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ABSTRACT

Repeated rounding of sample blocks in alternating do-

mains creates complex convergence paths. We study conver-

gence and block stability for JPEG images compressed with

quality factor 100 and derive methods to detect such compres-

sion in grayscale bitmap images, to estimate the number of

recompressions, to identify the DCT implementation used for

compression, and to uncover local tampering if image parts

have been compressed with JPEG-100 at least once.

1. INTRODUCTION

Detecting prior JPEG compressions and estimating the quan-

tization tables (QTs) from bitmap images are key techniques

in digital image forensics. Prior art can be classified into three

approaches. First, approaches confined to the spatial domain

measure the strength of blocking artifacts. These methods

can be turned to JPEG detectors by defining thresholds to dis-

tinguish between pre-compressed and never-compressed im-

ages. The common principle of Fan et al.’s [1] and Muijs and

Kirenko’s [2] methods is to compare pixel value differences

within blocks and across blocks boundaries. Pan et al. [3, 4]

refine these methods with edge detectors by looking for edge

orientations of 0 or 90 degrees. Second, approaches working

in the DCT domain can detect JPEG compression and esti-

mate its QT. Fu et al. [5] apply digit analysis to DCT coef-

ficients and, stipulating that Benford’s law holds for this data

generating process, derive test statistics to detect deviations

from that law caused by (pre-)compression with (a set of) a

candidate QT(s). Luo et al. [6] study how rounding errors

affect the distribution of DCT coefficients. Their theory en-

ables to detect double JPEG-compression even in small (parts

of) images. The observation that quantization and rounding

leaves periodic traces in the DCT histogram can be exploited

by applying spectral theory on the joint effect of quantization

and rounding. The analysis of the characteristic function (i.e.,

DFT of the DCT histogram) allows precise estimates of in-

dividual quantization factors in the primary or secondary QT

[7, 8]. Pevný and Fridrich [9] use machine learning to de-

tect JPEG double-compression and estimate the primary QT

for the special case that the suspect image is given as JPEG

and possibly contains steganography. The third approach is

to use cross-domain techniques. Bovik et al. [10] and Park et

al. [11] measure blocking artifacts in the spatial domain with

frequency-domain features. Fridrich et al.’s [12] compatibil-

ity test checks for each block of an image if it could have plau-

sibly been generated from a decompression operation within

a range of quantization factors. Böhme [13] assigns the most

likely among a set of candidate QTs based on the residuals of

recompression attempts. Lewis and Kuhn [14] propose exact

recompression by inverting specific implementations of the

decompression function using interval algebra. Their method

can determine all possible QTs of color images by eliminating

impossible quantization factors. Closest to this work, Huang

et al. [15] count the number of changed coefficients after re-

compression to detect double-compression with the same QT.

This wealth of literature indicates a mature field. Yet

we are not aware of any method to detect JPEG compres-

sion with quality factor 100 (henceforth JPEG-100), where

the QT contains only ones and quantization coincides with

rounding. Moreover, few methods generalize to image histo-

ries with more than two compression–decompression cycles.

We close these gaps with a novel approach that exploits con-

vergence properties of transform-coded blocks.

The remainder of this paper is structured as follows.

Section 2 describes our observations of block convergence,

Sect. 3 presents forensic tools based on the analysis of block

convergence, Sect. 4 reports quantitative results to demon-

strate their effectiveness, and the final Sect. 5 concludes.

2. JPEG-100 BLOCK CONVERGENCE

Let x
0 denote the intensity matrix of a grayscale image,

where superscript 0 indicates that it has never been com-

pressed. Then, a history of repeated JPEG-100 compression

and decompression operations is modeled by this recursion:

x
t+1 = tr

(

[IDCT([DCT(xt)])]
)

, t ≥ 0, (1)

where [.] denotes rounding, tr(.) truncates to the value range,

and DCT and IDCT are 8 × 8 block-wise DCT and inverse

DCT transformations. We call a block stable (after t itera-

tions) if its values in x
t+1 equal its values in x

t. A key ob-

servation is that repeated rounding in spatial and transformed

domains causes a complex convergence path where the num-

ber of iterations until a block is stable follows a distribution

that is largely independent of the image content. To under-

stand this effect and learn how it can be used for JPEG-100

forensics, we start with simple situations.
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Fig. 1: Map of convergence time t for triples (x1, 0, x3)

2.1. Observations for 1-D blocks

We begin with an exhaustive study of 1-D blocks of the form

(x1, 0, x3), with x1, x3 ∈ {−32, . . . , 32}. Because any con-

stant integer offset only adds to the value of the DC coefficient

in the transformed domain and does not affect rounding, it is

sufficient to plot the time t until convergence in a 2-D plane

of Fig. 1 and the picture generalizes to arbitrary triples of in-

tegers. All tested blocks become stable within t ≤ 2 rounds.

Moreover, except for linear slopes, the distribution of conver-

gence times appears rather chaotic and there is no indication

that macroscopic properties of the block substantially predict

its time to convergence. This indicates that the convergence

time of any given block in natural images can be modeled

as an independent realization of a discrete distribution p(t),
t ≥ 0. Moreover, the empirical ratio of stable blocks in never-

compressed natural images approaches p(0) as the number of

blocks grows, but is largely independent of the image content.

To test this conjecture, we compare the empirical PMF

p(t) of 3.8 million random i.i.d. uniform triples (x1, x2, x3) in

the range [0, 255]3 to the PMF of 3.8 million samples drawn

from 800 different never-compressed grayscale images. As

evidenced in Fig. 2, for block length l = 3, there is no visible

difference between random and image data. The same holds

if we expand the block length to l = 8, though fewer blocks

are stable at t = 0 and some probability mass moves to t > 2.

It is important to note that the results are obtained with flat

blocks excluded. We call a block flat if all xi have the same

value. All AC coefficients of flat blocks are zero, hence they

are stable at t = 0, independent of the dimension. Since many

images contain flat blocks and their amount varies widely be-

tween images, without excluding them, the PMF of a specific

image would not necessarily match the PMF over all images.

2.2. Extension to 2-D blocks

Now we extend our study to 2-D blocks sized 8 × 8, like in

JPEG-100 compression. After removing the flat blocks, we

plot in Fig. 3 the PMF p(t) for i.i.d. random data and for all

blocks of 800 natural images. (All following figures are based
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Fig. 2: Empirical PMF p(t) for 1-D blocks: comparison of

i.i.d. random uniform data and samples of natural images.
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Fig. 3: Empirical PMF p(t) for 2-D 8×8 blocks: comparison

of i.i.d. random data uniform data and natural image blocks.

The intervals show the full value range over all tested images.

on the same image data.) The close match indicates that our

conjecture generalizes to realistic blocks. Moreover, as the

range of possible t increases in 2-D, and few blocks are stable

at t = 0, we may infer t from the ratio of stable blocks r. Let

bflat, bstable, and btotal denote the number of flat, stable, and the

total number of blocks, respectively. Then r is given by:

r = (bstable − bflat) / (btotal − bflat) . (2)

2.3. Influence of the DCT implementation

The data presented so far was generated using what we call

textbook DCT, i.e., a full matrix multiplication using trans-

form coefficients from the definition of the DCT. In practice,

faster FDCT algorithms employ a divide-and-conquer strat-

egy to minimize the number of multiplications. FDCT meth-

ods either factorize the DCT similar to the FFT, that is break-

ing an N -point DFT into two N/2-point DFTs, or directly

break an N -point DCT into two N/2-point DCTs. Although

mathematically equivalent, because of finite-precision arith-

metics, different DCT implementations have different numer-

ical properties, which may affect the block convergence.

libjpeg is a widely used library providing JPEG de-

coding and encoding functions alongside various utilities for
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Fig. 4: Influence of the DCT implementation on p(t)

handling JPEG images [16]. It supports three different imple-

mentation of FDCT, called “fast”, “float” [17], “slow” [18]1.

Note that “float”, “slow” , “fast” are just labels. All variants

are fast DCTs using different algorithms and number formats.

To avoid confusion, we put these labels in quotation marks.

Fig. 4 shows that the PMFs of textbook and “float” DCTs

are very similar, but convergence takes a little longer on av-

erage for the “slow” type, libjpeg’s default method. The

“fast” type (not plotted) is completely different. Its integer

arithmetic generates nearly no stable blocks for t < 6. As

it produces visibly bad quality, this method is barely used in

practice and thus excluded from the analysis in this paper.

Blocks which are stable under one DCT implementation

may be unstable under another. Given an image x
t that has

been compressed t times with one DCT implementation (de-

noted by DCTpre), we iterate through a set of candidate imple-

mentations (DCTi, i = 1, 2, . . . ) and calculate ri. We expect

that the maximum ratio of stable blocks is most likely reached

if DCTi = DCTpre. Fig. 5 confirms this effect. Observe that

the gap between the maximum rp̂re and other ri grows with t.

3. FORENSICS USING BLOCK CONVERGENCE

Next we show how our observations enable simple yet effec-

tive forensic tools for images with possible JPEG-100 history.

3.1. JPEG-100 carbon dating with known DCTpre

Suppose a forensic analyst knows the fixed DCT implemen-

tation used to compress the image under analysis with JPEG

quality factor 100. Then the following JPEG “carbon dating”

method can estimate the number of recompressions t̂, which

can be an indication of how often the image has been touched

by image processing software. Given a bitmap image x, cal-

culate the ratio of stable blocks r using Eq. 2. Compare the

result to a series of critical values obtained from the range of

1The “float” and “fast” type DCTs are both borrowed from Arai, Agui,

and Nakajima’s algorithms for scaled DCT. Though original written in

Japanese, the two algorithms are both described in English in [17].
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Fig. 5: Block stabilization indicates DCT implementation

r for random i.i.d. uniform data using the known DCTpre and

different candidate t. If r is smaller than the lower end of the

interval associated with t = 1, consider the image as never-

compressed. If r is closer to one than the highest upper end

below one, then it is impossible to estimate t exactly, but the

image must have been recompressed at least tmax times, where

tmax = 4 for textbook and “float”, and tmax = 5 for “slow”.

3.2. Identification of the DCT implementation

If the analyst does not know the exact DCTpre, but has

knowledge about and access to all candidate implementations

DCTi, she can try to identify the implementation by finding

argmaxi ri. This method can be used to select the appropri-

ate set of critical values in the carbon dating procedure, or

in completely different contexts, where knowledge about the

DCT implementation reveals relevant facts about an image’s

provenance (e.g., in forensic camera model identification).

3.3. Uncovering local tampering

We illustrate by example how block convergence analysis can

be used in local tamper detection by spotting inconsistencies

in the density of stable blocks. Fig. 6 shows a forgery in which

all stable blocks are marked as white frames. Note the excep-

tionally low density in the tampered region. In this example,

the original has been compressed once with JPEG-100 be-

fore processing. A similar difference in the density of stable

blocks (albeit on a different level) is observable if the com-

plete forgery is stored or transmitted as JPEG-100.

4. EXPERIMENTAL VALIDATION

We report the results of two large experiments to benchmark

the proposed methods. Both experiments were run on three

different image databases, 1600 raw images captured with a

single Minolta DiMAGE A1 camera, downscaled to 640×480
pixels and converted to grayscale, 800 never-compressed im-

ages sized 3000 × 2000 from the Dresden Image Database

[19], and 800 never-compressed images sized 3600 × 2400
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Fig. 6: Inconsistent distribution of stable blocks uncovers lo-

cal tampering. One clock has been removed from a JPEG-100

precompressed image (t = 1) using a copy stencil tool.

from the BOSSbase [20]. The first 1600 images were ran-

domly and equally divided into two groups. 800 of them were

used for the observation of convergence effect in Sect. 2 and

the other 800 images were reserved for validation.

4.1. Results for JPEG-100 carbon dating

Our experiments show that if we know the DCT implemen-

tation and use the critical values plotted in Fig. 7, then t can

be correctly estimated for all images in three different image

databases. There was not a single misclassification, so we re-

frain from printing confusion tables. To assess the importance

of excluding flat blocks, we repeated the analysis with flat

blocks included (using adjusted critical values). We observe

3.6 % misclassifications for “slow”, and 3.1 % for textbook

and “float”. Relatively more errors happen for small t and all

errors overestimate the actual number of recompressions.

4.2. Results for DCT implementation identification

Table 1 reports the detection results and misclassifications for

800 images from the Minolta database for t ∈ {1, 2}. If

t > 3, then the detection becomes perfect as the difference be-

tween the maximum and the alternative candidates increases

(cf. Fig. 5). In particular for t = 1 and “slow”, we face

misclassifications in the order of 50 %. Note that this does

not directly translate into error rates for carbon dating if this

identification method is used to select critical values. This is

because for small t, where the detection is error-prone, the

critical intervals are mutually exclusive between different t
even if we join the ranges for all tested DCT implementations

(cf. Fig. 7) . In other words, the accuracy of carbon dating

depends on the exact knowledge of the DCT implementation

only in ranges of t where the identification works perfectly.
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the number of JPEG-100 recompressions t for two DCT im-

plementations. The intervals show the range of r in 800 natu-

ral images and serve as critical values for carbon dating. The

curve for textbook DCT also applies to libjpeg-“float”.

Table 1: Confusion table of DCT identification performance

True DCT implementation

t = 1 t = 2

Detector

output

text-

book
“float” “slow”

text-

book
“float” “slow”

textbook 604 183 382 800 0 68

“float” 196 617 396 0 800 86

“slow” 0 0 22 0 0 646

Note: Perfect identification for t ≥ 3.

5. CONCLUSIONS AND OUTLOOK

We have introduced block convergence analysis as a new ap-

proach that closes gaps in the existing literature on JPEG

forensics. Our methods allow a forensic investigator to re-

liably detect prior JPEG compression with quality factor 100,

to estimate the number of recompressions (which may indi-

cate how often an image has been opened and resaved in im-

age processing software), to identify the DCT implementation

used for compression (which may reveal information about

acquisition devices or processing software), and to identify

local tampering (filtering, splicing, resampling) if image parts

have been compressed with JPEG-100 at least once. We note

that JPEG-100 is very relevant in practice if forgers save in-

termediate versions of tampered images with the highest pos-

sible quality, but refrain from switching to a lossless format.

Directions for future work include a theory for the dis-

tribution of convergence times, experiments with more DCT

implementations, the generalization of the carbon dating and

DCT detection to JPEG quality factors below 100, and the ex-

tension to color images, where subsampling might affect the

convergence behavior of multiple adjacent blocks.
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graphic system,” in Information Hiding, T. Filler,
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