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[12] O. Sharon, “On the relation between bit delay for Slot Reuse and tidote thatm = 3 gives the familiar quaternion group of eight
number of address bits in the dual bus configuration,” extended versi@lements.
available upon request. A signal set is a finite set of points in an Euclidean space of finite
dimension. A signal sef in IRY is said to be matched to a group
G if there exists a mapping from G onto S such that for allg
and ¢ in G

Block-Coded Modulation Using Two-Level Group de(p(g), n(g") = de(u(g™" ), nle))

Codes Over Generalized Quaternion Groups whered:(a, b) denotes the Euclidean distance betweeh ande is

the identity element of7 [6]. For coded communication systems, the
capacity of the signal set [7] is a more relevant performance index of a
signal set as compared to the average probability of error of the signal
Abstract—A length » group code over a groupG is a subgroup ofG™ set. It has been shown that the capacity of the signal sets matchgd
under component-wise group operation. Two-level group codes over the t0 Abelian groups are upper-bounded by the so-called phase-shift
class of generalized quaternion groups@zm~, m > 3, are constructed keying (PSK) limit [6]. Signal sets matched to non-Abelian groups
using a binary code and a code over, 1, the ring of integers modulo  that exceed PSK limit exist [6], [8]. This motivates the study of signal
2!, as component codes and a mapping from Z2 X Zym—1 10 Qam.  gets matched to non-Abelian groups and group codes over them.

A set of necessary and sufficient conditions on the component codes is Imai and Hirakawa [9] introduced the notion of multilevel con
derived which will give group codes over(2=. Given the generator [0 i

matrices of the component codes, the computational effort involved in Struction of codes by combining conventional error-correcting codes,
checking the necessary and sufficient conditions is discussed. Startingcalled component codes. Fig. 1 shows a two-level construction of
from a four-dimensional signal set matched toQzm, it is shown that  codes over),~ with a binary code and a code ov&s..—1 as com-

the Euclidean space codes obtained from the group codes ovélm  onant codes. Several authors have studied multilevel construction for
have Euclidean distance profiles which are independent of the coset

representative selection involved inf. A closed-form expression for the 9roup ?Odes [:!-0]' [13]. Ginzburg [1‘_1] has generalized _the aDPfoaCh
minimum Euclidean distance of the resulting group codes over.~ is Of Imai and Hirakawa. One of the important aspects in multilevel
obtained in terms of the Euclidean distances of the component codes. construction is the conditions on the component codes that lead to the
Finally, it is shown that all fqur-dlmenspnal signal sets matchgd ta)om resulting code being a group code over a group. In [11] this problem
have the same Euclidean distance profile and hence the Euclidean space < p dd d to obtain li d l Garell
codes corresponding to each signal set for a given group code ov@r as been adaresse 9 obtain l.n.ear coaes over CYC IC groups. -areflo
are automorphic Euclidean-distance equivalent. and Benedetto [13] give conditions for the multilevel constructed
code to be a group code over a semidirect product group. We obtain
necessary and sufficient conditions on the component codes that lead
to a group code ovef).~. Note thatQ»~ cannot be obtained as a
. INTRODUCTION semidirect product of its subgroups.
Block-coded modulation schemes have been studied primarily
PSK signal sets by several authors [15]-[17]. In [18] a four-
Imensional signal set with eight points has been indexed with the

and lattice codes [3], [4]. An important ingredient in the recipe give?lenl.emS ?f thf r?uatirntlvc\)ln gr(zrl:p of e'%ht ?Iemsn:rs] without avr\1/y
in [1] for construction of geometrically uniform codes is a groumgnen lon ot matching between the signal set an € group. Ve
code over a groug. A group code over a groufr is a subgroup, describe signal sets n four_ d|_men5|o_ns matchecl;ga_s fof any
under component-wise operation G, where I is an index set, " and form = 3 this coincides with the one given in [18].
finite or infinite. The casé being infinite corresponds to trellis-codedThe two-level group codes ovép.- are used to obtain Euclidean

modulation and being finite corresponds to block-coded modulatiors P ac€ codes with this four-dimensional signal set as the basic signal
t. Multilevel construction is closely related to the notion of set

This correspondence deals with block-coded modulation using gro fitioni 141 1171 [19 df titioning th

codes over generalized quaternion groups which are non-Abelian. f' loning pro;:etis [14], I[t' 1 [_ ] "?n or gromiip péar ' |orc11|ng eth

generalized quaternion group witfi" elementsyn > 3, denoted by performance of the resuiing signal space code depends on the
selection of coset representative [15]. We show that, in our case,

»m, IS given by the presentation [5 T .
@ g y P [5] the performance is independent of the coset representative. Also, we
B L s oy give the minimum Euclidean distance of the multilevel group codes
Qam = (x, ylo =57 =YLy ay=a ) in terms of the minimum distance of the component codes.
The four-dimensional signal sets used can be obtained as Slepian
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Fig. 1. Two-level construction of group codes ov@r~.
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Fig. 2. A signal set matched t@)o»-.

V discusses the initial vector problem and the automorphic EuclideBaclidean distance distribution is the Euclidean weight distribution
distance equivalence [20] of the Euclidean space codes obtaiédhe code [1].

from the group codes ovép.~. Some general remarks and possible Slepian [2] describes a class of signal sets which he called “group
directions for further work are given in Section VI. codes” as a signal set iIiR" which is the orbit of a point iHR"
under a finite group of orthogonal transformationsli®? . Loeliger

[6] has shown that a signal set is matched to a group, if and only if
iéds a translate of a Slepian signal set. To be specific, if a Slepian

to Qom for all m > 3 and demonstrate that these signal sets can B@nal set has its centroid at the origin then it is a signal set matched

obtained as Slepian signal sets. In Section V, these signal sets {Qits generating group.

be viewed as Slepian signal sets and the initial vector problem will Note that the signal sef defined in (1) can be obtained as the
be discussed. orbit of the point(1, 0, 0, 0) under the group of orthogonal matrices

4 .
Fig. 2 shows a signal s&t in IR* matched toQ),~, where of R given by

Il. SIGNAL SETSMATCHED TO THE GENERALIZED QUATERNION GROUP
In this section we describe four-dimensional signal sets match

S = {((’,OS kf, sin k4, 0, 0), (0, 0, cos kf#, —sin kf),

[cos kp —sin kp 0 0
9 G— sin kp cos kp 0 0
0<k<2m'_1,6= TZ} (1) o 0 0 cos kp sin kp
2 | O 0 —sin kp cos kp
The mappingu: Q2~» — S is given by 0 0 — cos kp sin Fp
w(a®y = (cos kB, sin k6, 0, 0) 0 0 —sin kp —cos kp
;L(urk) =(0, 0, cos k6, —sin k8), 0<k<2m ' -1 €cos kp  sin kp U 0
|—sin kp cos kp 0 0

It is a straightforward calculation to check thais matched t@) ;.
The mapping: naturally extends ta": Q3 — S™ component-
wise. This associates to every lengthcode overQ.~ a signal set
in 4n dimensions.
The Euclidean weight of an elemeptz* in Qum, is defined as
wE(yj;tk) _ |exp(2aki/2™™ ) — 17, ?f j =0
2, if j =1.
The Euclidean weight of an-tuple in @3~ is then the sum of the
Euclidean weight of its components. For a group code @¥ef the

In this section, we characterize two-level group codes @ygr
that are obtained from the component codes d#eand Z,» 1.

M ULTILEVEL CODES OVER Q2m
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TABLE | Let
DEFINITION OF THE MAPPING f
i = (P11, P12, 0y Tin)
22\Z2m71 0 1 ce 2m—2 e 2m—l —1 -
ro = (721, 22, -+, Ton) € Co
0] 1 x L2mt S p2mTia -
) v ) . L and
y yx a2 c g2l
v Y 9_1:(3117512-,"'531n)
S_ZZ (821, 822, 1ty Szn) E sz—l

We define a one—one, onto mappifigZ: x Zom—1 — Q2= @S so that
f(a, b) = y®2® wherea € Z, andb € Z,,._1 as shown in Table I.

Let the component codes be a cade of lengthn over Z> and a
codeC,.-1 of lengthn over Z,..—1. We construct a set denoted by

f,(7’181), f,(T’QSQ) ceCy® Jom—1

C2Cym—1 called an extension of’; andCym—1 given by Since Q% is a finite group, if
CyCym—1 ={ab = (arby, azba, -+, anby,)] Fi(ris)  f'(rase) € Co @ Com—r
ca=(ar, az, -+, a,) € Co, for all r1, 7, € C» ands;, s2 € Cym—1, Wherex denotes the group
b= (b, ba, -+, bn) € Com_1}. operation of Q3w then C> © Cym—1 is a subgroup ofQ%» and
- ' hence, a group code ovélsm.

That is, an elementb in C»Cyn 1 is obtained by component-wise Ve have

juxtaposition of an element in C> and an element in Cym—1. 71 51 = (111511, 125125 ***» T1nS1n)

Notice that, for each componentb; of ab, a; andb; are just two

symbols placed next to each other. ;
By extending the mapping to 7' as shown below, fronf’s C'ym—1 ra 53 = (721521, 22522, "1+, T2nS2n)

to Q5m = (r2i92i)j=1 € CoCym—1

f1(rys1) =(f(riss11), f(riz.s12), -+, f(rin, s1n)) € Qom

f'(

2 52) = (f(ra1, s521), f(raz, s22), -+, f(T2n,520)) € Qom.
Now, any element irQ.~ is of the form

y*a’, a=0,16=0,1,---, 2" — 1.

= (”'1i81i)?:1 € CoCym—1

f/: OQCQm—l —_— Q;Lm

<

b=(aibi, asba, ---, anb,) —

(flar, b1), flaz, b2),- -+, flan, bn)) € Qym
Let
we associate a subset @ with C5Cym—1. Let this subset, image o101 ez b2 0y =001, by, by =0, 1,---, 27" — 1
of C2Cym—1 under f', be Cy @ Cym—1. In general,Cs & Cym—1 ) ) )
need not be a subgroup Gy, i.e., it need not be a group codebe any two elements i2~. Checking the four different cases of
over Q2=. Fig. 1 describes this construction. (a1, a2) separately, one easily obtains the formula
In the following theorem, we characterize the component cédes ,, a1 b1y, a2 b2
andC for which C> & C is a group code ovef) W)y a)
Jom—1 whi 2 (O Cgm—1 | group Vet)om . :1/'11552"'21.{)1EBZm—lh282m—12‘]2(ZM73“’1EBQWL—I’”)
Theorem 1: (A preliminary version of this theorem appears in ' i
[21]). Given a codeC> over Z and a codeCym-1 OVer Zy,—1, for all @i, ax = 0. 1.1, b; = 0,1,---, 277" — 1. Hence (see
the setCy @ Cym—1 is a group code oveR):n, if and only if equations at the bottom of this page). SikéeandC,.—1 are group
codes overZ; and Z,m-1, we haves; ©ym-1 s2 € Cym—1 and

1) C, is a group code ovefs; 7L Dy re € Co.

2) Cym—1 is a group code oveZ,m.—1; Also, we are given that,
3) 2Cs - (2™ Co @om—1 Com—1) C Com—1 205 - (2772 Ch Bym1 Cym1) C Coym1
where®,»-1 denotes component-wise addition modit—" ] )
and- denotes component-wise integer multiplication. for all codewords inC> and Cs»—1. In particular,
Proof: (=) Let 2ry - (2711 Bomo 51) € Comr.
1) C- be a group code ovefs; That is,
2) Cym-—1 be a group code over,m. 1; 51 Boym1 52 Sgmo1 272+ (27711 Bym1 51) € Coymo
3) 2C5 - (2" 2C Dym—1 Cym-1) € Com-, ie.,
ie.
2a - (2" 720 Bym-1 ¢) € Cymar 71 Do 12 1 Dgme1 $2 Ogmer 272+ (277371 Domr 51)
for all codewordsz, b € C> ande € Cym—1. € CoCym—1

s s1) * £ (r2 s2) = (F(ruay 51))im (F(roiy 52:))iy

= (.‘(7“11‘ D2 T2iy $15 Dgm—1 S25 Ogm—1 272 (2™ 3r1; Dym—1 Sli)))

n

=1

= f/(7'1 $o 12 51 (SBQm—l 57‘2’(_;‘27)1—1 2’/72 . (27”_37;1 ‘%Qm—l 571))
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ie., Thus z and =z generateQ)2~ and hence, redefining the functigh
oo ro = in terms of z and » would not alter the necessary and sufficient
Frys)« firz s2) € C2 0 Camar conditions.
for all 71,72 € C» and si, so € Com—1 which implies that ~ SUPPOSEC: © Com—1 is a group code oveR.. Is its Euclidean
Cy @ Cym—1 is a subgroup o5 and hence, a group code overdistance distribution independent of the coset representative we

Qam. choose in the definition of ? The answer is again yes. This is clear
(«<=) Conversely, given that’y & Cym-1 = f'(C2Cym-1) is a Whenwe observe that if a codewarth C>©C,m—1 has a component
subgroup ofQ%». We have from y H, then in that component the squared Euclidean distance from
, , the identity element of).~ is 2. Thus the Euclidean weight of the
Fi(rsi) * fi(rz s2) codeword is independent of the coset representative we choose in the
= f(ri Do 7z 51 Dgm—1 82 Opm—1 272+ (277371 Dym-1 51))  definition of f.
€Cy®Com

B. Computational Complexity

for all ry, e € Cy andsl, S0 € Ozm—l. That iS,?‘l Do re € Cy and .
- - - = - Now, suppose we are given a group cade of length n over

51 Dom—1 52 Com—1 272+ (271 @om—1 51) € Cym—1 Z> and a group cod&’,.—:1 of lengthn over Z,._.. Let their
generator matrices be of orderx » andk’ x n, respectively. Then,
for all ri, rz € C> andsi, s € Com-. clearly, |Ca| = 2% and |Cym—1| > 2*. To check ifCa ® Cym_1

We now observe that the identity element @b~ belongs to
C2 ® Cym—1. S0, '(00) belongs toC> = Cym—1. Therefore, both
Cy and Cywm-1 contain the all-zero vector. Putting = 0 in the

expression 20 (2" Ggm1 €) € Cym1,  Va, b€ Cay c € Como1.

?
91 l’)m 1 9) ‘\ng 1 27‘2 (2"7 1 lgm 1 91) € Cgm 1

is a group code ovet).~, we need to check that the condition
2C5 - (2™ 73Cy Mgm—1 Cym—1) is true, i.e.,

If checking2a-(bDym—1¢) € Com—1 is taken to be a single operation
we get thatsi @ym—1 s2 € Com—1 for all s1, 52 € Cym1. We for a givena, b € C> ande € Cym—1, then to check the condition for
already know that, &2 72 € C» for all ri, 2 € Co. ThusC» is  all codewords would take at leagt+*’ operations. We now show
a subgroup oz} andC,..—1 is a subgroup ofZ”,._,. Thatis,C’; that we require far less.
andC,».—1 are group codes ovef, and Z,..—1, respectively. Let A be the generator matrix of a group code of length» over

Now Z> and B be the generator matrix of a group co@e..—1 of length
n over Z,m—1. We augment the generator matricdsand B each
by a row of all-zero entries. We denote these augmented matrices by
€Cym—1 A" and B’, respectively.

51 PBom—1825m—1213 - (277 Bom—151)Sgm—151 Pym—152

ie., Lemma 1: Let 2a - (2"7%b Poym-1 ¢) € Coym—1, for all ¢

wherega, b are rows ofA’ andc is a row of B'. Then2g- (2™~

Cym—1¥yg, f € Cs. B

for all r1, ro € Cy andsi, s2 € Cym—1. That is, Proof: Let the order of the augmented generator matridés
- - andB’ bek x n andk’ x n, respectively. Let

a, b, ¢
3
_ €
_QQ. (2m Jr_1®2m—1 ",_1) c szm71 i)

20, - (2772 Cy Dom-1 Cym-1) C Com-1. O
l 11U1 %)lglg%)"'@'glkvik, ll:(),l

Example 1: Form = 3, let 02 = {(00) (11)}, C4 = {(00), i 1—2 mava Eo - Do Mg Uk, m; = [)’ 1
(01), (02), (03), (20), (21), (22), (23)} be length2 block
codes overZ, and Z,m.-1, respectively. Then the extension codavherew;’s are the rows of4’.
Co®Chm ={(11), (12), (1 z?), (1x ), (2% 1), (2% z), (2% 27), s
(des), (o), (yyx), (yya®), (yya®), (ya* y), (y2* ya), 29+ (2777 f) =2(Livs D2 o D2 lvw)
(yx* y2?), (yx* .ny)} C.Q8 is a group code over. Under . .{27”73(77711‘1 Dy - Do myor)}
the mappingf this code gives an eight-dimensional signal set with _ g Q(D (@ (Liws) - (m ;)
16 codewords with squared Euclidean distarzes$, 6, and8, with - 2i=1 (B2j= L
multiplicities, respectively4, 6, 4, and 1. :92m—1i:1('$2m—1]':1(li'l'lLJ')

{20 - (270 Dym—1 0)}).

A. Selection of Coset Representative -

In our definition of f: Zo X Zym-1 — Qum the elements  But, 2vi - (2™ %0 Bym-1 0) € Cym—1 for eachi, j. So,
f(0,4) = 2,0 < i < 2™! form a subgroup 0f)2=, say H.

m—3
The elementsf(1,4), 0 < i < 2™! then form a coset off, 2g-(2"77f) = Bom- L (B 1 —y (limj){2v;
namely,yH. In our definition of f, we have chosep as the coset . (2’"’3@_j Poym—1 Q)}) € Com—1. O
representative, i.e.,
N = Lemma 2: Let 2a - (2" b @ym-—1 ¢) € Chm-a for all a, b, ¢,
F(L ) =yf(0, i) = ya', Usis2 wherea, b are rows ofA’ andc is a row of B'. Then, 29-(f) €

Suppose had we chosen any other elemeny Hf as the coset Com—1, whereg is a row of A’ and f is any codeword irCym—1.
representative, would the necessary and sufficient condition for Proof: Let the order of the augmented generator matridés
C5©Cym-—1 be still the same as in the above theorem? The answe@igd B’ be k x n andk’ x n, respectively. Let

yes. This becomes clear when we note that every element in the coset

yH is of order4. Moreover, ifz is any other element inH thenz f=mua Somo1 natty Symo1 o Dymo1 Mg,

of the formyz? for somej and soz~'zz = (y2’) " a(ya?) = x_l. 0<n; <2m'-1
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@

Fig. 3. (a) The binary signal set and (b) tB&~1-PSK signal set.
wherew;’s are the rows ofB’. Then

22 . i = QQ- (niug Dom—1 -+ Dgm—1 N jerthyer)

=2g- (n1u1) Dgm—1 -+ Dym—1 29 - (M4 Upr)

=n1{2g (27770 B w1 bbam

c Dymer {20 - (2770 Bgmor wi) )

But, 2g - (2™ ?04ym—1ui) € Cym—1 for eachi by Lemma 1. So

22 . i =n {22 (2m_3Q Dom—1 71_1)} Dom—1 +++ Dym—1 Nps
. {QQ (2m73Q ‘%mel M)} € C"mel.
Hence, proved. O

Theorem 2: The condition2Cs - (2™ 3Ca Bym—1 Com—1 ) iS true,
if and only if, 2z - (2™ *y @gm-1 z) € Cym—1 for all z, y, andz
wherez, y are rows of the augmented generator matixand z is
a row of the augmented generator matf.

Proof:

(=) If the condition2C’ - (2™ 3Ca Pym—1 Cym—1) is satisfied
by all codewords ofC> and C,~.—1, then it is trivially satisfied for
rows of the augmented generator matrice§'efandC',-~—1, because
the rows of the augmented generator matrice§'oandC,..—1 are
codewords ofC; and Cym—1.

(<) Conversely, let us be given that: - (2""—33 Pom-1 2) €

Cym—1 for all z, y, and z, wherez, y are rows of the augmented
generator matrixA’ andz is a row of the augmented generator matrix

B'.
We need to show that for any arbitraeyb € C> andc € Cym—1,

369

(b)

Let the least significant nonzero of11, ma, - - -
t, i.e.,

, my,) be at position

,mi) =(my, ma, +-+, my—1, 0,0, -+, 0)
+(0 0, "'307 17 07 07 0)
——— N——

t n—t

(m1, ma, «--

Let v = miv1 B2 mave D2 --- B2 Mg—10i—1. Then,
20-c=2( D2 vs) - ¢
=2(¥ Pom—1 v Ogm—1 20 ﬂ) e
=20 cD@ym—1 20t * C Sgm—1 204+ (20 ¢).
Now, 2v - ¢ € Cym—1 by the induction hypothesis. S@y: - (2v -
¢), 2v; - ¢ € Cym—1 by Lemma 2, ie,,
20+ =20 cDam-1 20t € Oom—1 20t~ (20 ¢) € Com-1.

Hence, proved. O

Example 2: For m = 3, let C> and C, be length3 block codes
with generator§0 00] and[1 1 2], respectively. Then, the extension
codeC; & C4 is a group code ovef)s.

Example 3: Form = 5, let C> andCs be length2 block codes
with generator$l 0] and[0 1], [4 1], respectively. Then, the extension
code(, ® C1 is a group code ovef)s, with 128 codewords.

IV. MINIMUM EUCLIDEAN DISTANCE

Given the minimum Hamming distance of the component codes,
a lower bound for the minimum Euclidean distance for the resultant

2a - (2™72b Mym-1 ¢) € Cym—1. In light of Lemma 1, it is enough multilevel group code is well known [15], [17]. In this section, we

to show that,
2a-c¢ € Cym—1.

derive the minimum Euclidean distance of the group code GQker
given the minimum Euclidean distances of the component c6des
and Com—1.

We show it by induction. Let the order of the augmented generator| et ys now assume binary signal set @5 and the2™~'-PSK

matrix A" and B’ bek x n andk’ x n, respectively. Let
m; =0, 1.

We can view(mi, ma, --+, my), m; = 0, 1 as an orderech-
tuple with decreasing order of significance fram to m. Clearly,
for the base casé0, 0, ---, 0, 1) we have2uv - ¢ € Cym—1 by
Lemma 2. Now, we assume tht’ - ¢ € Cym—1 for all @’ such that,

a = miv1 B2 MoV o - -+ Do MEVE,

! 1 . ’ . - !
a = myvy Do Myvy Do -+ Do MUk

and
, ME).

(my, mh, ---, my) < (my, ma, -+~

signal set fotZ,.—1 . TheEuclidean weighof an element of Z,m—1

is defined asvz (a) = | exp (2mai/2™~")—1|?, which is the squared
Euclidean distance from the poiatto the point0 as shown in Fig. 3,

and the weight of am-tuplev € Z7,.._, is defined as the sum of the
weights of the components. The minimum squared Euclidean distance
of group codes over, andZ,.. . are then the weights of codewords
with minimum Euclidean weight [17].

Theorem 3: Let C>; and C,..—1 be group codes ove#. and
Z,m—1, respectively, that satisfy the conditions of Theorem 1. Let
d%, and d%, be the minimum squared Euclidean distance of the
group codesC> and Cym—1, respectively, of length.. Then the
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minimum squared Euclidean distance of the group aggle Cyrn—1 TABLE I
over 2~ oOf lengthn is given by CHARACTERS OF ¥, %2, '3, ¥4
x y
5 _[dE, o 1 1
dg :1nln~{7, clEZ}. b 1 1
’l/bg -1 1
Proof: Let ¢ = (x1y1, 2292, -+, ny») be any codeword w1 -1 -1
in Co ® Cym-1 formed fromz = (x1, 22, -+, z,,) € C> and
Y = (y1, Y2, -, Yn) € Com1 With = # 0.

" Let the Euclidean distance of from 0 be d. Then the Hamming
distance ofz from 0 is d*/4. That is, the codeword: has1’s in

exactly d° /4 places. So, exactly®/4 components in the codeword
c of Cy © Cym—1 would lie in the X3—X,4 plane (see Fig. 1) and the . . . ,
remaining(n — d/4) components would lie in thé&,—X. plane. correspond tar and y in all possible ways. Their characters,

So, the squared Euclidean distancecofrom 0 in IR* is at least W2, ¥s, ¢4 are given by Table ”'_ .
22 /4 = d?)2. Clearly, the above representations of degiteare not faithful

c}?acausep(;cz) = p(1) in all the four cases.

Next, we consider the complex irreducible representations of
degree2. Putw = ¢***/¢ whereq = 2! and leth be an arbitrary
d=0¢€ Cyn. and a codeword integer. We define a representatiph by setting

There are four complex irreducible representations of degjrard
2™=2 _ 1 complex irreducible representations of deg?ed@he four
complex representations of degréeare obtained by lettingt:1

Thus the squared minimum Euclidean distance of any codew:
cin Cy © Cym—1 (formed from a nonzero codewordin ') from
0 is at leastds;, /2.

Now, we take the codewor

& = (&1, w9, ---, &) In Cy with Euclidean weightdy,. Then o
clearly, the codeword= = (2,0, 220, ---, #,0) has Euclidean [ (")) = [w"" Phk}
weightdi;l/Q. Thus the minimum squared Euclidean distance of any L 0w

codeworde in Cy & Cym-1 (formed from a nonzero codeword inand

Cy) is df, /2. A 0 -1 -
. . y)] = if his odd
Now, let us consider all the codewords i @ Cym-—1 " ()] 0 !
that are formed from the all-zero codeword 6k, ie., ¢ = . 0 1 o
(0y1. Oy, =+, 0yn), ¥y = (Y1, Y20 =++. Yn) € Com1. Clearly, [" ()] = |y 0}’ if 1 is even
the minimum squared Euclidean distance of all codewords fdom )
H 2
IS i, - A direct calculation shows that this is indeed a representation.

Now, we observe that the set of all codeword€’in® Cy»—1 may Moreover p”

L A © SeLotd = p?". The corresponding charactey$ are given by
be partitioned (disjoint union) into i) the set of codewords formed

from 0 from C; and any arbitrary codeword frofi,~.—: and ii) the . . e o h
set of all codewords formed from any nonzero codeword fr@m X (") =w" +w™ " =2 cos .
and any arbitrary codewords froffiym—1. h

Hence,diz = min {clil/Q, cli;z}. O X' (y) =0.

For representations over fields of character zero, two representations
V. INITIAL VECTOR PROBLEM are equivalent if and only if they have the same characterp’56z
A finite group of orthogonal transformations @i” is the real p7™". Also, for 0 < h < ¢/2, we have different values of. But,
representation of degre® of a group. For an introduction to thetheh = 0 andh = ¢/2 cases are reducible, with charactéris+ v,
representation theory of groups one might like to read Serre [22] @nd s + ©4, respectively. On the other hand, for< h < ¢/2,
Blake and Mullin [23]. the representatiop” is irreducible: sinces” # w™", the only lines
Given a representatiop of degreeN of a finite groupG, what stable undep” (x) are the coordinate axes and these are not stable
is the vectorz € IRY that maximizes the minimum distance of theundery” (y). Thus we have accounted for all the complex irreducible
signal set? This is the initial vector problem of group codes. Biglierepresentations o).~ (up to equivalence)—four of degreleand
and Elia [24] have solved the initial vector problem for arbitrarg™ 2 — 1 of degree2.
representations of cyclic groups. Mitelholzer and Lahtonen [25] haveln the above representations the cases wheis even are not
partially solved this problem for faithful, irreducible representationtithful for p”(y?) = p"(1). But, all the representations with odd
of finite reflection groups. are faithful. We consider only these cases.
Moreover, even if we know the optimal initial vector for a The corresponding real irreducible representations of defae
particular representation af, how can we be sure that no other

representation of the same groGpgives a better minimum distance [cos hp — sin hp 0 0
for some initial vector? We will now show that in the case of the h, o\ _ |sin hp cos hp 0 0
generalized quaternion group, this problem does not arise if we [" ()] = 0 0 cos hp sin hp
consider only faithful, irreducible representations. B | 0 0 — sin hp cos hp
The conjugacy classes of).~ are {1}, {2? = 3’

{ya?,Vj # 0,2m72), {a", 27"}V i # 0,2™ 2. There are 00 =10
2"~? 4 3 conjugacy classes in all. We note that " ()] = (1) 8 8 _(1)

0 1 0 0

12+12+12+12+22+22++22:2m L
—_———

(2772 —1) times) wherep = 27 /q.
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Now, we note thap”(z) = p'(2") and p"(y) = p'(y) for all VI. DISCUSSION

odd » betweend andg¢/2. Hence, the matrices of the representation \we nave characterized group codes oger- that are obtainable

p" are really the same as those @, except that they appear in aas multilevel codes and discussed certain aspects of the Euclidean

different order. Thus the signal sets they generate for a given init@ktance of the resulting Euclidean space codes. The characterization

vector would be the same. is the counterpart of results available in [26]-[28] for the case of

Now, if w = (w1, ws, ws, wa) is any initial vector iNR* with  multilevel group codes over dihedral groups.

norm1 (i.e.,wi+wj+wi+wi = 1), such thatitis not an eigenvector |t will be interesting to obtain the capacity curves by simulation

of any of the matrices of the representatigh we have for the signal sets matched €.~ that have been described in this
correspondence in line with those described in [6]-[8]. For the case of

[ph(xk)][w] multilevel group codes over semidirect product groups an algebraic
- . characterization is given in [13, Theorem 2]. Similar algebraic
cos hkp —sin hkp 0 0 w1 . . L
. characterization for the codes discussed in this correspondence would
_ |sin hkp cos Iikp 0 0 2 help in understanding the algebraic structure of the codes
- 0 0 cos hkp sin hkp | |ws P 9 9 ’
| 0 0 —sin hkp cos hkp | [wa REFERENCES
wy cos hkp — ws sin hkp “ . .
" sin hk : Wi [1] G. D. Forney, Jr., “Geometrically uniform codedEEE Trans. Inform.
— | wismfikp+ws cos hkp Theory vol. 37, pp. 1241-1260, 1991.
w3 cos hkp + wa sin hkp [2] D. Slepian, “Group codes for the Gaussian chanrigéll Syst. Tech. J.
—wsg sin hkp + wy cos hkp vol. 47, pp. 575-602, 1968.
and B [3] G. Ungerboeck, “Channel coding with multilevel/phase signdEEE
] B Trans. Inform. Theoryvol. IT-28, pp. 55-67, 1982.
[p" (yz")][w] [4] G. D. Forney, Jr., “Coset codes—Part I: Introduction and geometric
_ 0 0 — cos hkp sin hkp wi iggglflcatlon, IEEE Trans. Inform. Theoryvol. 34, pp. 1123-1151,
- 0 ) 0 —sin hkp  —cos hkp | w2 [5] D. J. S. RobinsonA Course in the Theory of GroupsNew York:
cos hkp sin hkp 0 0 w3 Springer-Verlag, 1982.
— sin hkp cos hkp 0 0 Wy [6] H. A. Loeliger, “Signal sets matched to group$EE Trans. Inform.
3 Theory vol. 37, pp. 1675-1682, 1991.
[—ws cos hkp + w4 sin hkp [7] R. E. Blahut,Principles and Practice of Information TheoryReading,
—ws sin hkp — wy cos hkp MA: Addison-Wesley, 1987, ch. 7.
= w1 cos hkp 4wy sin hkp [8] H. A. Loeliger, “On Euclidean space group codes,” Ph.D. dissertation,
e g 27 ' Swiss Federal Inst. Technol., Zurich, Switzerland, 1992.
[—wi sin hkp + w2 cos hkp [9] H.Imaiand S. Hirakawa, “A new multilevel coding method using error-

Thus the distance profile of the signal set is

[10]
di([p" («™)][w], [p* (@™)][w]) = 2(1 = cos (m —n)p) [11]
di([p" (y2™)][w], [p* (ya™)][w]) = 2
- (1 = cos(m —n)p) for all m andn [12]
2 1, m , 1 n X —
du([p” (@")[w], [p" (y2")|[w]) = 2 [13]
which is independent of the initial vectar, providedw is not an [14]

eigenvector of any of the matrices of the representationHence,
every signal set matched .~ would have the same Euclideanyis)
distance profile.

We have shown that, except for labeling the signal points with the
elements of the grou@)>—, two four-dimensional signal sets matched
to Q2= are equivalent from the Euclidean distance point of view. [17)

Caire and Biglieri [20] have defined a notion of equivalence of
Euclidean distance for codes over cyclic groups. Here, we exteHd]
their notion of equivalence for the case of codes aye-.

Definition 1: Automorphic Euclidean-Distance (AED) equiva-[lg]
lence: letS be a signal set matched to a generalized quaterni
group 2=, and lety: Q2= — S denote the matching function.
Two codesC' and C’ over Q2= are called AED-equivalent if there [21]
exists an automorphisni of the group@.~ which mapsC' to C’
such that the composition m&p™ o f(u")~") is a symmetry of5™.

If ' = f(C), then the two code€’ = p(C) andC’ = p(C")
are equivalent from the Euclidean distance point of view.

It is easy to check that if; andS. are two signal sets matched to
Q2= obtained from two different initial vectors, whera (Q2m) =
S1, u2(Q2m) = S2, andC' is a group code ovef).~ of lengthn
then pf' (C') and ui (C') are AED-equivalent [26].
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1996. is also known and has been independently determined in [5] and
[26] J. Bali and B. Sundar Rajan, “Block-coded PSK modulation using twgg]. Unlike the remark from the above correspondehde,is the
'\i;’lel 4gr°;g cl%dz%s_ ‘fg’g; dﬁ?}??&gg’“pEE Trans. Inform. Theoty ,ner hound that follows from the Kuhn—Tucker conditions, whereas
[27] , “A class of multilevel group codes over dihedral groups wit{® lower bound is derived from the set of extremal points of the
good Euclidean distance properties,” presented at the Mediterrangfresponding polyhedron. The lower bound can also be found in [2],
Workshop on Coding Applications, Palma, Spring, Feb. 28-Mar. Where the relationship between an arbitrary uncertainty measure and
28] 1996. «On multilevel group codes over dihedral groups. Froc.: Nat the Bayes error probability is investigated in more detail and optimal
Conf. Communications, NCC ‘98T Bombay, India, Feb. 1996). |nform_at|0n measures with respect to certain S|mll§1r|ty _crlterla are
established. Other related concepts and results are given in [1] and [3].
Note that various relationship problems have been extensively studied
in many papers in the area of statistical pattern recognition dealing

with feature selection and extraction criteria, see [4], for example.
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