can also be found in [2],
where the relationship between an arbitrary uncertainty measure and
the Bayes error probability is investigated in more detail and optimal
information measures with respect to certain similarity criteria are
established. Other related concepts and results are given in [1] and [3].
Note that various relationship problems have been extensively studied
in many papers in the area of statistical pattern recognition dealing
with feature selection and extraction criteria, see [4], for example.
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