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Abstract

Block{cyclic order elimination algorithms for LU and QR factorization and solve

routines are described for distributed memory architectures with processing nodes

con�gured as two{dimensional arrays of arbitrary shape. The cyclic order elimina-

tion together with a consecutive data allocation yields good load{balance for both

the factorization and solution phases for the solution of dense systems of equations by

LU and QR decomposition. Blocking may o�er a substantial performance enhance-

ment on architectures for which the level{2 or level{3 BLAS are ideal for operations

local to a node. High rank updates local to a node may have a performance that is

a factor of four or more higher than a rank{1 update.

We show that in many parallel implementations, the O(N

2

) work in the factor-

ization may be of the same signi�cance as the O(N

3

) work, even for large matrices.

The O(N

2

) work is poorly load{balanced in two{dimensional nodal arrays, which

we show are optimal with respect to communication for consecutive data allocation,

block{cyclic order elimination, and a simple, but fairly general, communications

model.

In our Connection Machine system CM{200 implementation, the peak perfor-

mance for LU factorization is about 9.4 Gops/s in 64-bit precision and 16 Gops/s

in 32-bit precision. Blocking o�ers an overall performance enhancement of about

a factor of two. The broadcast and reduce operations fully utilize the bandwidth

available in the Boolean cube network interconnecting the nodes along each axis of

the two{dimensional nodal array embedded in the cube network.

1 Introduction

The main contributions of this paper are: 1) empirical evidence that a block{cyclic order

elimination can be used e�ectively on distributed memory architectures to achieve load{

balance as an alternative to block{cyclic data allocation, 2) a discussion of the issues

that arise when the block{cyclic orderings of rows and columns are di�erent, which is

the typical case when the number of processing nodes is not a square, and 3) a proof that

within a wide class of regular data layouts, two{dimensional nodal arrays with consecutive

(block) data allocation and cyclic elimination order are optimal for elimination based dense

linear algebra routines. This last result applies to communication systems in which the

communication time is a function only of the number of elements entering or leaving a

node. The e�ectiveness of the block{cyclic order elimination demonstrates the utility of
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equivalencing block{distributed and block{cyclic distributed arrays in Fortran D [7] and

Vienna Fortran [31].

The programs described in this article were written for an implementation of the Connec-

tion Machine Scienti�c Software Library [29], CMSSL, on the Connection Machine system

CM{200 [27]. This system is a distributed memory computer with up to 2048 nodes.

Each node has hardware support for oating{point addition and multiplication in 32{bit

and 64{bit precision. Each node has up to 4 Mbytes of local memory, a single 32{bit

wide data path between the oating{point processor and the local memory, and separate

communication circuitry. Data paths internal to the oating{point unit are 64{bits wide.

The processing units are interconnected as an 11{dimensional Boolean cube, with a pair

of channels between adjacent nodes. Data may be exchanged on all 22 (11 � 2) channels

of every node concurrently. This property is exploited for data copying (spread) and data

summation (reduction) in the algorithms described below.

We consider LU factorization, QR factorization (with and without partial pivoting), and

solution routines for both LU factorization (triangular system solvers) and QR factoriza-

tion. Our triangular solver encompasses both the routine TRSV in the level{2 BLAS [6]

(Basic Linear Algebra Subroutines) and the routine TRSM in the level{3 BLAS [4, 5]. It

is easy to show that a cyclic data allocation with consecutive order elimination, or a con-

secutive allocation and a cyclic order elimination, yields a factor of three higher processor

utilization on two{dimensional nodal arrays, than consecutive allocation and consecutive

elimination order [17]. Coleman [22, 23] reports some results from an implementation of

triangular system solvers using consecutive order elimination and cyclic data allocation on

multiprocessors with up to 128 nodes. Van de Geijn [30] uses consecutive order elimina-

tion and cyclic data allocation for an implementation of LU factorization and triangular

system solvers. Since the Connection Machine system compilers by default use consecu-

tive data allocation, we use a cyclic order elimination. We use a similar implementation

strategy for routines for reduction of a symmetric or Hermitian matrix to real tridiagonal

form (EISPACK TRED and HTRID [26], LAPACK SYTRD and HETRD [1]). Details

concerning these routines will appear elsewhere.

We use blocking of row and column operations to increase the e�ciency of operations in

each node. The level{2 BLAS is used in each node to achieve maximum performance.

The di�erence in peak performance between a rank{1 update and a higher rank update is

about a factor of four on a Connection Machine system CM{200 node. The di�erence in

peak performance is mostly determined by the di�erence in need for memory bandwidth

between a rank{1 and a high rank update. In our CMSSL implementation of the BLAS

local to each Connection Machine system CM{200 node [20], LBLAS, each node achieves

a peak performance of about 9.3 Mops/s in 64{bit precision on matrix multiplication

(high rank updates). Our implementation of LU factorization of matrices distributed

over all nodes achieves a peak performance, including communication, of 4.6 Mops/s per

node in 64{bit precision. As a comparison, our CMSSL implementation of dense matrix

multiplication with operands distributed across all nodes achieves a peak performance of

4.8 Gops/s in 64{bit precision [24].

This article provides su�cient insight into the details of the algorithms to account for
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the di�erence in performance between local matrix multiplication and global factorization

and solve routines for dense matrices. We also describe how the performance scales with

problem and machine size. In Section 2 we review the merits of higher level local BLAS

for a class of common processor architectures. Section 3 discusses the performance of the

level{1 and level{2 LBLAS used in CMSSL. Section 4 describes the layouts of data arrays

created by the Connection Machine Run{Time System. Section 5 explains how we use

block{cyclic ordering of the elimination steps to keep the work load{balanced across all

nodes. Section 6 discusses the performance characteristics of the di�erent parts of the

algorithms. Finally, we show in Section 7 that a two{dimensional consecutive data layout

is optimal for elimination algorithms using a cyclic order elimination and communication

systems where the times for data copying and reduction are determined by the number of

data items leaving or entering a node.

2 Blocking for improved performance of local BLAS

Memory bandwidth is the most critical resource in high performance architectures. There-

fore, proper attention must be given to the primitives used in constructing linear algebra

libraries. Nearly all oating{point computation in linear algebra occurs as multiply{add

pairs. This fact is evident in the BLAS used to perform many operations in the solution of

linear systems of equations, eigenanalysis, optimization, and the solution of partial di�er-

ential equations. The �rst BLAS were vector routines (like DSCAL and DDOT) [21]. But,

these routines require large memory bandwidth for peak oating{point performance, and

algorithm designers turned to higher level BLAS, such as level-2 BLAS for matrix-vector

operations, and level{3 BLAS for matrix-matrix operations. Next, we give a few examples

to illustrate this fact.

Today, most high performance oating{point processors have the ability to perform con-

currently one multiplication and one addition. The data for these operations is nearly

always read from registers, and the results are written to registers. The peak performance

can only be achieved when multiplication and addition can be performed concurrently,

and the data they require can ow in and out of registers fast enough. The memory band-

width required to match the computational bandwidth depends on the computation being

performed.

For example, the DSCAL operation which multiplies a vector by a scalar with all operands

in 64{bit precision, reads one scalar into a register, and then, for each component of the

result, reads one element of the argument vector, multiplies it by the constant, and writes

one result to memory. Thus, each multiplication requires 8 bytes to be loaded into a register

and 8 bytes to be stored from a register, or 16 bytes of memory bandwidth per oating{

point operation. As a contrast, the DDOT routine, which computes the inner product of 2

vectors in 64{bit precision, reads two 8 byte quantities for each multiply-add it performs,

then stores one 8 byte result at the end. Thus, 16 bytes of memory bandwidth is required

per 2 oating{point operations, or 8 bytes per oating{point operation. Similarly, it is

easy to show that the rank{1 update routine DGER requires a memory bandwidth of 8
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Operation Mem. bandw.

Bytes/op

DSCAL 16

DAXPY 12

DDOT 8

DGER 8

DGEMV 4

DGEMM 8/b

Table 1: Memory bandwidth requirement for full utilization of a oating{point unit with

one adder and one multiplier.

bytes per oating{point operation.

Matrix{vector multiplication, performed by the routine DGEMV, can be organized such

that the vector is read into registers, and the matrix{vector multiplication computed

through the accumulation of scaled vectors as y  �x + y. With � and y allocated to

registers, and x representing a column of the matrix read from memory, 8 bytes of memory

bandwidth is required for every pair of oating{point operations in 64{bit precision.

A level{3 BLAS routine such as DGEMM, allows for a further reduction in memory band-

width requirement. It performs the operation C  A � B, which may be performed as

a sequence of operations on b by b sub-blocks. If the blocks �t into the registers, then

2b

3

oating{point operations may be computed using 3b

2

input elements (b

2

elements per

operand), producing b

2

results. If all contributions to a block of C are accumulated in

registers, then it su�ces to load 2b

2

inputs for each set of 2b

3

oating{point operations.

All stores are delayed until all computations for a b� b block of C are completed. There-

fore, 16b

2

=2b

3

bytes of memory bandwidth are required per oating{point operation in

64{bit precision, or 8=b bytes/op. A high rank update of a matrix is equivalent to matrix

multiplication.

Table 1 summarizes the memory bandwidth requirements for a subset of the BLAS. The

signi�cance of the di�erence in memory bandwidth requirement of the di�erent routines

depend upon the available memory bandwidth. For example, a computer with three 8 bytes

wide data paths between each processor and the memory, i.e., a 12 bytes/op computer

such as the Cray-YMP, can perform DAXPY operations at peak rates. A 2 bytes/op

computer, such as an Intel i860 [10] and a Connection Machine system CM{200 node,

may not have enough registers to achieve peak rates even for level{3 BLAS local to each

node, such as for instance for the DGEMM routine. As a rule of thumb, the less memory

bandwidth is available, the more blocking is desirable, but more blocking is only useful if

there is a su�cient number of registers.

This simpli�ed performance picture is in reality often complicated by pipeline delays and

looping overheads. For short vectors and small register sets minimizing these quantities

may be as important for performance as minimizing the demand for memory bandwidth.
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Figure 1: The execution rates in Mops/s of the DAXPY, DDOT, and DGEMV LBLAS

on each Connection Machine system CM{200 node.

3 Local BLAS on the Connection Machine system

CM{200

In the following we refer to the BLAS local to each node as LBLAS to distinguish it from

BLAS for data arrays distributed over several nodes, DBLAS. Each node of the Connection

Machine system CM{200 is a 2 bytes/op computer, based on the memory bandwidth.

There is a single 32{bit wide data path between each oating{point processor and its local

memory. The data paths internal to a processor are 8 bytes wide (i.e., internally each

oating{point processor is a 4 bytes/op computer). Each oating{point processor has 32

oating{point registers, and operates at 10 MHz. There is a one cycle delay for loading

data from memory, and a three cycle arithmetic pipeline delay. Each vector operation

incurs an overhead of at least 6 cycles. Moreover, the memory is organized into pages, and

a page fault incurs a delay of one cycle. Stores are relatively more expensive and require

close to two cycles. The oating{point processor can achieve close to peak performance

in 32{bit precision for level{2 LBLAS with the operands local to a node, and at least

half of the peak performance in 64{bit precision. The oating{point processor does not

have enough registers to achieve its full peak rate on level{3 LBLAS. Table 2 gives the

actual performance for the SAXPY, DAXPY, SDOT, and DDOT routines as function of

the vector length for each Connection Machine system CM{200 node. Tables 3 and 4 give

the performance for SGEMV and DGEMV as a function of matrix size.

Figure 1 shows the performance for the DAXPY and DDOT routines on each Connection

Machine system CM{200 node as a function of the vector length. The �gure also shows the

performance of the routine DGEMV as a function of the number of columns for 64 matrix

rows. The peak measured performance for the AXPY routine is about 60% of the peak
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V-length SAXPY DAXPY SDOT DDOT

1 0.21 0.16 0.21 0.16

2 0.41 0.29 0.35 0.35

3 0.58 0.42 0.52 0.51

4 0.80 0.54 0.68 0.66

5 0.97 0.65 0.83 0.79

8 1.40 0.95 1.27 1.15

10 1.65 1.13 1.53 1.36

15 2.15 1.41 2.13 1.79

20 2.55 1.61 2.65 2.13

30 3.11 1.87 3.03 2.21

40 3.07 1.89 3.71 2.70

50 3.37 2.02 4.23 2.96

60 3.53 2.09 4.41 3.02

70 3.56 2.11 4.75 3.19

80 3.71 2.18 5.06 3.33

100 3.77 2.22 5.32 3.45

120 3.93 2.28 5.51 3.53

140 4.00 2.31 5.86 3.68

256 4.20 2.39 6.52 3.92

512 4.32 2.43 6.97 4.07

1024 4.42 2.46 7.24 4.15

2048 4.46 2.48 7.38 4.20

4096 4.49 2.49 7.45 4.22

8192 4.50 2.49 7.49 4.24

Table 2: Level{1 LBLAS execution rates in Mops/s on each Connection Machine system

CM-200 oating{point processor.

SGEMV

Number of Number of columns

Rows 2 3 4 5 8 16 32 64 128 512 2048

2 0.62 0.98 1.23 1.46 2.46 4.03 5.93 7.38 8.62 9.90 10.30

3 0.99 1.39 1.74 2.05 3.38 6.03 8.21 9.80 10.8 11.9 12.20

4 1.35 1.88 2.33 2.73 4.40 6.72 8.87 10.70 12.00 13.10 13.50

5 1.62 2.24 2.77 3.24 5.11 8.43 10.6 12.20 13.20 14.10 14.40

8 2.33 3.19 3.91 4.52 6.80 9.47 11.90 13.70 14.70 15.70 15.90

16 3.68 4.91 5.90 6.71 9.27 12.10 14.40 15.80 16.70 17.40 17.50

32 4.29 5.96 6.39 7.56 10.20 12.90 14.90 16.10 16.80 17.40 17.50

64 5.13 6.85 7.61 8.71 11.50 14.00 15.80 16.80 17.40 17.90 |

128 5.51 7.09 8.01 8.94 11.90 14.40 16.00 17.00 17.50 17.90 |

512 5.80 7.30 8.32 9.15 12.10 14.40 15.90 16.80 17.30 | |

2048 5.92 7.40 8.45 9.25 12.10 14.30 15.70 | | | |

Table 3: Execution rate in Mops/s for matrix-vector multiplication on each Connection

Machine system CM{200 oating{point processor.
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DGEMV

Number of Number of columns

Rows 2 3 4 5 8 16 32 64 128 512 2048

2 0.64 0.89 1.10 1.29 2.03 3.04 3.93 4.67 5.17 5.62 5.74

3 0.91 1.25 1.53 1.78 2.71 4.20 5.15 5.80 6.21 6.56 6.66

4 1.13 1.54 1.88 2.17 3.22 4.44 5.51 6.26 6.72 7.12 7.23

5 1.33 1.80 2.18 2.51 3.64 5.23 6.21 6.84 7.22 7.54 7.63

8 1.80 2.39 2.87 3.26 4.47 5.82 6.85 7.51 7.90 8.11 8.22

16 2.54 3.29 3.79 4.25 5.58 6.89 7.80 8.35 8.65 8.90 8.97

32 2.79 3.60 4.11 4.69 5.92 7.14 7.95 8.44 8.70 8.92 |

64 3.19 4.10 4.60 5.12 6.37 7.52 8.26 8.69 8.93 9.11 |

128 3.33 4.20 4.74 5.22 6.49 7.60 8.30 8.70 8.92 | |

512 3.45 4.33 4.86 5.30 6.53 7.57 8.22 8.60 | | |

2048 3.49 4.89 4.91 5.34 6.57 7.60 | | | | |

Table 4: Execution rate in Mops/s for matrix-vector multiplication on each Connection

Machine system CM{200 oating{point processor.

performance of the DOT routine. In 32{bit precision the performance is comparable up

to a vector length of about 30, while for 64{bit precision the di�erence is measurable even

for short vectors. Note that the AXPY routine requires twice the memory bandwidth

of the DOT routine. The performance of the GEMV routine is about twice that of the

DOT routine. This behavior is expected, since the memory bandwidth requirement of

the GEMV routine is about half of that of the DOT routine.

Our implementation of the rank{1 update makes use of AXPY operations, while the

higher rank updates are based on matrix{vector or vector{matrix multiplication, depend-

ing upon the shape of the operands [20].

Given the performance characteristics of the LBLAS on the Connection Machine system

CM{200, it is desirable to base linear algebra algorithms on the level{2 LBLAS. The po-

tential performance gain from blocking the operations on b rows and columns is illustrated

in Table 5. The Table shows the speedup of rank{b updates relative to a rank{1 update of

a 32 � 32 matrix and a 512 � 512 matrix local to a Connection Machine system CM{200

node.

Blocking yields a larger relative performance gain for small matrices than for big matrices.

For large submatrices per node a performance gain by a factor in excess of 3.5 is possible

through the use of high rank updates. About 90% of this gain is achieved for a blocking

factor of 16. For relatively small submatrices per node a performance gain in excess of a

factor of 4.5 is possible through the use of high rank updates. About 85% of this gain is

achieved by the use of a blocking factor of 16.
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Rank Matrix shape

32� 32 512 � 512

1 1.00 1.00

2 1.49 1.42

4 2.20 2.00

8 3.17 2.69

16 3.82 3.12

32 4.25 3.38

64 4.51 3.54

Table 5: Speedup of rank{b updates over rank{1 updates for each Connection Machine

system CM{200 node.

4 Standard data layouts

The routines described in this article are designed to operate in{place on arrays passed

to the routines from high level language programs. The data motion requirements and

the performance depend strongly upon the data allocation of the operands. The default

allocation of data arrays to nodes determined by the Connection Machine Run{Time Sys-

tem is based entirely on the shape of the data arrays. Each array is by default distributed

evenly over all nodes, i.e., the Connection Machine systems support a global address space.

In the default array allocation mode, the nodes are con�gured for each array, such that

the number of axes in the data array and in the nodal array is the same. The ordering of

the axes is also the same. When there are more matrix elements than nodes, consecutive

elements along each data array axis (a block) are assigned to a node. The ratios of the

lengths of the axes of the nodal array are approximately equal to the ratios between the

lengths of the axes of the data array [28]. In such a con�guration the lengths of the local

segments of all axes are approximately the same, and the communication needs minimized

when references along the di�erent axes are equally frequent. The default array layout is

known as a canonical layout. In Section 7 we show that the canonical layout is optimum

for LU and QR factorization for a simple, but realistic communications model. In [24] we

show that the canonical layout is also optimal for matrix multiplication.

The canonical layout can be altered through compiler directives. An axis can be forced to

be local to a node by the directive SERIAL, if there is su�cient local memory. The length

of the local segment of an axis can also be changed by assigning weights to the axes. High

weights are used for axes with frequent communication, and low weights for axes with

infrequent communication. A relatively high weight for an axis increases the length of

the local segment of that axis, at the expense of the lengths of the segments of the other

axes. The total size of the subarray is independent of the assignment of weights. Only the

shape of the subarray changes. The shape of the nodal array is important, since it a�ects

the performance of global operations such as data copying, data summation, and pivot

selection. The nodal array shape is also important for the performance of the LBLAS,
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since it a�ects the shape of the subarrays assigned to each node, and hence vector lengths

and the relative importance of loop overhead.

In many computations more than one array is involved, and the relative layouts of the

arrays may be important. For instance, in solving a liner system of equations there are

two arrays involved when the computed solutions overwrite the right{hand sides. The

required communication in the triangular systems solver depends in a signi�cant way on

how the triangular factors and the right{hand sides are allocated to the nodes. With the

original matrix factored in{place, the triangular factors are stored in a two{dimensional

data array, for which the default nodal array shape is a two{dimensional array. For a

single right{hand side, the default nodal array shape is a one{dimensional array. Even if

there are many right{hand sides, there is no guarantee that the shapes of the nodal arrays

are the same for the data array to be factored and the data array of right{hand sides. The

ALIGN compiler directive may be used to assure that di�erent data arrays are assigned to

nodes using the same nodal array shape for the allocation.

The consecutive allocation scheme [17] selects elements to be assigned to the same node.

Compiler directives, such as axis weights, SERIAL and ALIGN, address the issue of choos-

ing the nodal array shape. Another data layout issue is the assignment of data sets to

nodes, where a set is made up of consecutive elements along each data array axis. The

network topology and the data reference pattern are two important characteristics in this

assignment. The nodes of the Connection Machine system CM{200 are interconnected as

a Boolean cube with up to 11 dimensions. A Boolean cube network of n dimensions has

2

n

nodes.

The nodes of a Boolean cube can be given addresses such that adjacent nodes di�er in

precisely one bit in their binary encoding. Assigning subarrays to nodes using the standard

binary encoding of the subarray index along an axis, does not preserve adjacency along

an axis. For instance, 3 and 4 di�er in all three bits in the encoding of the addresses of

8 nodes, and are at a distance of three apart. In general, 2

n�1

� 1 and 2

n�1

di�er in n

bits in their binary encoding, and are at a distance of n. The number of bits in which two

indices di�er translates directly into distance in a Boolean cube architecture.

Binary{reected Gray codes [25] generate embeddings of arrays into Boolean cube net-

works that preserve adjacency [17]. Gray codes have the property that the encoding of

successive integers di�er in precisely one bit. In a Boolean cube network successive in-

dices are assigned to adjacent nodes. The binary{reected Gray code is e�cient, both

in preserving adjacency and in node utilization, when the length of the axes of the data

array is a power of two [11]. For arbitrary data array axes' lengths, the Gray code may

be combined with other techniques to generate e�cient embeddings [3, 12].

The binary{reected Gray code embedding is the default embedding on the Connection

Machine system CM{200, and is enforced by the compiler directive NEWS for each axis.

The standard binary encoding of each axis is obtained through the compiler directive

SEND. The performance of global operations, such as pivot selection and broadcast re-

quired in the factorization and solve routines, is insensitive to the data distribution along

each axis. Our factorization and solver routines also require permutations for rectangu-
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lar nodal arrays. These permutations may exhibit some sensitivity to whether arrays are

allocated in NEWS or SEND order.

5 Cyclic order factorization and triangular system

solution

We consider the solution of a system of equations AX = Y through factorization and

forward and backward substitution. We consider both single and multiple right{hand sides.

We present algorithms for load{balanced factorization and triangular systems solution on

data arrays allocated to nodes by a consecutive data allocation scheme. The matrix is

factored in{place, and the solutions overwrite the right{hand sides.

5.1 Factorization

5.1.1 Balanced work load

For an N by N matrix assigned to a p� q nodal array, each node is assigned a submatrix

of shape

N

p

by

N

q

. With the consecutive allocation scheme, the submatrix on node (i; j),

1 � i � p, 1 � j � q consists of elements (a; b) with (i � 1) �

N

p

< a � i �

N

p

and

(j � 1) �

N

q

< b � j �

N

q

.

An LU factorization algorithm steps through the rows of a matrix, subtracting a multiple

of a row, the pivot row, from all rows not yet selected as pivot rows. If the matrix

is allocated to the nodes with a consecutive allocation scheme, and the pivot rows are

selected in order, then after

N

p

rows have been chosen, the �rst row of nodes will no

longer have any work to do. One method for avoiding this imbalance is to redistribute

the rows and columns of the matrix periodically, as the work load becomes unbalanced.

This approach leads to substantial communications overhead. The characteristics of QR

decomposition is similar, though instead of subtracting the pivot row from rows not yet

selected as pivots, a normalized linear combination of those rows is subtracted from each

of them.

A more elegant technique is to use a cyclic data allocation scheme [8, 17, 22, 23, 30]. In a

cyclic data allocation scheme the �rst row of the matrix is placed on the �rst row of nodes,

the second row of the matrix on the second row of nodes, and so on until one matrix row

has been assigned to each of the p rows of nodes. Then, the (p+1)

st

matrix row is assigned

to the �rst row of nodes, etc. With this method, matrix rows are consumed evenly from

the di�erent rows of nodes during elimination, so that no row of nodes ever has more than

one more active matrix row than any other row of nodes. Columns are treated similarly.

The space (rows and columns) and time (pivot selection) dimensions are interchangeable

[13, 14, 15, 16]. Hence, instead of distributing rows and columns cyclically over the two{

dimensional nodal array, pivot rows and columns can be selected cyclically to achieve the
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desired load{balance. We have chosen this approach for our implementation. To allow

for the use of level{2 LBLAS, blocking of rows and columns on each node is used. In LU

factorization a blocking of the operations on b rows and columns means that b rows are

eliminated at a time from all the other rows.

In summary, we factor a matrix in{place using a block{cyclic elimination order for both

rows and columns. For block size b we �rst eliminate rows 1; : : : ; b, then rows (p +

1); : : : ; (p + b), etc. We are eliminating b matrix rows at a time from each row of nodes.

A block{cyclic elimination order was recommended in [15] for load{balanced solution of

banded systems.

Below we give an example of a block{cyclic ordered elimination for a square array of

nodes, and a block size of 2. Pivot rows and columns are indicated by numbers, eliminated

elements by periods, and all other elements are shown as an asterisk.

Example I: N = 16, p = q = 4, b = 2
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Step 1:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �

1 1 � � � � � � � � � � � � � �
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Step 2:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : 2 2 2 2 2 2 2 2 2 2 2 2 2 2

: : 2 2 2 2 2 2 2 2 2 2 2 2 2 2

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �

: : � � 2 2 � � � � � � � � � �
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Step 3:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �

: : 3 3 : : 3 3 3 3 3 3 3 3 3 3

: : 3 3 : : 3 3 3 3 3 3 3 3 3 3

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �

: : � � : : � � 3 3 � � � � � �
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Step 4:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � : : � � : : � � 4 4 � �

: : � � : : � � : : � � 4 4 � �

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : � � : : � � : : � � 4 4 � �

: : � � : : � � : : � � 4 4 � �

: : � � : : � � � � � � � � � �

: : � � : : � � : � � � � � � �

: : � � : : � � : : � � 4 4 � �

: : � � : : � � : : � � 4 4 � �

: : 4 4 : : 4 4 : : 4 4 4 4 4 4

: : 4 4 : : 4 4 : : 4 4 4 4 4 4

: : � � : : � � : : � � 4 4 � �

: : � � : : � � : : � � 4 4 � �
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Step 5:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : 5 5 : : 5 5 : : 5 5 : : 5 5

: : 5 5 : : 5 5 : : 5 5 : : 5 5

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : 5 5 : : � � : : � � : : � �

: : 5 5 : : � � : : � � : : � �

: : � � : : � � � � � � � � � �

: : � � : : � � : � � � � � � �

: : 5 5 : : � � : : � � : : � �

: : 5 5 : : � � : : � � : : � �

: : � � : : � � : : � � � � � �

: : � � : : � � : : � � : � � �

: : 5 5 : : � � : : � � : : � �

: : 5 5 : : � � : : � � : : � �
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Step 6:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � : : � � : : � � : : � �

: : : � : : � � : : � � : : � �

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : : : : : 6 6 : : 6 6 : : 6 6
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: : � � : : � � � � � � � � � �

: : � � : : � � : � � � � � � �

: : : : : : 6 6 : : � � : : � �

: : : : : : 6 6 : : � � : : � �

: : � � : : � � : : � � � � � �

: : � � : : � � : : � � : � � �

: : : : : : 6 6 : : � � : : � �

: : : : : : 6 6 : : � � : : � �
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Step 7:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � : : � � : : � � : : � �

: : : � : : � � : : � � : : � �

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : : : : : � � : : � � : : � �

: : : : : : : � : : � � : : � �

: : � � : : � � � � � � � � � �

: : � � : : � � : � � � � � � �

: : : : : : : : : : 7 7 : : 7 7

: : : : : : : : : : 7 7 : : 7 7

: : � � : : � � : : � � � � � �

: : � � : : � � : : � � : � � �

: : : : : : : : : : 7 7 : : � �

: : : : : : : : : : 7 7 : : � �
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Step 8:

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � : : � � : : � � : : � �

: : : � : : � � : : � � : : � �

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : : : : : � � : : � � : : � �

: : : : : : : � : : � � : : � �

: : � � : : � � � � � � � � � �

: : � � : : � � : � � � � � � �

: : : : : : : : : : � � : : � �

: : : : : : : : : : : � : : � �

: : � � : : � � : : � � � � � �

: : � � : : � � : : � � : � � �

: : : : : : : : : : : : : : 8 8

: : : : : : : : : : : : : : 8 8
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As can be seen from Example I, the result of the factorization is not two block triangular

matrices, but block{cyclic triangles. A block{cyclic triangle can be permuted to a block

triangular matrix, as discussed in Section 5.2. However, it is not necessary to carry

out this permutation for the solution of the block{cyclic triangular system of equations.

Indeed, it is desirable to use the block{cyclic triangle for the forward and backsubstitutions,

since the substitution process is load{balanced for the block{cyclic triangles. Using block

triangular matrices stored in a square data array (A) allocated to nodes with a consecutive

data allocation scheme would result in poor load{balance. Before discussing block{cyclic

triangular solvers, and the relationship between pivoting strategies and the block{cyclic

elimination order, we consider rectangular nodal arrays.

5.1.2 Rectangular arrays of processing nodes

Rectangular nodal arrays result in di�erent row and column orderings, since the length of

the cycle for the cyclic elimination order is di�erent for rows and columns. Let

^

P

1

give the

relationship between consecutive order and block{cyclic order elimination for rows, and

^

P

2

give the relationship between consecutive order and block{cyclic order elimination for

columns. Then,

^

P

1

(i) = j means that the i

th

row to be eliminated is row j. Speci�cly,

for a matrix allocated to the p by q nodal array with the consecutive (block) allocation

scheme, as described in Section 5.1, the block{cyclic ordered elimination with a block size

12



b = 1 yields

^

P

1

= 1;

N

p

+ 1; 2

N

p

+ 1; : : :

^

P

2

= 1;

N

q

+ 1; 2

N

q

+ 1; : : :

Thus,

^

P

1

6=

^

P

2

if p 6= q. Clearly, if the number of nodes in the entire machine is not a

square (as is the case for a 2048 node Connection Machine system CM{200, and the Intel

Delta [30]), and all nodes are used, then p 6= q and

^

P

1

6=

^

P

2

. How to choose p and q for

optimum performance under the constraint pq = const is discussed in Section 7.

Note that even though

^

P

1

6=

^

P

2

naturally occurs when p 6= q, choosing a di�erent blocking

factor for rows and columns yields the same result.

5.2 Solving block{cyclic triangular systems

In an algorithm eliminating rows and columns consecutively, transformations are applied

to an original matrixA, until it has been reduced to an upper triangular matrix T . In block

cyclic{ordered elimination, A is reduced to a block{cyclic triangular matrix V = P

1

TP

�1

2

,

where T is upper triangular. Block{cyclic triangles are just as easy to invert as standard

block triangles, but they are load{balanced across the nodes of a distributed memory

machine. The block{cyclic triangle V for the example above (step 8, Example I), and the

corresponding permutation matrix P

1

, are shown below. Example II shows a block{cyclic

triangle for a rectangular nodal array (P

1

6= P

2

).

13



Example I: N = 16, p = q = 4, b = 2

V = P
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=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

� � � � � � � � � � � � � � � �

: � � � � � � � � � � � � � � �

: : � � : : � � : : � � : : � �

: : : � : : � � : : � � : : � �

: : � � � � � � � � � � � � � �

: : � � : � � � � � � � � � � �

: : : : : : � � : : � � : : � �
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: : � � : : � � � � � � � � � �

: : � � : : � � : � � � � � � �
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: : � � : : � � : : � � � � � �
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where P

1

=

2
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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The permutation matrix P

2

is constructed analogously.
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Example II: N = 16, p = 2, q = 4, b = 2

V = P

1

TP

�1
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=
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In our block{cyclic triangular solver, the solution matrixX overwrites the right{hand sides

Y . The solver requires that the set of right{hand sides Y and the matrixA are aligned. The

alignment of Y and A ensures that the shape of the nodal array is the same for A and Y .

For a single right{hand side, the alignment implies that the components of Y are allocated

to the �rst column of the nodal array using the consecutive allocation scheme. With

several right{hand sides, the alignment implies that the consecutive allocation scheme is

used to allocate right{hand sides and columns of the matrix A to the same number of

node columns, with each right{hand side being allocated to a single node column. The

alignment of A and Y can be accomplished without data motion by using the compiler

directive ALIGN. Alignment at run{time in general will require data motion. It can be

performed by the Connection Machine router. Our library routine validates that the arrays

are aligned, and if the arrays are not prealigned, performs the alignment through a call to

the router.

Our column{oriented algorithm for solving block{cyclic upper triangular systems of the

form

P

1

TP

�1

2

X = Y:

starts with the last block column of P

1

TP

�1

2

and progresses towards its �rst block column,

in a way similar to a standard column oriented upper triangular system solver. A multiple

of each block column of P

1

TP

�1

2

is subtracted from Y in each backward elimination step.

The multiple of block column k, which is subtracted from Y at the k

th

stage of this process

is the k

th

block component (row) of the solution vectorX. If the k

th

block column consists

of columns

^

P

2

(j);

^

P

2

(j + 1); : : : ;

^

P

2

(j + b� 1), then the last b elements of each column in

this block column are in rows

^

P

1

(j);

^

P

1

(j + 1); : : : ;

^

P

1

(j + b � 1). If X overwrites Y ,
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Figure 2: Block{cyclic triangular backsubstitution. In{place ordering (Y ) and correct

ordering (X) of solutions.

then it is natural to record the multiplier of the k

th

block column in components (rows)

^

P

1

(j);

^

P

1

(j+1); : : : ;

^

P

1

(j+ b� 1) of Y . But, these components (rows) of the result belong

in components (rows)

^

P

2

(j);

^

P

2

(j + 1); : : : ;

^

P

2

(j + b � 1) of Y . Hence, after completing

the iterative process of block column subtractions, the permutation P

2

P

�1

1

(a generalized

shu�e [19]), must be applied to Y to obtain X.

The ordering of Y after the in{place substitution process, and the correct ordering of the

solution are illustrated in Figure 2 for an 8 � 8 matrix mapped to a 2 � 4 nodal array.

The numbers indicate the pivoting order for the factorization, and the placement of the

solution components after the in{place backsubstitution, and after the postpermutation.

In the example, the destination address in the postpermutation is obtained as by a right

cyclic shift of the row index in the solution matrix. For instance, with indices labeled from

0, the content in location 1 of Y is send to location 4, the content of location 4 to location

2, and the content of location 2 to location 1.

Briey put, the natural process for solving block{cyclic triangular systems evaluates W =

(P

1

TP

�1

1

)

�1

Y . But, X = (P

1

TP

�1

2

)

�1

Y = (P

2

P

�1

1

)(P

1

TP

�1

1

)

�1

Y = (P

2

P

�1

1

)W . Thus,

the solutionsX, aligned withA and overwriting the aligned matrix Y , are obtained through

a postpermutation P

2

P

�1

1

applied to the result of the in{place block{cyclic triangular

solver.

Note that in applying a block{cyclic elimination order to data allocated by a consecu-

tive allocation scheme, the computations are load{balanced both for factorization and

triangular system solution without permuting the matrix A, or the block{cyclic triangles.

Whenever, P

1

6= P

2

, for instance for rectangular nodal arrays, a shu�e permutation of the

solution matrix is required. But, for few right{hand sides, the amount of data permuted

is considerably less than if the input matrix and the right{hand side matrix had been
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permuted from consecutive to cyclic allocation, and the solution matrix permuted from

cyclic to consecutive allocation.

5.3 LU factorization and block{cyclic triangular system solu-

tion with partial pivoting

We have now presented all the elements of our algorithm for solving dense systems of

equations with partial pivoting for a consecutive data allocation. The complete algorithm

is as follows:

� Factor the matrix A in{place using a block{cyclic elimination order. Exchange each

selected pivot row with the appropriate row de�ned by the block{cyclic elimination

order. Record the pivot selection.

� Align the right{hand side matrix Y with the matrix A (the array storing the block{

cyclic triangles). Y and A can be aligned at compile time through the use of the

compiler directive ALIGN.

� Perform a forward block{cyclic triangular system solve in{place using the recorded

pivoting information.

� Perform a backward block{cyclic triangular system solve in{place.

� Whenever the row and column permutation matrices P

1

and P

2

are di�erent, as in

the case of rectangular nodal arrays, perform a postpermutation (generalized shu�e)

of the solution matrix (or prepermutation (generalized shu�e) of the matrix A as

explained in the next subsection).

� Align the solutions with Y , assuming that the solutions overwrites the right{hand

sides.

No permutation of the matrix A, or the block{cyclic triangular factors, is made for load{

balance. A permutation of the solution matrix is only required when P

1

6= P

2

, as in the

case of rectangular nodal arrays. For few right{hand sides, the size of the solution matrix is

insigni�cant compared to the matrix A, and the time for permutation of the result of little

inuence on the performance. For a large number of right{hand sides, a prepermutation

of the matrix A, as explained in the next section, may yield better performance. In

our implementation, the permutation of the result, when required, is performed by the

Connection Machine system router. Optimal algorithms [19] are known for the generalized

shu�e permutations required in pre or postpermutation when N=max(p; q) is a multiple

of the block size. However, no implementation of such algorithms is currently available on

the Connection Machine systems.

Note that if the data arrays A and Y are not aligned at compile time, then the last two

steps could be combined into a single routing operation. Note further, that if there are
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more right{hand sides than columns of A, then it may be preferable to align A with Y ,

if the optimal nodal array shapes for factorization and solution phases are di�erent, or if

alignment is made at run{time, since fewer data elements must be moved if the layout of

Y is the reference. Optimal array shapes are discussed further in Section 7.

In our implementation, the location of the pivot block row is de�ned by the block{cyclic

elimination order. Selected pivot rows are exchanged with rows of the pivot block row in

order to assure load{balance.

The forward and backward solution in our implementation correspond to the routine

TRSM in the level{3 BLAS, but it is not identical since a block{cyclic ordered elimination

is used.

5.4 LU factorization and triangular system solution without

pivoting: pre vs. postpermutation

In Section 5.2 we showed that in case P

1

6= P

2

, backward elimination of a block{cyclic tri-

angular system consists of two parts: a fairly standard backward elimination with reverse

block{cyclic ordered block column subtractions from the right{hand side, and a postper-

mutation of the result when P

1

6= P

2

. For such block{cyclic elimination orders, successive

blocks are not selected from the diagonal of the matrix.

LU factorization without pivoting selects pivots from the diagonal of a matrix, and works

well for diagonally dominant systems precisely because the large diagonal elements are

guaranteed to be the pivots in the factorization process. However, in block{cyclic ordered

elimination with

^

P

1

6=

^

P

2

, the matrix entries used as pivots will be on the block{cyclic

diagonal, i.e., in locations of the form (

^

P

1

(i);

^

P

2

(i)). Thus, for diagonally dominant matri-

ces factored on, for instance, a rectangular nodal array with a no pivoting strategy, it is

necessary to prepermute the original matrix in some way that maps the original diagonal

to the block{cyclic diagonal.

One obvious prepermutation is to replace A with B = P

1

AP

�1

2

. Then, given a fac-

torization L

�1

B

B = P

1

T

B

P

�1

2

, and routines to apply L

�1

B

and (P

1

T

B

P

�1

1

)

�1

, AX = Y

can be solved as X = P

�1

1

(P

1

T

B

P

�1

1

)

�1

L

�1

B

P

1

Y . But, a more e�cient approach is

to replace A with C = AP

1

P

�1

2

. A block{cyclic elimination order applied to C yields

L

�1

C

C = P

1

T

C

P

�1

2

. Furthermore, L

�1

C

A = P

1

T

C

P

�1

1

, and the solution of AX = Y is

obtained as X = (P

1

T

C

P

�1

1

)

�1

L

�1

C

Y . In summary, a prepermutation of A required for

numerical stability, can be used to cancel the postpermutation of the result.

Thus, in a block{cyclic elimination order on rectangular nodal arrays, LU factorization

with pivoting on the diagonal is performed as follows

Apply P

1

P

�1

2

from the right. A AP

1

P

�1

2

Factor C in{place. L

C

, P

1

T

C

P

�1

2

Forward solve in{place. Y  L

�1

C

Y

Backward solve in{place. X = (P

1

T

C

P

�1

1

)

�1

Y
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Note that if P

1

= P

2

, then the �rst step has no e�ect on the data ordering, and should

be omitted. In this case, the factorization with no pivoting should be faster than with

pivoting, since no time is required for �nding pivots, and for exchanging selected pivot rows

with the rows of the block pivot row. However, when P

1

6= P

2

, then the no pivot option

requires a prepermutation of the matrixA, while the pivot option requires postpermutation

of the solution matrix X in addition to the data rearrangement required for pivoting. In

our implementation we �nd that no pivoting is always faster than pivoting even when

P

1

6= P

2

and there is only one right hand side (see Figure 5).

Note further that the prepermutation A AP

1

P

�1

2

can be used also for LU factorization

with pivoting, thus removing the need for the postpermutation of the result. This tech-

nique gives improved performance when there are more columns in the right{hand side

array Y , than in the original matrix A. Thus, prepermuting the matrix A when there are

many right{hand sides, should result in better performance for the no pivoting option,

than for the pivoting option.

5.5 QR factorization and system solution

QR factorization and the solution of the factored matrix equations can be performed in

a manner analogous to the LU factorization and the solution of triangular systems. In

the factorization, pivoting is replaced by an inner product of the current column with

all other columns, i.e., a vector{matrix multiplication. This vector{matrix multiplication

doubles the number of oating{point operations, and replace two copy{spread operations

with one physical spread{with{add operation. The result is an operator Q

T

in factored

form, satisfying Q

T

A = R, where R = P

1

TP

�1

2

is a block{cyclic upper triangle. If A has

m rows and n columns with m � n, then the QR factorization may be used to �nd the

vector X that minimizes the residual 2-norm kAX � Y k

2

. The procedure is

Apply Q

T

. Y  Q

T

Y

Backward solve. X = �(P

2

P

�1

1

)(P

1

TP

�1

1

)

�1

Y

where � is projection onto the �rst n components. The backsolve (P

1

TP

�1

1

)

�1

operates

on the �rst n rows in block{cyclic order of Y . The �nal permutation P

2

P

�1

1

moves the

�rst n block{cyclic rows to the �rst n rows.

6 Performance

In this section we �rst report the performance achieved on a few matrix sizes. Then, we

analyze the performance, and discuss factors that contribute to the discrepancy between
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No. of rows/ LU QR

columns, N 32{bit 64{bit 32{bit 64{bit

1024 172 139 374 321

2048 620 494 1301 1053

4096 2040 1537 3902 2842

8192 5586 3846 8878 5704

16384 11573 7173 | |

26624 16030 9398 | |

Table 6: Execution rates in Mops/s for LU and QR factorization on a 2048 node Con-

nection Machine system CM-200. A blocking factor b of 16 was used for LU factorization.

A blocking factor of 8 was used for QR factorization. Nodes in Gray code order.

the performance of the local matrix kernels and the performance of the global factor

and solve routines. Communication and arithmetic are considered separately. All arrays

are allocated with default compiler layouts. This implies that nodes are in Gray code

order along each axis, and that Y is aligned with A only in the case that the number

of right hand sides is equal to the number of equations. A 2048 node and a 512 node

Connection Machine system CM{200 were used for the performance measurements. Both

systems result in rectangular nodal arrays. Alignment of Y with A (when necessary) and

postpermutation of the solution(s) were performed using the Connection Machine router.

Times for these data motion steps are included in the solve timings. In all cases we

used random data for the matrix A. In this section, LU factorization always means LU

factorization with partial pivoting. In this section, QR factorization always means QR

factorization with no pivoting.

6.1 Measurements

In 64{bit precision the peak performance for LU factorization is 9.4 Gops/s, or close to

4.6 Mops/s per node, which is about 50% of the peak performance of the level{2 LBLAS.

Table 6 shows the performance of LU and QR factorization for a few matrix sizes on a

2048 node Connection Machine system CM{200. The execution rate for LU factorization

is computed based on

2

3

N

3

oating{point operations, and the QR factorization rate based

on

4

3

N

3

operations, regardless of the blocking factor. For the solvers the execution rates

are based on 2RN

2

operations for the LU solver, and 3RN

2

for the QR solver.

Tables 7 and 8 give some performance data for the factorization and the forward and

backward solution of dense systems. R denotes the number of right{hand sides in the

systems of equations being solved. The improved e�ciency with an increasing matrix size,

increased number of right{hand sides, and increasing blocking factor is apparent. For LU

factorization in 32{bit precision the performance increases by a factor of over 700 for an

increase in matrix dimension N by a factor of 132 and a blocking factor of 1. With a

blocking factor of 16, the same increase in matrix size yields a performance increase by a
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factor of over 1300. The performance increase in 64{bit precision for an increase in N by a

factor of 104 is 425 and 840, respectively. For small values of N , the performance increases

much faster than N . For large values of N , the performance increase is still substantial,

and roughly proportional to N . This characteristic is true for both the factorization and

the solution phases.

The execution rate for the forward and backward block{cyclic triangular system solvers

increases signi�cantly with the matrix size for a large number of right{hand sides. With

the number of right{hand sides equal to the number of equations, the performance of the

triangular solvers is about 50% higher than for LU factorization.

Comparing the execution rates of the LU and QR factorization routines, we observe that

except for large matrices, the execution rates of the QR factorization routine is approxi-

mately twice that of the LU factorization routine. Hence, the execution times are approx-

imately equal. However, for large matrices in 64{bit precision, the execution rate for QR

factorization is only 15 { 20% higher than for LU-decomposition, and the execution time

for QR factorization is signi�cantly longer than for LU factorization.

Comparing the LU and QR solve routines, we observe that the QR solve routine bene�ts

more from an increased blocking factor than the LU solve routine. The execution rate of

the QR solve routine is about 20% higher than the LU solve routine for a large number of

right{hand sides and a blocking factor of 1. But, for a blocking factor of 16, the QR solve

routine has an execution rate that is about 40% higher than that of the LU solve routine.

The optimum blocking factors for LU factorization and triangular system solution are

summarized in Figure 3. The optimum blocking factor increases with an increased matrix

size. For LU factorization the sensitivity of the execution rate with respect to the blocking

factor is small (on the order of 20%) for small matrices, while for large matrices an increase

in the blocking factor from 1 to 16 may increase the performance by a factor of more than

two. The behavior is similar for the LU solve routine. The optimum blocking factor

increases with the matrix size. In our implementation the optimum blocking factor for

LU factorization is 4 for matrices of size up to 1024, 8 for matrices of size between 1024

and 8096, and 16 for sizes 8096 to 16896, the maximum size used in our test. Note that

the optimum blocking factor for the LU solve routine in general is higher than for the

factorization routine. Figures 4 and 6 show the execution rate as a function of matrix

size and blocking factor for LU factorization and solve, respectively. Figure 7 shows the

execution rate of the LU solve routine as a function of matrix size and the number of

right{hand sides.

The optimum blocking factor for the QR factorization routine increases somewhat slower

with the matrix size than for the LU factorization routine. The optimum blocking factor

for the QR solve routine is higher than for the QR factorization routine, just as in the case

of LU factorization and solve. Figure 8 shows the execution rate as a function of matrix

size and blocking factor for QR factorization.

In the next few subsections we analyze the performance behavior of the communication

functions, and the local arithmetic as a function of matrix and machine size, and provide

a model to predict the performance.
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Figure 3: Optimal blocking factor for LU factorization and triangular system solution.
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Figure 4: Execution rates for LU factorization on a 512 node Connection Machine system

CM{200 with blocking factor b, 64{bit precision. Nodes in Gray code order.
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Matrix Block 32{bit precision 64{bit precision

size size Factor Solve Factor Solve

N b R = 1 R =N/2 R = N R = 1 R = N/2 R = N

128 1 2.7 .1 3.1 6.1 2.6 .1 3.1 6.0

512 1 39.9 .3 45.1 82.8 37.5 .2 42.0 72.8

1024 1 140.7 .5 153.0 252.0 126.4 .4 131.5 198.7

2048 1 420.1 .9 417.9 624.8 342.1 .7 320.7 434.8

4096 1 944.3 1.5 915.9 1127.9 667.7 1.1 615.1 713.1

8192 1 1510.1 2.2 964.7 1.5

13312 1 1804.3 2.7 1104.8 1.8

16896 1 1910.2 3.0

128 4 3.3 .1 4.2 8.3 3.0 .1 4.1 8.0

512 4 48.8 .5 62.2 112.8 43.3 .4 55.9 96.7

1024 4 170.0 .9 213.1 348.8 146.7 .8 179.1 277.2

2048 4 517.8 1.7 614.9 892.7 420.3 1.5 470.8 639.3

4096 4 1237.5 3.1 1407.0 1726.8 920.0 2.6 970.9 1143.3

8192 4 2204.8 5.1 1506.6 3.9

13312 4 2835.7 6.9 1857.9 4.8

16896 4 3099.1 7.7

128 8 3.2 .1 4.1 8.2 2.9 .1 3.9 7.6

512 8 48.6 .5 65.4 117.8 42.0 .5 57.4 98.8

1024 8 169.1 1.0 224.3 369.2 141.5 .9 184.4 286.5

2048 8 524.1 2.0 667.5 972.4 416.8 1.7 501.1 680.4

4096 8 1330.9 3.8 1603.3 2013.3 966.9 3.2 1075.8 1289.2

8192 8 2561.9 6.6 1701.1 5.1

13312 8 3471.8 9.2 2200.0 6.7

16896 8 3876.7 10.5

128 16 3.1 .1 3.9 7.6 2.7 .1 3.4 6.7

512 16 43.8 .6 64.6 116.9 36.4 .5 55.2 95.6

1024 16 154.8 1.1 223.4 371.8 125.1 1.0 179.9 281.6

2048 16 485.5 2.2 680.9 979.2 374.6 1.9 498.1 674.0

4096 16 1268.3 4.2 1651.2 2085.3 907.1 3.5 1091.7 1317.4

8192 16 2574.8 7.5 1691.8 6.0

13312 16 3628.9 10.8 2270.6 8.1

16896 16 4116.9 12.6

Table 7: Execution rates in Mops/s for LU factorization and block{cyclic triangular

system solution on a 512 node Connection Machine system CM{200 as a function of

matrix size, blocking factor, and the number of right{hand sides. Nodes in Gray code

order.
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Matrix Block 32{bit precision 64{bit precision

size size Factor Solve Factor Solve

N b R = 1 R =N/2 R = N R = 1 R = N/2 R = N

128 1 5.8 .1 6.2 11.9 5.3 .1 5.6 10.5

512 1 85.7 .5 83.3 142.0 74.2 .5 66.9 104.6

1024 1 299.3 1.0 261.1 390.7 237.3 .8 186.9 255.6

2048 1 865.1 1.8 639.8 876.5 605.3 1.3 412.0 514.4

4096 1 1827.3 2.8 1297.0 1510.4 1104.9 1.9 744.7 827.1

8192 1 2750.0 4.0 1516.7 2.4

13312 1 3183.7 4.8 1701.0 2.7

16896 1 3334.3 5.1

128 4 7.2 .4 9.8 19.1 6.3 .3 8.4 16.2

512 4 106.6 1.6 134.6 235.5 88.0 1.2 108.0 179.6

1024 4 371.5 3.0 436.0 675.1 284.7 2.2 320.4 469.6

2048 4 1101.4 5.5 1126.1 1534.4 749.3 3.9 748.3 960.1

4096 4 2427.1 9.1 2235.1 2601.2 1471.4 5.8 1311.3 1476.8

8192 4 3902.2 12.9 2178.2 7.6

13312 4 4694.3 15.3 2544.4 8.6

16896 4 4986.5 16.3

128 8 7.0 .4 9.4 18.2 6.0 .3 7.8 14.8

512 8 102.9 2.3 146.2 253.9 80.6 1.6 111.6 184.5

1024 8 359.8 4.4 469.1 724.7 262.3 2.9 334.5 496.6

2048 8 1088.8 8.1 1272.7 1698.4 711.9 5.3 818.4 1034.9

4096 8 2548.5 13.8 2557.4 3012.5 1475.9 8.5 1555.8 1793.4

8192 8 4361.5 20.4 2315.9 11.5

13312 8 5424.8 24.2 2797.1 13.2

16896 8 5838.8 25.8

128 16 6.3 .4 8.4 16.0 4.9 .3 6.3 11.7

512 16 85.6 2.8 143.2 251.7 63.4 1.8 105.5 176.7

1024 16 300.9 5.4 470.6 744.4 206.9 3.4 324.3 484.7

2048 16 917.4 10.2 1295.5 1729.7 572.9 6.2 814.3 1048.4

4096 16 2227.2 17.7 2762.9 3297.1 1253.9 10.2 1577.7 1827.3

8192 16 4068.2 26.9 2113.7 14.7

13312 16 5276.3 32.5 2669.0 17.4

16896 16 5780.5 34.8

Table 8: Execution rates in Mops/s for QR factorization and block{cyclic triangular

system solution on a 512 node Connection Machine system CM{200 as a function of

matrix size, blocking factor, and the number of right{hand sides. Nodes in Gray code

order.
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Figure 5: Execution rates for LU factorization with and without pivoting on a 512 node

Connection Machine system CM{200 with blocking factor 8, 64{bit precision. Nodes in

Gray code order.
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Figure 6: Execution rates for solution of block{cyclic triangular systems of equations with

N right{hand sides for LU decomposition on a 512 node Connection Machine system

CM{200 with a blocking factor b, 64{bit precision. Nodes in Gray code order.
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Figure 7: Execution rate for solution of block{cyclic triangular systems of equations with r

right{hand sides for LU decomposition on a 512 node Connection Machine system CM{200

with a blocking factor 8, 64{bit precision. Nodes in Gray code order.
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Figure 8: Execution rates for QR factorization on a 2048 node Connection Machine system

CM{200 with a blocking factor b, 64{bit precision. Nodes in Gray code order.
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6.2 Communication

Two main types of communication are required: 1) Spreads copy data from a single row

(or column) of nodes to all other rows (or columns), 2) Reductions to select the pivot row

in LU factorization with partial pivoting, and for column summations in QR factorization.

In addition, general sends are used to align the right hand sides Y with the columns of A,

to realign the solutions with the input array Y , and, when P

1

6= P

2

, to prepermute the

matrix A, or to postpermute the solution(s). In a spread of a pivot column,

N

p

elements

per node must be communicated to every other node in a row for the consecutive data

allocation described in Section 5.1. With a blocking factor of b rows and columns the

number of elements to be spread for a block column is

Nb

p

. Similarly, a block row requires

that

Nb

q

elements be spread to every other node in a column.

On the Connection Machine system CM{200, where the nodes are interconnected as a

Boolean cube, there exist several paths from the node that must spread the data to

any of the nodes receiving the data. Indeed, since p and q are always chosen such that

the nodes form subcubes of the Boolean cube, there exist log

2

p and log

2

q edge-disjoint

paths between a node and every other node in a column and row subcube. Hence, the

data set a node must spread can be divided up among the di�erent paths to balance

the communications load and maximize the e�ective use of the available communications

bandwidth [18]. Spreads on the Connection Machine system CM{200 are implemented in

this manner, and use the communications bandwidth optimally [18]. Note that for a �xed

data set per node, the time for a spread decreases with an increased number of nodes.

Table 9 gives some timings for spreads of di�erent size data sets on Connection Machine

systems CM{200 of various sizes. For a large data set per node, increasing the number of

cube dimensions by a factor of 10 (from 1 to 10) reduces the time for a spread by a factor

of 3.41. Increasing the number of dimensions by a factor of 5 yields a reduction in the

time for a spread of a large data set by a factor of 2.06. The overhead is quite substantial,

making the speedup signi�cantly less than the increase in the number of cube dimensions.

The prepermutation P

1

P

�1

2

, or the postpermutation P

2

P

�1

1

, when required, is performed

by the Connection Machine system CM{200 router in our implementation. These per-

mutations are generalized shu�e permutations. Optimal algorithms for Boolean cube

networks are known for these permutations when N=max(p; q) is a multiple of the block

size [19], but not implemented on the Connection Machine system CM{200. In cases with

only one right hand side, the cost of the alignment and postpermutation is only a small

fraction of the total cost of the solve.

Note that, on the Connection Machine systems, the default layout of the matrix A and

the right{hand sides Y is typically not the same, since the nodal array shape depends

upon the data array shape. Aligning A and Y at compile time avoids data motion at run{

time. With a default layout of Y and A, the alignment constitutes a shu�e permutation,

which would be performed by the router. Similarly, with the solutions overwriting the

right{hand sides, the default data allocation requires a reallocation of the result from

being aligned with A, to the default layout. This reallocation could be combined with

a postpermutation of the solution matrix X, when necessary, into a single permutation.
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Number of Number of nodes

elements 2 4 8 16 32 64 128 256 512 1024 2048

2 0.0366 0.383 0.448 0.502 0.573 0.640 0.719 0.789 0.878 0.965 1.036

4 0.0366 0.383 0.448 0.502 0.573 0.640 0.719 0.789 0.878 0.965 1.036

8 0.0623 0.416 0.480 0.505 0.576 0.644 0.722 0.792 0.881 0.968 1.040

16 0.1136 0.470 0.515 0.542 0.615 0.684 0.763 0.798 0.888 0.975 1.046

32 0.2162 0.577 0.598 0.600 0.691 0.730 0.811 0.848 0.939 1.027 1.101

64 0.4214 0.793 0.741 0.720 0.773 0.856 0.907 0.947 1.042 1.133 1.168

128 0.8318 1.223 1.055 0.962 0.963 0.984 1.044 1.045 1.247 1.305 1.344

256 1.6527 2.084 1.654 1.445 1.377 1.352 1.360 1.338 1.410 1.434 1.503

512 3.3139 3.805 2.882 2.410 2.203 2.054 1.990 1.925 1.946 1.953 2.001

1024 6.7319 7.247 5.310 4.342 3.825 3.491 3.287 3.098 3.021 2.991 2.957

2048 13.4530 14.129 10.193 8.204 7.067 6.331 5.844 5.445 5.210 5.028 4.910

4096 26.9059 27.895 19.931 15.929 13.585 12.048 10.960 10.137 9.588 9.102 8.782

8192 53.8115 55.426 39.437 31.379 26.619 23.444 21.226 19.522 18.344 17.288 16.520

16384 107.6210 110.476 78.415 62.279 52.657 46.269 41.721 38.291 35.818 33.662 31.997

32768 215.2400 220.577 156.396 124.070 104.723 91.874 82.711 75.829 70.764 66.366 62.991

Table 9: Time in msec for spreads of di�erent size data sets and Connection Machine

systems CM{200 of various sizes. 32{bit precision.

Such a combined permutation would require the same time as either the postpermutation

itself, or the reallocation of X, using optimal algorithms [19].

Note also, that if all arrays have a default layout, then for many right{hand sides it

may be advantageous with respect to performance to align the matrix A with Y and, if a

prepermutation of A is necessary, combine this permutation with the alignment operation.

6.3 Arithmetic e�ciency

Not all the work is well load{balanced, even in the block{cyclic order elimination. Some

work is applied only to a single row (or column) of the matrix at a time. For example,

in LU factorization with partial pivoting, it is necessary to �nd the location of the largest

element in the current column. Though this work is of order O(N) for a single (block) row

or column, compared to the O(N

2

) work for a rank{b update, it is magni�ed in importance

because the grid{based layouts do not load{balance individual rows and columns across the

whole machine. Despite this drawback, grid{based layouts are optimal for communication

systems in which the communication time is determined by the data volume leaving or

entering a node, as shown in Section 7.

6.4 Detailed performance analysis

For simplicity, in this section and the next, we consider only the case p = q.

Assuming that �N

3

oating{point operations are carried out on p

2

nodes running at rate

r, while the time per unit of work spent on N

2

work (some arithmetic and communication)
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on p nodes is C, the total time is

�N

3

rp

2

+ C

N

2

p

. The achieved computational rate is

R =

�N

3

�N

3

rp

2

+ C

N

2

p

or

R = rp

2

 

�

� + 1

!

where

� = (

N

p

)(

�

rC

):

For LU factorization on a 2048 node Connection Machine system CM{200, the compilers

by default con�gure the nodes as a 32 � 64 array. The algorithm we use requires three

spreads for each row and column that is eliminated; two to accomplish the pivoting row

swap and one to spread the column of coe�cients. From Table 9, we conclude that the

time for a row spread is 570+3:1�(number of 32{bit words per column of nodes) �sec, and

the time for a column spread is 640+2:7� (number of 32{bit words per row of nodes) �sec.

For the largest matrices in Table 7,

N

p

� 630 (actually the submatrices assigned to each

node are rectangular 448 � 896, and

p

(448 � 896) � 630). Some straightforward calculus

shows that communication contributes about 15 �sec to C. By counting cycles for the

O(N

2

) arithmetic part of the code, we estimate that it contributes another 12 �sec to

C. For LU factorization � = 2=3. We used a blocking factor of b = 16 for the timings

reported in Table 7, i.e., all O(N

3

) work is performed by rank{16 updates. These run at

a peak rate of about 7.6 Mops/s per node. However, including the e�ect of DRAM page

faults reduces this performance to a little over 7 Mops/s. Hence,

�

rC

�

2

3�7:0�27

�

1

285

, and

� � 2:2, for which the performance loss factor is

�

�+1

� 0:69. Altogether, this analysis

predicts a performance of about 4.85 Mops/s per node, which is very close to the measured

performance.

The important conclusion is that for � � 1, or

N

p

small relative to

rC

�

, the performance

increases roughly linearly in

N

p

. Because rC is large, nearly all interesting cases fall into

this range of submatrix sizes.

A minor point relevant for �ne-tuning is that smaller problems should use smaller block

sizes. This need arises because one of the contributions to C is work occurring entirely

within block rows or block columns, which grows quadratically with the block size b.

6.5 Scalability

As the matrix size N increases for a �xed machine size, the number of rows and columns

assigned to a node increases proportionally. Hence, if N is doubled, so is the amount of

data per row and column per node. Hence, the time required for the O(N

2

) term increases

in proportion to N

2

. But, the amount of work that must be performed by each node for

the factorization, increases in proportion to the cube of the local matrix size. Hence, the
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importance of the O(N

2

) term decreases with increased N for a �xed number of nodes.

However, the signi�cance does not decrease in proportion to N , since the e�ciency of the

level{2 LBLAS increases with increased N . The variation in the computational rate r

spans a range of more than one order of magnitude, while the performance loss factor may

span two orders of magnitude. Hence, the dramatic variation in performance as a function

of the local submatrix size.

Scaling the problem size with the number of nodes such that size of the submatrix assigned

to each node remains �xed increases the e�ciency of our current Connection Machine

system CM{200 implementation. The performance of the level{2 LBLAS is una�ected by

this form of scaling, but the communication is sped up because more channels are available

for spreads and reductions. Thus, increasing the number of nodes decreases the value of

C.

7 Optimal layouts

Communication is inevitable for the solution of full rank factorization problems on a dis-

tributed memory computer [9]. Another source of ine�ciency in our implementation is

the poorly load{balanced O(N

2

) work. We now consider the impact on the data commu-

nication (for spreads and reductions) of some alternative data layouts intended to improve

the load{balance for the O(N

2

) work.

Consider an arbitrary layout of an N by N matrix on p

2

nodes, which is regular in the

following sense:

Each column intersects exactly c nodes in N=c elements.

Each row intersects exactly r nodes in N=r elements.

There are exactly N

2

=p

2

elements on each node.

Each node intersects exactly cN=p

2

columns.

Each node intersects exactly rN=p

2

rows.

Figure 9 shows a two{dimensional data array assigned to nodes forming a one{dimensional

array in a Boolean cube. A binary-reected Gray code encoding [25] is used for the array

embedding. Each square subarray of the data array is assigned to one of four nodes, as

indicated by the number in the corresponding box. In e�ect, the data array is assigned

to the nodes of the embedded one{dimensional array in a block{skewed way. This layout

satis�es the regularity conditions with c = 4, r = 4, and p = 2.

It is clear that by making rc > p

2

, the load{balance can be improved for row and column

oriented operations. In order to evaluate the impact on the time for a spread, we assume

that the time of the spread is proportional to max(inject; eject), where inject is the

maximumnumber of data elements injected into the communications system by any node,
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3 2 0 1

2 3 1 0

Figure 9: Layout of a two{dimensional data array on a Boolean cube con�gured as a

one{dimensional array.

and eject is the maximumnumber of elements ejected from the communications system by

any node. Hence, we assume that communication operations are limited by the bandwidth

at the nodes. Then, the time of a column spread is max(N=c; rN=p

2

) and the time of a row

spread is max(N=r; cN=p

2

). Now, consider an algorithm consisting of local computation,

row spreads, and column spreads. Suppose that local computation consists of a perfectly

load balanced part, a part which takes place on a single column at one time, and a

part which takes place on a single row at one time. By making rc > p

2

we can reduce

the cost of the single column and single row operations. In return, the cost of the row

spreads and the column spreads will grow. In fact, it is likely that distributing rows and

columns across more processors will also increase the cost of the perfectly load balanced

part of the computation, since more distributed layouts will reduce local vector lengths.

If we ignore this e�ect of reduced vector lengths, then an optimal layout should minimize

cost = ��max(N=c; rN=p

2

) + ��max(N=r; cN=p

2

) +  � N=r + � � N=c, where �,�,, and

�, are parameters describing the relative importance of column spread, row spread, single

row work, and single column work, respectively.

To �nd the values of c and r that minimize this expression, we �rst assume that rc = K

with K � p

2

. Then, cN=p

2

� N=r and rN=p

2

� N=c, and the minimization problem

reduces to �nding the minimum of (�=p

2

) � r + (�=p

2

) � c + =r + �=c, subject to the

constraint rc = K. Using the constraint to eliminate c, and solving for the critical value

of r, gives r

2

=

(�=p

2

)�K+

(�=p

2

)+�=K

. Here, cost(K) = 2 �

q

((�=p

2

) + �=K) � ((�=p

2

) �K + ).

Minimizing this minimum cost with respect to K gives K

min

=

q

��

���

� p

2

. For K > K

min

,

cost(K) is increasing. So if � < ��, the minimum cost for all K � p

2

occurs for K = p

2

.

If we take K < p

2

, then the minimization problem reduces to �nding the minimum of

(� + �)=c + (� + )=r subject to the constraint rc = K. In this case, the minimum is a

decreasing function of K, so the minimum cost for all K < p

2

occurs for K = p

2

.

The above analysis assumes that the number of columns is equal to the number of rows,
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which is true for LU factorization on a matrix that �ts in primary storage. For the

triangular solve, the number of right hand sides R is often not equal to the number of

rows N . With R right hand sides, the assumption that each column intersects c nodes in

N=c elements is still valid. But, each row now intersects r nodes in R=r elements. With

NR=p

2

elements on each node, each node intersects cR=p

2

columns (instead of cN=p

2

columns) and rN=p

2

rows, as before. It is easily veri�ed that even for the triangular solve,

K = p

2

is optimal.

The overall conclusion is that, provided � < ��, i.e., provided the geometric mean of

the single row and single column work is less than the geometric mean of the row and

column spread work, the best choice is K = p

2

. The condition rc = p

2

implies that the

optimal layout is indeed based on two{dimensional subgrids for both factorization and

triangular system solution. This conclusion is true, because any column intersects a node

in N=c elements and N=c = rN=p

2

, which is the number of rows that meet any node.

Thus, the rows meeting any node must be exactly those N=c rows that meet any one of

the columns meeting that node. In our implementations of LU and QR factorization, the

condition � < �� is satis�ed, (although not by a wide margin). The optimal value of r=c

under the constraint rc = p

2

is

�+

�+�

R

N

. Thus, the ratio of the lengths of the axes of the

two{dimensional nodal array is proportional to the ratio between the corresponding axes

of the data array operated upon for both factorization and triangular system solution.

The above communications model applies to some, but not all architectures. For instance,

for hypercubes with concurrent communication on all channels of every node, such as the

Connection Machine system CM-200, the above communications model must be modi�ed.

In the example given by the diagram above, a column spread and a row spread are actually

all{to{all broadcasts [2, 18]. The time for such an operation is proportional to the number

of elements entering a node divided by the number of communication channels per node,

i.e., the number of hypercube dimensions spanning the set of nodes involved in the all{to{

all broadcast. For a 2-dimensional hypercube, all{to{all broadcast is no more expensive

than a standard column spread. Although twice as much data must be received by each

node, there are twice as many channels available for the data to use. Therefore on a four

node CM{200, the data layout shown in Figure 9 would give better performance for dense

linear algebra than any layout currently used, because with the Figure 9 layout and cyclic

elimination order, all vector operations would be perfectly load{balanced.

8 Summary

We describe LU and QR factorization and solve algorithms for a block{cyclic ordered

elimination for both square and rectangular nodal arrays. We show how prepermutation

can be performed to guarantee pivoting on the diagonal for diagonally dominant matri-

ces, without a need for postpermutation. The algorithms have been implemented on the

Connection Machine systems CM{2 and CM{200, and are part of the Connection Machine

Scienti�c Subroutine Library [29]. The peak execution rate of the LU factorization routine

on a Connection Machine system CM-200 is about 9.4 Gops/s in 64{bit precision.
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The routines accept any data layout that can be created in the higher level languages

on the Connection Machine systems, either by the default layout rules, or through the

use of compiler directives. The routines also perform operations on multiple instances

concurrently, with instances distributed over di�erent sets of nodes. The algorithms use

standard communication functions, such as multiple instance (segmented) broadcast and

reduction, and generalized shu�e permutations. Optimized routines are used for broadcast

and reduction, while the router currently is used for the generalized shu�e permutations.

For small matrices the execution times for QR factorization without pivoting and LU

factorization with partial pivoting are comparable, while for large matrices the execution

rates become comparable, and hence the execution time for LU factorization with partial

pivoting considerably shorter. The execution rate for the block cyclic triangular solve for

LU decomposition is 50 - 100% higher than for the factorization for a number of right{hand

sides equal to the number of unkowns. The behavior is similar for QR factorization.

The value of blocking operations on rows and columns increases with matrix size. For

small matrices, blocking may yield an enhanced execution rate by 20%, while for large

matrices the blocking may o�er an increased execution rate of about a factor of two.

In our implementations the optimum blocking factor for LU factorization with partial

pivoting increases from 4 to 16 with the matrix size increasing from 128 to 16896. The

optimum blocking factor for QR decomposition without pivoting was observed to increase

slower with the matrix size than for LU factorization. The optimum blocking factors for

the solve routines were always higher than for the factorization routines.

The execution rate for LU factorization without partial pivoting is higher than when

partial pivoting is used. The di�erence in performance depends upon the problem size,

but is typically in the 10 { 20% range.

The peak performance for the global factorization routines is about two thirds of the peak

performance of the local level{2 BLAS routines used for the O(N

3

) work in the factor-

ization (but approximately equal to the performance of the global matrix multiplication

routine in the CMSSL). The O(N

3

) work is well load{balanced and performed at high

e�ciency through blocking of row and column operations. The O(N

2

) work introduces a

signi�cant performance penalty, even for very large matrices, and a few thousand nodes.

For submatrices of a size of about 600 � 600, about one third of the time is spent on

O(N

2

) work on the Connection Machine system CM{200 with 2048 nodes. About two

thirds of this overhead time is spent in communication with the remainder spent in poorly

load{balanced arithmetic.

We also show that for architectures with a very simple communication performance model,

and for data layouts from a very large regular family, it is not possible to eliminate the

overhead from poorly load{balanced arithmetic. Speci�cally, we show, that in a communi-

cation model in which the time for a spread or reduction is determined only by the amount

of data that either leaves or enters a node regardless of the con�guration of the nodes, as-

signment of subarrays to nodes based on a two{dimensional nodal array is optimal both for

the factorization and the triangular system solution. We also show that the ratio between

the lengths of the axes of the two{dimensional nodal array is proportional to the ratio
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between the corresponding axes of the data array operated upon, i.e., the matrix subject

to factorization, or the set of right hand sides for triangular system solution. This proof

does not apply directly to the CM{200, because for hypercubes the available bandwidth

for a spread depends upon the node con�guration, and the simple communication model

does not fully capture the communications capabilities.

Acknowledgment

Many people at Thinking Machines Corp. have provided support for the dense linear

algebra work reported here. These include Mark Bromley, Tim Harris, Steve Heller,

Robert L. Krawitz, Doug MacDonald, Kapil K. Mathur, Jill P. Mesirov, Luis F. Ortiz,

and Leo Unger.

Special thanks go to Hank Dardy at the Naval Research Laboratories, Washington, D.C,

who made the Laboratories' Connection Machine system CM{200 available for the bench-

marks presented in Tables 7 and 8. Robert Whaley's assistance in this e�ort is greatly

appreciated. Last, but not least, we would like to thank the referees for their careful

reading of the manuscript and several helpful comments and suggestions.

References

[1] Edward Anderson, Z. Bai, Christian Bischof, Jim Demmel, Jack Dongarra, Jeremey

DuCroz, Anne Greenbaum, Sven Hammarling, A. McKenney, and Danny Sorensen.

Preliminary LAPACK users's guide. Technical report, University of Tennesse, July

1991.

[2] Jean-Philippe Brunet and S. Lennart Johnsson. All-to-all broadcast with applications

on the Connection Machine. International Journal of Supercomputer Applications,

6(3):241{256, 1992.

[3] M.Y. Chan. Embedding of grids into optimal hypercubes. SIAM J. Computing,

20(5):834{864, 1991.

[4] Jack J. Dongarra, Jeremy Du Croz, Iain Du�, and Sven Hammarling. A Set of Level

3 Basic Linear Algebra Subprograms. Technical Report Reprint No. 1, Argonne

National Laboratories, Mathematics and Computer Science Division, August 1988.

[5] Jack J. Dongarra, Jeremy Du Croz, Iain Du�, and Sven Hammarling. A Set of

Level 3 Basic Linear Algebra Subprograms: Model implementation and test programs.

Technical Report Reprint No. 2, Argonne National Laboratories, Mathematics and

Computer Science Division, August 1988.

[6] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An

Extended Set of Fortran Basic Linear Algebra Subprograms. Technical Report Tech-

nical Memorandum 41, Argonne National Laboratories, Mathematics and Computer

Science Division, November 1986.

36



[7] Geo�rey Fox, S. Hiranandani, Kenneth Kennedy, Charles Koelbel, U. Kremer,

C. Tseng, and M. Wu. Fortran D language speci�cation. Technical Report TR90-141,

Department of Computer Science, Rice University, December 1990.

[8] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.

Salmon, and David W. Walker. Solving Problems on Concurrent Processors. Prentice-

Hall, 1988.

[9] W. Morven Gentleman. Some complexity results for matrix computations on parallel

processors. J. ACM, 25(1):112{115, January 1978.

[10] P. Harten, H.-Y. Lin, H Rajic, and D. Wells. BLAS and FFT performance on the

Intel i860 microprocessor. Technical report, 1991.

[11] I. Havel and J. M�oravek. B-valuations of graphs. Czech. Math. J., 22:338{351, 1972.

[12] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes in Boolean cubes by

graph decomposition. J. of Parallel and Distributed Computing, 8(4):325{339, April

1990.

[13] S. Lennart Johnsson. Band matrix systems solvers on ensemble architectures. In

Algorithms,Architecture, and the Future of Scienti�c Computation, pages 195{216.

University of Texas Press, Austin, TX, 1985.

[14] S. Lennart Johnsson. Dense matrix operations on a torus and a Boolean cube. In

The National Computer Conference, July 1985.

[15] S. Lennart Johnsson. Fast banded systems solvers for ensemble architectures. Techni-

cal Report YALEU/DCS/RR-379, Dept. of Computer Science, Yale University,March

1985.

[16] S. Lennart Johnsson. Solving narrow banded systems on ensemble architectures. ACM

TOMS, 11(3):271{288, November 1985.

[17] S. Lennart Johnsson. Communication e�cient basic linear algebra computations on

hypercube architectures. J. Parallel Distributed Computing, 4(2):133{172, April 1987.

[18] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting

and personalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249{

1268, September 1989.

[19] S. Lennart Johnsson and Ching-Tien Ho. Generalized shu�e permutations on Boolean

cubes. J. Parallel and Distributed Computing, 16(1):1{14, 1992.

[20] S. Lennart Johnsson and Luis F. Ortiz. Local Basic Linear Algebra Subroutines

(LBLAS) for distributed memory architectures and languages with an array syntax.

The International Journal of Supercomputer Applications, 6(4):322{350, 1992.

[21] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh. Basic Linear Algebra

Subprograms for Fortran Usage. ACM TOMS, 5(3):308{323, September 1979.

37



[22] Guangye Li and Thomas F. Coleman. A parallel triangular solver for a distributed

memory multiprocessor. SIAM J. Sci. Statist. Comput., 9(3):485{502, 1988.

[23] Guangye Li and Thomas F. Coleman. A new method for solving triangular systems on

a distributed memorymessage-passing multiprocessor. SIAM J. Sci. Statist. Comput.,

10(2):382{396, 1989.

[24] Kapil K. Mathur and S. Lennart Johnsson. Multiplication of matrices of arbitrary

shape on a Data Parallel Computer. Parallel Computing, 20(7):919{951, July 1994.

[25] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-Hall,

Englewood Cli�s. NJ, 1977.

[26] B.T. Smith, J.M Boyle, J.J. Dongarra, B.S. Garbov, Y. Ikebe, V.C. Klema, and

C.B. Moler. Matrix Eigensystem Routines { EISPACK Guide. Springer Verlag, 1976.

Lecture Notes in Computer Science, vol. 6.

[27] Thinking Machines Corp. CM{200 Technical Summary, 1991.

[28] Thinking Machines Corp. CM Fortran optimization notes: slicewise model, version

1.0, 1991.

[29] Thinking Machines Corp. CMSSL for CM Fortran, Version 3.1, 1993.

[30] Robert A. van de Geijn. Massively parallel LINPACK benchmark on the Intel Touch-

stone Delta and iPSC/860 systems. Technical report, The University of Texas at

Austin, July 1991.

[31] Hans Zima, Peter Brezany, Barbara Chapman, Piyush Mehrotra, and Andreas

Schwald. Vienna Fortran { A language speci�cation version 1.1. Technical report,

ICASE, Interim Report 21, March 1992.

38


