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Abstract Over the past decade, ℓ1 regularization has emerged as a powerful way to learn
classifiers with implicit feature selection. More recently, mixed-norm (e.g., ℓ1/ℓ2) regu-
larization has been utilized as a way to select entire groups of features. In this paper, we
propose a novel direct multiclass formulation specifically designed for large-scale and high-
dimensional problems such as document classification. Based on a multiclass extension of
the squared hinge loss, our formulation employs ℓ1/ℓ2 regularization so as to force weights
corresponding to the same features to be zero across all classes, resulting in compact and
fast-to-evaluate multiclass models. For optimization, we employ two globally-convergent
variants of block coordinate descent, one with line search (Tseng and Yun in Math. Pro-
gram. 117:387–423, 2009) and the other without (Richtárik and Takáč in Math. Program.
1–38, 2012a; Tech. Rep. arXiv:1212.0873, 2012b). We present the two variants in a unified
manner and develop the core components needed to efficiently solve our formulation. The
end result is a couple of block coordinate descent algorithms specifically tailored to our
multiclass formulation. Experimentally, we show that block coordinate descent performs fa-
vorably compared to other solvers such as FOBOS, FISTA and SpaRSA. Furthermore, we
show that our formulation obtains very compact multiclass models and outperforms ℓ1/ℓ2-
regularized multiclass logistic regression in terms of training speed, while achieving com-
parable test accuracy.

Keywords Multiclass classification · Group sparsity · Block coordinate descent

1 Introduction

ℓ1-regularized loss minimization has attracted a great deal of research over the past
decade (Yuan et al. 2010). ℓ1 regularization has many advantages, including its compu-
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tational efficiency, its ability to perform implicit feature selection and under certain con-
ditions, to recover the model’s true sparsity (Zhao and Yu 2006). More recently, mixed-
norm (e.g., ℓ1/ℓ2) regularization has been proposed (Bakin 1999; Yuan and Lin 2006) as
a way to select groups of features. Here, the notion of group is application-dependent and
may be used to exploit prior knowledge about natural feature groups (Yuan and Lin 2006;
Meier et al. 2008) or problem structure (Obozinski et al. 2010; Duchi and Singer 2009a).

In this paper, we focus on the application of ℓ1/ℓ2 regularization to multiclass classifica-
tion problems. Let W be a d × m matrix, where d represents the number of features and m

the number of classes. We denote by W j : ∈ Rm the j th row of W and by W :r ∈ Rd its r th
column. We consider the traditional multiclass model representation where an input vector
x ∈ Rd is classified to one of the m classes using the following rule:

y = argmax
r∈{1,...,m}

W :r · x. (1)

Each column W :r of W can be thought as a prototype representing the r th class and the inner
product W :r · x as the score of the r th class with respect to x. Therefore, Eq. (1) chooses
the class with highest score. Given n training instances xi ∈ Rd and their associated labels
yi ∈ {1, . . . ,m}, our goal is to estimate W .

In this paper, we propose a novel direct multiclass formulation specifically designed for
large-scale and high-dimensional problems such as document classification. Based on a mul-
ticlass extension of the squared hinge loss, our formulation employs ℓ1/ℓ2 regularization so
as to force weights corresponding to the same features to be zero across all classes, result-
ing in compact and fast-to-evaluate multiclass models (see Sect. 2). For optimization, we
employ two globally-convergent variants of block coordinate descent, one with line search
(Tseng and Yun 2009) and the other without (Richtárik and Takáč 2012a). We present the
two variants in a unified manner and develop core components needed to optimize our ob-
jective (efficient gradient computation, Lipschitz constant of the gradient, computationally
cheap stopping criterion). The end result is a couple of block coordinate descent algorithms
specifically tailored to our multiclass formulation. Experimentally, we show that block co-
ordinate descent performs favorably to other solvers such as FOBOS (Duchi and Singer
2009b), FISTA (Beck and Teboulle 2009) and SpaRSA (Wright et al. 2009). Furthermore,
we show that our formulation obtains very compact multiclass models and outperforms
ℓ1/ℓ2-regularized multiclass logistic regression in terms of training speed, while achieving
comparable test accuracy.

2 Sparsity-inducing regularization

Figure 1 illustrates sparsity patterns obtained by different forms of regularization and shows
why ℓ1/ℓ2 regularization is particularly well adapted to multiclass models. With ℓ2

2 regular-
ization (ridge), Rℓ2

2
(W ) = 1

2

∑

j,r W
2
jr , sparsity is not enforced and therefore the obtained

model may become completely dense. With ℓ1 regularization (lasso), Rℓ1(W ) =
∑

j,r |W jr |,
the model becomes sparse at the individual weight level. A well-known problem of ℓ1

regularization is that, if several features are correlated, it tends to select only one of
them, even if other features are useful for prediction. To solve this problem, ℓ1 regular-
ization can be combined with ℓ2

2 regularization. The resulting regularization, Rℓ1+ℓ2
2
(W ) =

ρRℓ1(W )+ (1 −ρ)Rℓ2
2
(W ), where ρ > 0 is a hyperparameter, is known as elastic-net in the

literature (Zou and Hastie 2005) and leads to sparsity at the individual weight level.
Let Rℓ2(W j :) = ‖W j :‖2 (notice that the ℓ2 norm is not squared). With ℓ1/ℓ2 regular-

ization (group lasso), Rℓ1/ℓ2(W ) =
∑

j Rℓ2(W j :), the model becomes sparse at the feature
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Fig. 1 Illustration of the sparsity patterns obtained by ℓ2
2 (ridge), ℓ1 (lasso), ℓ1 + ℓ2

2 (elastic-net) and ℓ1/ℓ2

(group lasso) regularizations on the matrix W ∈ Rd×m. With ℓ1/ℓ2 regularization, we can obtain compact
and fast-to-evaluate multiclass models

group (here, row) level. Applied to a multiclass model, ℓ1/ℓ2 regularization can thus force
weights corresponding to the same feature to become zero across all classes. The corre-
sponding features can therefore be safely ignored at test time, which is especially useful
when features are expensive to extract. For more information on sparsity inducing penalties,
see Bach et al.’s excellent survey (Bach et al. 2012).

3 Related work

3.1 Multiclass classification: direct vs. indirect formulations

Classifying an object into one of several categories is an important problem arising in many
applications such as document classification and object recognition. Machine learning ap-
proaches to this problem can be roughly divided into two categories: direct and indirect
approaches. While direct approaches formulate the multiclass problem directly, indirect ap-
proaches reduce the multiclass problem to multiple independent binary classification or re-
gression problems. Because support vector machines (SVMs) (Boser et al. 1992) were orig-
inally proposed as a binary classification model, they have frequently been used in combina-
tion with indirect approaches to perform multiclass classification. Among them, one of the
most popular is “one-vs-rest” (Rifkin and Klautau 2004), which consists of learning to sepa-
rate one class from all the others, independently for all m possible classes. Direct multiclass
SVM extensions were later proposed by Weston and Watkins (1999), Lee et al. (2004) and
Crammer and Singer (2002). They were all formulated as constrained problems and solved
in the dual. An unconstrained (non-differentiable) form of the Crammer-Singer formulation
is popularly used with stochastic subgradient descent algorithms such as Pegasos (Shalev-
Shwartz et al. 2010). Another popular direct multiclass (smooth) formulation, which is an
intuitive extension of traditional logistic regression, is multiclass logistic regression. In this
paper, we propose an efficient direct multiclass formulation.

3.2 Sparse multiclass classification

Recently, mixed-norm regularization has attracted much interest (Yuan and Lin 2006;
Meier et al. 2008; Duchi and Singer 2009a, 2009b; Obozinski et al. 2010) due to its ability
to impose sparsity at the feature group level. Few papers, however, have investigated its ap-
plication to multiclass classification. Zhang et al. (2006) extend Lee et al.’s multiclass SVM
formulation (Lee et al. 2004) to employ ℓ1/ℓ∞ regularization and formulate the learning
problem as a linear program (LP). However, they experimentally verify their method only
on very small problems (both in terms of n and d). Duchi and Singer (2009a) propose a
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boosting-like algorithm specialized for ℓ1/ℓ2-regularized multiclass logistic regression. In
another paper, Duchi and Singer (2009b) derive and analyze FOBOS, a stochastic subgra-
dient descent framework based on forward-backward splitting and apply it, among other
things, to ℓ1/ℓ2-regularized multiclass logistic regression. In this paper, we choose ℓ1/ℓ2

regularization, since it can be optimized more efficiently than ℓ1/ℓ∞ regularization (see
Sect. 4.7).

3.3 Coordinate descent methods

Although coordinate descent methods were among the first optimization methods proposed
and studied in the literature (see Bertsekas 1999 and references therein), it is only recently
that they regained popularity, thanks to several successful applications in the machine learn-
ing (Fu 1998; Shevade and Keerthi 2003; Friedman et al. 2007, 2010b; Yuan et al. 2010;
Qin et al. 2010) and optimization (Tseng and Yun 2009; Wright 2012; Richtárik and Takáč
2012a) communities. Conceptually and algorithmically simple, (block) coordinate descent
algorithms focus at each iteration on updating one block of variables while keeping the oth-
ers fixed, and have been shown to be particularly well-suited for minimizing objective func-
tions with non-smooth separable regularization such as ℓ1 or ℓ1/ℓ2 (Tseng and Yun 2009;
Wright 2012; Richtárik and Takáč 2012a).

Coordinate descent algorithms have different trade-offs: expensive gradient-based greedy
block selection as opposed to cheap cyclic or randomized selection, use of line search (Tseng
and Yun 2009; Wright 2012) or not (Richtárik and Takáč 2012a). For large-scale linear clas-
sification, and we confirm in this paper, cyclic and randomized block selection schemes have
been shown to achieve excellent performance (Yuan et al. 2010, 2011; Chang et al. 2008;
Richtárik and Takáč 2012a). The most popular loss function for ℓ1-regularized binary clas-
sification is arguably logistic regression, due to its smoothness (Yuan et al. 2010). Bi-
nary logistic regression was also successfully combined with ℓ1/ℓ2 regularization in the
case of user-defined feature groups (Meier et al. 2008). However, recent work (Yuan et al.
2010, 2011; Chang et al. 2008) using coordinate descent indicate that logistic regression is
substantially slower to train than ℓ2-loss (squared hinge) SVMs. This is because, contrary to
ℓ2-loss SVMs, logistic regression requires expensive log and exp computations (equivalent
to dozens of multiplications) to compute the gradient or objective value (Yuan et al. 2011).
Motivated by this background, we propose a novel efficient direct multiclass formulation.
Compared to multiclass logistic regression, which suffers from the same problems as its
binary counterpart, our formulation can be optimized very efficiently by block coordinate
descent and lends itself to large-scale and high-dimensional problems such as document
classification.

4 Sparse direct multiclass classification

4.1 Objective function

Given n training instances xi ∈ Rd and their associated labels yi ∈ {1, . . . ,m}, our goal is to
estimate W such that Eq. (1) produces accurate predictions and W is row-wise sparse. To
this end, we minimize the following convex objective:

minimize
W∈Rd×m

F(W ) = 1

n

n
∑

i=1

∑

r �=yi

max
(

1 − (W :yi
· xi − W :r · xi),0

)2

︸ ︷︷ ︸

L(W )

+λ

d
∑

j=1

‖W j :‖2

︸ ︷︷ ︸

R(W )

, (2)
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Algorithm 1 Block-coordinate algorithm for minimization of F(W )

W ← 0d×m

for k = 1,2, . . . ,K do

for l = 1,2, . . . , d do

Choose block j [Sect. 4.4]
Update W j : ← W j : + αjδj [Algorithm 2]

end for

Stop if a suitable criterion is met [Sect. 4.5]
end for

where λ > 0 is a parameter controlling the trade-off between loss and penalty minimization.
We call F(W ) ℓ1/ℓ2-regularized multiclass squared hinge loss function. Intuitively, for all
training instances and classes (different from the correct label), if the score is less than the
score assigned to the correct label by at least 1, the model suffers zero loss. Otherwise,
it suffers a loss which is quadratically proportional to the difference between the scores.
Besides convexity, F(W ) possesses the following desirable properties:

1. It is a direct multiclass formulation and its relation with Eq. (1) is intuitive.
2. Its objective value and gradient can be computed efficiently (unlike multiclass logistic

regression, which requires expensive log and exp operations).
3. It empirically performs comparably or better than other multitask and multiclass formu-

lations.
4. It meets several conditions needed to prove global convergence of block coordinate de-

scent algorithms (see Sect. 4.6).

Our objective, Eq. (2), is similar in spirit to Weston and Watkins’ multiclass SVM formu-
lation (Weston and Watkins 1999), in that it ensures that the correct class’s score is greater
than all the other classes by at least 1. However, it has the following differences: it is un-
constrained (rather than constrained), it is ℓ1/ℓ2-regularized (rather than ℓ2

2-regularized) and
it penalizes misclassifications quadratically (rather linearly), which ensures differentiability
of L(W ).

4.2 Optimization by block coordinate descent

A key property of F(W ) is the separability of its non-smooth part R(W ) over groups j =
1,2, . . . , d . This calls for an algorithm which minimizes F(W ) by updating W group by
group. In this paper, to minimize F(W ), we thus employ block coordinate descent. We
consider two variants, one with line search (Tseng and Yun 2009) and the other without
(Richtárik and Takáč 2012a). We present the two variants in a unified manner.

Algorithm 1 outlines block coordinate descent for minimizing F(W ). At each iteration,
Algorithm 1 selects a block W j : ∈ Rm of coefficients and updates it, keeping all other blocks
fixed (how to choose the block is delayed to Sect. 4.4). This procedure is repeated several
times until a suitable stopping criterion is met or the maximum number of outer iterations
K is reached. The main difficulty arising in Algorithm 1 is how to solve the sub-problem
associated with each weight block W j :. Let W

t be the weight matrix at iteration t . The key
idea of block coordinate descent frameworks for non-smooth separable minimization (Tseng
and Yun 2009; Richtárik and Takáč 2012a) is to update each block by solving the following
quadratic approximation of F around W

t :

W
∗
j : = argmin

W j :∈Rm

G
(

W
t
)T

j :
(

W j : − W
t
j :
)

+ 1

2

(

W j : − W
t
j :
)T

H
t
(

W j : − W
t
j :
)

+ λ‖W j :‖2, (3)
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Algorithm 2 Solving the block sub-problem associated with W j :

Compute G(W )j : [Algorithm 3]
Choose Lj [Sect. 4.4]
Compute

V j : = W j : − 1
Lj

G(W )j :

μj = λ
Lj

W
∗
j : = Proxμj ‖·‖2(V j :) = max{1 − μj

‖V j :‖2
,0}V j :

δj = W
∗
j : − W j :

Choose αj [Sect. 4.4]
Update W j : ← W j : + αjδj

where we used G(W )j : ∈ Rm to denote the j th row of the gradient of L(W ) and H
t is

a m × m matrix. If we choose H
t = Lt

jI where Lt
j is a scalar (we discuss its choice in

Sect. 4.4) and I is the identity matrix, Eq. (3) can be rewritten as:

W
∗
j : = argmin

W j :∈Rm

1

2

∥
∥W j : − V

t
j :
∥
∥

2 + μt
j‖W j :‖2

where we defined V
t
j : = W

t
j : − 1

Lt
j

G(W t )j : and μt
j = λ

Lt
j

. This problem takes a form which

is well-known in the signal-processing literature and whose solution is called proximity
operator (Combettes and Wajs 2005). The proximity-operator associated with the ℓ2 norm
takes a closed form (see e.g. Duchi and Singer 2009b for a derivation):

W
∗
j : = Proxμt

j
‖·‖2

(

V
t
j :
)

= max

{

1 −
μt

j

‖V t
j :‖2

,0

}

V
t
j :. (4)

This operator is known as vectorial soft-thresholding operator (Wright et al. 2009), owing to
the fact that W

∗
j : becomes entirely zero when 1 − μt

‖V t
j :‖2

< 0. Summarizing, we obtain W
∗
j :

by taking a partial gradient step with step size 1
Lt

j

and then projecting the result by Proxμt
j
‖·‖2

.

Finally, let δ
t
j = W

∗
j : −W

t
j :. The last step consists in setting W

t+1
j : = W

t
j : +αt

jδ
t
j . We discuss

the choice of αt
j in Sect. 4.4. Algorithm 2 summarizes how to solve the block sub-problem

associated with W j : (we drop the superscript t since there is no ambiguity).

4.3 Efficient partial gradient computation

We now discuss efficient computation of the partial gradient G(W )j : of L(W ), which is
crucial for the general efficiency of Algorithm 1. We first rewrite L(W ) as:

L(W ) = 1

n

n
∑

i=1

∑

r �=yi

max
(

A(W )ir ,0
)2

,

where A(W ) is a n × m matrix defined by:

A(W )ir = 1 − (W :yi
· xi − W :r · xi).
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Algorithm 3 Efficient computation of G(W )j : and h(W )j :

G(W )j : ← 0m

h(W )j : ← 0m

for r = 1,2, . . . ,m do

for i = 1,2, . . . , n such that xij �= 0 do

if yi �= r and A(W )ir > 0 then

G(W )jyi
← G(W )jyi

− 2
n
A(W )irxij

G(W )jr ← G(W )jr + 2
n
A(W )irxij

h(W )jyi
← h(W )jyi

+ 2
n
x2

ij

h(W )jr ← h(W )jr + 2
n
x2

ij

end if

end for

end for

The partial gradient of L(W ) can then be concisely written as:

G(W )j : = − 2

n

n
∑

i=1

∑

r �=yi

max
(

A(W )ir ,0
)

[xijeyi
− xijer ], (5)

where er = [0, . . . ,0
︸ ︷︷ ︸

r−1

,1,0, . . . ,0]T.

Since computing A(W )ir from scratch would be computationally prohibitive, we instead
initialize A(W ) to 1n×m at the beginning of Algorithm 1, then when a weight block is up-
dated by W j : ← W j : + αjδj , we update A(W ) by A(W )ir ← A(W )ir + αj (δjr − δjyi

)xij

for all i such that xij �= 0 and all r �= yi . Thanks to this implementation technique, denoting
n̂ the average number of non-zero values per feature, the cost of computing Eq. (5) is only
O(n̂(m − 1)). We summarize how to efficiently compute G(W )j : in Algorithm 3. When
using sparse data, the compressed sparse column (CSC) format can be used for fast access
to all non-zero values of feature j (inner loop in Algorithm 3).

4.4 Choice of block, Lt
j and αt

j

We now discuss how to choose, at every iteration, the block W j : to update, Lt
j and αt

j ,
depending on whether a line search is used or not.

4.4.1 With line search (Tseng and Yun)

Following Tseng and Yun (2009), we can choose

L
t
j = max

(∥
∥h

(

W
t
)

j :
∥
∥

∞, ǫ
)

,

where ǫ is a small constant (e.g., 10−12) to ensure positivity and:

h(W )j : =
[

∂2L

∂W
2
j1

, . . . ,
∂2L

∂W
2
jm

]T

.

In our case, L is not twice-differentiable, since G(W ) is not differentiable when A(W )ir = 0.
We can however define its generalized second derivatives (Mangasarian 2002; Chang et al.
2008):
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h(W )j : =
2

n

n
∑

i=1

∑

r �=yi

δ[A(W )ir>0]
(

x
2
ijeyi

+ x
2
ijer

)

, (6)

where δ[.] is the Kronecker delta. Since choosing Lt
j as above might lead to an overly large

step size 1
Lt

j

, Tseng and Yun choose αt
j such that the following sufficient decrease condition

is satisfied:

F
(

W
t+1

)

− F
(

W
t
)

≤ σαt
j

(

G
(

W
t
)T

j :δj + λ
∥
∥W

t
j : + δj

∥
∥

2
− λ

∥
∥W

t
j :
∥
∥

2

)

, (7)

where σ is a user-defined constant such that 0 < σ < 1. We can choose αt
j by backtracking

line search, that is, by sequentially trying αt
j = 1,ω,ω2, . . . until Eq. (7) is satisfied. Com-

mon choices in the optimization literature for σ and ω are 0.01 and 0.5, respectively. Since
we have W

t+1
j : = (1 − αt

j )W
t
j : + αt

jW
∗
j :, we see that W

t+1
j : can be interpreted as a weighted

sum between the current iterate and the subproblem’s solution.
Similarly to Eq. (5), the cost of computing Eq. (7) and Eq. (6) is O(n̂(m−1)). In practice,

we observe that one line search step often suffices for Eq. (7) to be satisfied. Therefore, the
cost of one call to Algorithm 2 is in general O(n̂(m − 1)).

To enjoy Tseng and Yun’s theoretical guarantees (see Sect. 4.6), we need to use cyclic
block selection. That is, in Algorithm 1, at each inner iteration, we need to choose j = l.

4.4.2 Without line search (Richtárik and Takáč)

We show in Appendix A that G(W )j : is Lipschitz with constant

Kj = 4(m − 1)

n

∑

i

x
2
ij .

Following Richtárik and Takáč (2012a), we can choose Lt
j = Kj . In that case, no line

search is needed, i.e., αt
j = 1 and W

t+1
j : = W

∗
j :. Our implementation pre-computes Kj ∀j ∈

{1, . . . , d} and stores the results in a d-dimensional vector. Note that, Richtárik and Takáč
assume that blocks are selected with uniform probability 1

d
.

Using a line search or not is a matter of trade-off: using a line search has higher cost
per iteration but can potentially lead to greater progress due to the larger step size. We
compare both strategies experimentally in Sect. 5.2. One advantage of Richtárik and Takáč’s
framework, however, is that it can be parallelized (Richtárik and Takáč 2012b), potentially
leading to significant speedups. In future work, we plan to compare sequential and parallel
block coordinate descent when applied to our objective, Eq. (2).

4.5 Stopping criterion

We would like to develop a stopping criterion for Algorithm 1 which can be checked at al-
most no extra computational cost. Proposition 1 characterizes an optimal solution of Eq. (2).

Proposition 1 W is an optimal solution of Eq. (2) if and only if ∀j :

⎧

⎪
⎪
⎨

⎪
⎪
⎩

‖G(W )j :‖2 ≤ λ if W j : = 0 (8a)

G(W )j : +
λW j :

‖W j :‖2
= 0 if W j : �= 0. (8b)
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Proof is given in Appendix B. Using Proposition 1 and the fact that Eq. (8b) is equivalent
to ‖G(W )j :‖2 = λ if W j : �= 0, we define vt , the optimality violation at the t th iteration (the
bigger, the stronger the violation):

vt =
{

max(‖G(W t )j (t):‖2 − λ,0) if W
t
j (t): = 0

‖|G(W t )j (t):‖2 − λ| if W
t
j (t): �= 0,

(9)

where j (t) denotes the block selected at the t th iteration. In Eq. (9), the max operator is to
account for the inequality in (8a) and the absolute value for the equality in (8b). Since we
already need G(W t )j (t): for solving each block sub-problem, computing vt comes at almost
no extra cost.

As indicated in Algorithm 1, we check convergence at the end of each outer iteration. Let
T k = {(k − 1)d + 1, (k − 1)d + 2, . . . , kd} be the set of values taken by t at the kth outer
iteration. One possible stopping criterion is:

∑

t∈T k vt

∑

t∈T 1 vt
< τ, (10)

where 0 < τ ≤ 1 is a user-defined tolerance constant (the bigger, the faster to stop). This
criterion is the most natural when cyclic block selection is used, since the sums in Eq. (10)
are then over all blocks 1, . . . , d . Another possible stopping criterion consists in replacing
the ℓ1 norm by the ℓ∞ norm:

maxt∈T k vt

maxt∈T 1 vt
< τ.

We use this criterion when randomized uniform block selection is used. In both cases, the
denominator serves the purpose of normalization (hence, τ is not sensitive to the dataset
dimensionality).

4.6 Global convergence properties

We discuss convergence properties for the two block coordinate descent variants we consid-
ered: cyclic block coordinate descent with line search (Tseng and Yun 2009) and randomized
block coordinate descent without line search (Richtárik and Takáč 2012a). To have finite
termination of the line search, Tseng and Yun (Lemma 5.1), require that L has Lipschitz
continuous gradient, which we prove with Lemma 1 in Appendix A. For asymptotic conver-
gence, Tseng and Yun assume that each block is cyclically visited (Eq. (12)). They further
assume (Assumption 1) that H

t is upper-bounded by some value and lower-bounded by 0,
which is guaranteed by our choice H

t = Lt
jI . Richtárik and Takáč also assume (Sect. 2)

that the blockwise gradient is Lipschitz. They show (Theorem 4) that using their algorithm,
there exists a finite iteration t such that P (F(W t ) − F(W ∗) ≤ ǫ) ≥ 1 − ρ, where ǫ > 0 is
the accuracy of the solution and 0 < ρ < 1 is the target confidence.

4.7 Extensions

A straightforward extension of our objective, Eq. (2), is label ranking with multilabel data:

minimize
W∈Rd×m

1

n

n
∑

i=1

∑

r∈Yi ,r
′ /∈Yi

max
(

1 − (W :r · xi − W :r ′ · xi),0
)2 + λ

d
∑

j=1

‖W j :‖2,
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where Yi is the set of labels assigned to xi . Intuitively, this objective attempts to assign
higher score to relevant labels than to non-relevant labels. If the goal is to predict label sets
rather than label rankings, threshold selection methods (Fan and Lin 2007; Elisseeff and
Weston 2001) may be applied as a post-processing step.

Another possible extension consists in replacing ℓ1/ℓ2 regularization by ℓ1/ℓ∞ regular-
ization or ℓ1 +ℓ1/ℓ2 regularization (sparse group lasso, Friedman et al. 2010a). This requires
changing the proximity operator, Eq. (4), as well as reworking the stopping criterion devel-
oped in Sect. 4.5. Similarly to ℓ1/ℓ2 regularization, ℓ1/ℓ∞ regularization leads to group
sparsity. However, the proximity operator associated with the ℓ∞ norm requires a projection
on an ℓ1-norm ball (Bach et al. 2012) and is thus computationally more expensive than the
proximity operator associated with the ℓ2 norm, which takes a closed form, Eq. (4). For
ℓ1 + ℓ1/ℓ2 regularization (sparse group lasso), the group-wise proximity operator can read-
ily be computed by applying first the proximity operator associated with the ℓ1 norm and
then the one associated with the ℓ2 norm (Bach et al. 2012). However, sparse group lasso
regularization requires the tuning of an extra hyperparameter, which balances between ℓ1/ℓ2

and ℓ1 regularizations. For this reason, we do not consider it in our experiments.

5 Experiments

We conducted two experiments. In the first experiment, we investigated the performance (in
terms of speed of convergence and row sparsity) of block coordinate descent (with or without
line search) for optimizing the proposed direct multiclass formulation Eq. (2), compared to
other state-of-the-art solvers. In the second experiment, we compared the proposed direct
multiclass formulation with other multiclass and multitask formulations in terms of test
accuracy, row sparsity and training speed. Experiments were run on a Linux machine with
an Intel Xeon CPU (3.47 GHz) and 4 GB memory.

5.1 Datasets

Table 1 summarizes the datasets we used to conduct our experiments:

– Amazon7: product-review (books, DVD, electronics, . . . ) classification.
– RCV1: news document classification.
– MNIST: handwritten digit classification.
– News20: newgroup message classification.
– Sector: web-page (industry sectors) classification.

We created Amazon7 using the entire data of Dredze et al. (2008) (they used only a small
subset). For the scale of this dataset, constructing feature vectors from raw text by conven-
tional bag-of-words extraction exceeded the memory of our computer. For this reason, we
instead used the hashing trick (Weinberger et al. 2009) (a popular technique for large-scale
and high-dimensional linear classification problems) and set the dimensionality to d = 218.
Amazon7 is available for download from http://www.mblondel.org/data/. Other datasets are
available in vectorized form from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
To determine test accuracy, we used stratified selection in order to split each dataset into
4/5 training and 1/5 testing.

http://www.mblondel.org/data/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1 Datasets used in Sect. 5
Dataset Instances Features Non-zero features Classes

Amazon7 1,362,109 262,144 0.04 % 7

RCV1 534,135 47,236 0.1 % 52

MNIST 70,000 780 19 % 10

News20 18,846 130,088 0.1 % 20

Sector 9,619 55,197 0.3 % 105

5.2 Comparison of block coordinate descent with other solvers

In this section, we compare different solvers:

– BCD (LS): block coordinate descent with line search and with cyclic block selection
(Tseng and Yun 2009),

– BCD (CST): block coordinate descent without line search and with randomized uniform
block selection (Richtárik and Takáč 2012a),

– FISTA (LS): an accelerated iterative thresholding algorithm with line search (Beck and
Teboulle 2009),

– FISTA (CST): same as above but with constant step size 1
K

(see Appendix A),
– SpaRSA: a similar approach to ISTA (Beck and Teboulle 2009) but with different line

search (Wright et al. 2009),
– FOBOS: a projected stochastic subgradient descent framework (Duchi and Singer 2009b).

All solvers are used to minimize the same objective: our proposed multiclass formulation,
Eq. (2).

Figures 2 and 3 compare the relative objective value difference F(W )−F(W∗)

F (W∗)
(lower is

better) and test accuracy (higher is better) of the above solvers as a function of training time,
when λ = 10−3 and λ = 10−5, respectively. For FOBOS, we used the step size ηt = η0√

t
,

where we chose η0 beforehand from 10−3, 10−2, . . . , 103 with a held-out validation set.
Figure 4 compares the number of non-zero rows of the solution (lower is better) as a

function of training time for the different solvers, when λ = 10−3 (left) and λ = 10−5 (right).

5.2.1 Comparison of block coordinate descent with or without line search

Figures 2 and 3 indicate that block coordinate descent (BCD) with line search was overall
slightly faster to converge than without. Empirically, we observe that the sufficient decrease
condition checked by the line search, Eq. (7), is usually accepted on the first try (αt

j = 1). In
that case, the line search does not incur much extra cost, since the objective value difference
F(W t+1) − F(W t ), needed for Eq. (7), can be computed in the same loop as the partial
gradient. For the few times when more than one line search step is required, our formulation
has the advantage that the objective value difference can be computed very efficiently (no
expensive log or exp). However, similarly to other iterative solvers, BCD (both with or
without line search) may suffer from slow convergence on very loosely regularized problems
(very small λ).

In terms of row sparsity, Fig. 4 shows that in all datasets, BCD had a two-phase behavior:
first increasing the number of non-zero rows, then rapidly decreasing it. Compared to other
solvers, BCD was always the fastest to reach the sparsity level corresponding to a given λ

value.
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Fig. 2 Relative objective value difference (left) and test accuracy (right) as a function of training time, when
λ = 10−3 . Time is in log-scale

5.2.2 Comparison with a projected stochastic subgradient descent solver: FOBOS

BCD outperformed FOBOS on smaller datasets (News20, Sector) and was comparable to
FOBOS on larger datasets (MNIST, RCV1, Amazon7). However, for FOBOS, we found
that tuning the initial step size η0 was crucial to obtain good convergence speed and accu-
racy. This additional “degree of freedom” is a major disadvantage of FOBOS over BCD, in
practice. However, since it is based on stochastic subgradient descent, FOBOS can handle
non-differentiable loss functions (e.g., the Crammer-Singer multiclass loss), unlike BCD.

Figure 4 shows that FOBOS obtained much less sparse solutions than BCD. In particular,
on RCV1 with λ = 10−3, BCD obtained less than 5 % non-zero rows whereas FOBOS
obtained almost 80 %.
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Fig. 2 (Continued)

5.2.3 Comparison with full-gradient solvers: FISTA and SpaRSA

BCD outperformed FISTA and SpaRSA on all datasets, both in speed of objective value
decrease and test accuracy increase. FISTA (LS) and SpaRSA achieved similar convergence
speed with a slight advantage for FISTA (LS). Interestingly, FISTA (CST) was always quite
worse than FISTA (LS), showing that, in the full-gradient case, doing a line search to adjust
the step size at every iteration is greatly beneficial. In contrast, the difference between BCD
(LS) and BCD (CST) appeared to be smaller. FISTA (CST) uses one global step size 1

K

whereas BCD (CST) uses a per-block step size 1
Kj

. Therefore, BCD (CST) uses a constant

step size which is more appropriate for each block.
BCD, FOBOS, FISTA and SpaRSA differ in how they make use of gradient information

at each iteration. FISTA and SpaRSA use the entire gradient G(W ) ∈ Rd×m averaged over
all n training instances. This is expensive, especially when both n and d are large. On the
other hand, FOBOS uses a stochastic approximation of the entire gradient (averaged over
a single training instance) and BCD uses only the partial gradient G(W )j : ∈ Rm (averaged
over all training instances). FOBOS and BCD can therefore quickly start to minimize Eq. (2)
and increase test accuracy, when FISTA and SpaRSA are not even done computing G(W )

yet. Additionally, FISTA and SpaRSA change W entirely at each iteration, which forces to
recompute G(W ) and F(W t+1) − F(W t ) entirely. In the case of BCD, only one block W j :
is modified at a time, enabling the fast implementation technique described in Sect. 4.3.

In terms of sparsity, FISTA and SpaRSA reduced the number of non-zero rows much
more slowly than BCD. However, in the limit, they obtained similar row sparsity to BCD.
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Fig. 3 Relative objective value difference (left) and test accuracy (right) as a function of training time, when
λ = 10−5 . Time is in log-scale

5.2.4 Effect of shrinking

We also extended to ℓ1/ℓ2 regularization the shrinking method originally proposed by Yuan
et al. (2010) for ℓ1-regularized binary classification. Indeed, using optimality conditions
developed in Sect. 4.5, it is possible to discard zero blocks early if, according to the op-
timality conditions, they are likely to remain zero. However, we found that shrinking did
not improve convergence on lower-dimensional datasets such as RCV1 and only slightly
helped on higher-dimensional datasets such as Amazon7. This is in line with Yuan et al.’s
experimental results on ℓ1-regularized binary classification.

5.3 Comparison with other multiclass and multitask objectives

In this experiment, we used block coordinate descent to minimize and compare different
ℓ1/ℓ2-regularized multiclass and multitask objectives:
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Fig. 3 (Continued)

– multiclass squared hinge (proposed, same as Eq. (2)):

minimize
W∈Rd×m

1

n

n
∑

i=1

∑

r �=yi

max
(

1 − (W :yi
· xi − W :r · xi),0

)2 + λ

d
∑

j=1

‖W j :‖2.

– multitask squared hinge:

minimize
W∈Rd×m

1

n

m
∑

r=1

n
∑

i=1

max(1 − Y irW :r · xi,0)2 + λ

d
∑

j=1

‖W j :‖2, (11)

where Y ir = +1 if yi = r and Y ir = −1 otherwise.
– multiclass logistic regression:

minimize
W∈Rd×m

1

n

n
∑

i=1

log

(

1 +
∑

r �=yi

exp(W :r · xi − W :yi
· xi)

)

+ λ

d
∑

j=1

‖W j :‖2. (12)

For both multitask squared hinge and multiclass logistic regression, we computed the
partial gradient using an efficient implementation technique similar to the one described
in Sect. 4.3. For the multiclass and multitask squared hinge formulations, we used BCD
with line search. For the multiclass logistic regression formulation, we used BCD without
line search, since we observed faster training times (see Sect. 5.3.1). For multiclass logistic
regression, the partial gradient’s Lipschitz constant is Kj = 1

2

∑

i x
2
ij (Duchi and Singer

2009a).
Figure 5 compares the row-sparsity/test-accuracy trade-off of the above objectives. We

generated 10 log-spaced values between λ = 10−2 and λ = 10−4 (Sector), and between
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Fig. 4 Percentage of non-zero rows as a function of training time, when λ = 10−3 (left) and λ = 10−5

(right). Time is in log-scale

λ = 10−3 and λ = 10−5 (other datasets). For each λ value, we computed the solution and
measured the percentage of non-zero rows as well as test accuracy, so as to obtain Fig. 5.
Table 2 shows the time (minimum, median and maximum) that was needed to compute
the solutions of each objective. The results reported are averages obtained from 3 different
train-test splits. We set τ = 10−3 and K = 200.

5.3.1 Comparison with multiclass logistic regression

Compared to multiclass logistic regression, Eq. (12), our objective achieved overall compa-
rable accuracy. As indicated in Table 2, however, our objective was substantially faster to
train (up to ten times in terms of median time) than multiclass logistic regression. Computa-
tionally, our objective has indeed two important advantages. First, the objective and gradient
are “lazy”: they iterate over instances and classes only when the score is not greater than the
score assigned to the correct label by at least 1, whereas multiclass logistic regression al-
ways iterates over all n instances and m − 1 classes. Second, they do not contain any exp
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Fig. 4 (Continued)

or log computations, which are expensive to compute in practice (equivalent to dozens of
multiplications) (Yuan et al. 2011).

We also tried to use BCD with line search for optimizing the multiclass logistic regression
objective. However, we found that the version without line search was overall faster. For
example, on Amazon7, the median time with line search was 8723.28 seconds instead of
5822.83 seconds without line search. This contrasts with our results from Sect. 5.2 and thus
suggests that a line search may not be beneficial when the objective value and gradient are
expensive to compute. However, our results show that even without line search, multiclass
logistic regression is much slower to train than our formulation.

5.3.2 Comparison with multitask squared hinge loss

Compared to the multitask squared hinge formulation, Eq. (11), we found that our direct
multiclass formulation had overall better accuracy and training time. This multitask formu-
lation can be thought as one-vs-rest with ℓ1/ℓ2 regularization. It is semantically different
from our multiclass formulation, since it only attempts to correctly predict binary labels for
different tasks (columns of Y ), not the true multiclass labels. It is instructive to compare its
gradient (without regularization term)

GMT (W )j : = − 2

n

∑

r

∑

i

Y ir max(1 − Y irW :r · xi,0)xijer (13)

with the gradient in the case of our formulation,

G(W )j : = − 2

n

n
∑

i=1

∑

r �=yi

max
(

1 − (W :yi
· xi − W :r · xi),0

)

[xijeyi
− xijer ]. (14)
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Fig. 5 Test accuracy of multiclass and multiclass ℓ1/ℓ2-regularized objective functions as a function of the
percentage of non-zero rows in the solution. Results were obtained by computing solutions for 10 log-spaced
values between λ = 10−2 and λ = 10−4 (Sector), and between λ = 10−3 and λ = 10−5 (other datasets)

The main difference is that the inner sum in Eq. (13) updates only one element GMT (W )jr of
the gradient by adding xij weighted by Y ir max(1 − Y irW :r · xi,0), whereas the inner sum
in Eq. (14) updates two elements G(W )jr and G(W )jyi

by adding/subtracting xij weighted
by max(A(W )ir ,0) = max(1 − (W :yi

· xi − W :r · xi),0).
Using an efficient implementation technique similar to the one described in Sect. 4.3, the

cost of computing Eq. (13) is O(n̂m) rather than O(n̂(m−1)) for Eq. (14). We also observed
that our multiclass objective typically reached the stopping criterion in fewer iterations than
the multitask objective (e.g., k = 73 vs. k = 108 on the News20 dataset with λ = 10−3).

6 Conclusion

In this paper, we proposed a novel direct sparse multiclass formulation, specifically designed
for large-scale and high-dimensional problems. We presented two block coordinate descent
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Table 2 Minimum, median and maximum training times (in seconds) of different ℓ1/ℓ2-regularized objec-
tive functions, when computing solutions for 10 log-space values between λ = 10−2 and λ = 10−4 (Sector),
and between λ = 10−3 and λ = 10−5 (other datasets)

Dataset MC Squared Hinge MT Squared Hinge MC Logistic

Amazon7 285.93 655.53 4,137.39

486.54 909.84 5,822.83

1,118.65 1,740.90 6,128.27

RCV1 2,962.82 5,089.91 10,413.47

3,901.58 6,300.77 11,540.80

4,581.33 6,556.67 15,055.57

MNIST 32.55 42.74 141.54

55.25 79.56 260.30

61.67 99.37 645.04

News20 50.46 71.42 172.94

70.73 93.82 218.04

75.08 98.15 244.62

Sector 62.01 251.57 149.09

167.01 259.50 532.30

191.52 273.85 743.45

variants (Tseng and Yun 2009; Richtárik and Takáč 2012a) in a unified manner and devel-
oped the core components needed to efficiently optimize our formulation. Experimentally,
we showed that block coordinate descent achieves comparable or better convergence speed
than FOBOS (Duchi and Singer 2009b), while obtaining much sparser solutions and not
needing an extra hyperparameter. Furthermore, it outperformed full gradient based solvers
such as FISTA (Beck and Teboulle 2009) and SpaRSA (Wright et al. 2009). Compared
to multiclass logistic regression, our multiclass formulation had significantly faster train-
ing times (up to ten times in terms of median time) while achieving similar test accuracy.
Compared to a multitask squared hinge formulation, our formulation had overall better test
accuracy and faster training times. In future work, we would like to empirically evaluate the
extensions described in Sect. 4.7.

Appendix A: Lemma 1 and its proof

Lemma 1 L has Lipschitz continuous gradient, that is, there exists K > 0 such that

∥
∥G(W 1) − G(W 2)

∥
∥ ≤ K‖W 1 − W 2‖ ∀W 1,W 2 ∈ Rd×m.

Proof We rewrite L(W ) using a single vector (Shalev-Shwartz et al. 2010) notation:

L(W ) = 1

n

n
∑

i=1

∑

r �=yi

max
(

1 −
(

W̄ · Φ(xi, yi) − W̄ · Φ(xi, r)
)

,0
)2

,

where W̄ ∈ Rdm refers to the “flattened” version of W and Φ(x, r) ∈ Rdm is a vector which
is zero everywhere except in the block corresponding to class r where it is x. Using this
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notation, the entire “flattened” gradient can be concisely written as:

Ḡ(W ) = − 2

n

n
∑

i=1

∑

r �=yi

max(1 − W̄ · Φir ,0)Φir ,

where Φir = Φ(xi, yi) − Φ(xi, r). We first show that max(1 − W̄ · Φir ,0)Φir itself is Lips-
chitz, that is, there exists K̂ such that:
∥
∥max(1 − W̄ 1 ·Φir ,0)Φir − max(1 − W̄ 2 ·Φir ,0)Φir

∥
∥ ≤ K̂‖W̄ 1 − W̄ 2‖ ∀W̄ 1, W̄ 2 ∈ Rdm.

We consider different cases. If both 1 − W̄ 1 · Φir < 0 and 1 − W̄ 2 · Φir < 0, then the left-
hand side becomes zero and the inequality trivially holds for any K̂. If 1 − W̄ 1 · Φir > 0 and
1 − W̄ 2 · Φir < 0, then:

∥
∥(1 − W̄ 1 · Φir)Φir

∥
∥ = (1 − W̄ 1 · Φir)‖Φir‖

≤ (W̄ 2 · Φir − W̄ 1 · Φir)‖Φir‖

= Φir · (W̄ 2 − W̄ 1)‖Φir‖

≤ ‖Φir‖2‖W̄ 2 − W̄ 1‖.

The second line uses W̄ 2 · Φir > 1 and the last line uses the Cauchy-Shwarz inequality. The
other two cases can be handled similarly. max(1 − W̄ · Φir ,0)Φir is thus Lipschitz with
constant K̂ = ‖Φir‖2 = 2‖xi‖2. Finally, a sum of Lipschitz functions is Lipschitz, therefore,
G(W ) is Lipschitz with constant K = 4

n

∑

i

∑

r �=yi
‖xi‖2 = 4(m−1)

n

∑

i ‖xi‖2. Using the same

proof technique, we can show that G(W )j : is Lipschitz with constant Kj = 4(m−1)

n

∑

i x
2
ij .

Appendix B: Proof of Proposition 1

From standard convex analysis, W is an optimal solution of Eq. (2) if and only if:

0 ∈ ∂F (W ) = ∂L(W ) + λ∂R(W ) (15)

where ∂F (W ) denotes the subdifferential of F . Since L is differentiable, we have ∂L(W ) =
{G(W )}. Denote R̂(W j :) = ‖W j :‖2. We have ∂R(W ) = [∂R̂(W 1:), . . . , ∂R̂(W d:)], where:

∂R̂(W j :) =
{

{z ∈ R
m : R̂∗(z) ≤ 1}, if W j : = 0

{z ∈ Rm : R̂∗(z) = 1 and zTW j : = R̂(w)}, if W j : �= 0,

and R̂∗ denotes the dual norm of R̂ (Bach et al. 2012). Since the ℓ2 norm is dual of itself,
we have:

{

∂R̂(W j :) ∈ {z ∈ Rm : ‖z‖2 ≤ 1} if W j : = 0

∂R̂(W j :) = Wj :
‖Wj :‖2

if W j : �= 0.

Finally, applying Eq. (15), we obtain for all j :
{

‖G(W )j :‖2 ≤ λ if W j : = 0

G(W )j : + λW j :
‖W j :‖2

= 0 if W j : �= 0,

which concludes the proof. �
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