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Abstract: High-throughput expression profiling allows simultaneous measure of tens of thousands of genes 

at once. These data have motivated the development of reliable biomarkers for disease subtypes identifi-

cation and diagnosis. Many methods have been developed in the literature for analyzing these data, such 

as diagonal discriminant analysis, support vector machines, and k-nearest neighbor methods. The diago-

nal discriminant methods have been shown to perform well for high-dimensional data with small sample 

sizes. Despite its popularity, the independence assumption is unlikely to be true in practice. Recently, a gene 

module based linear discriminant analysis strategy has been proposed by utilizing the correlation among 

genes in discriminant analysis. However, the approach can be underpowered when the samples of the two 

classes are unbalanced. In this paper, we propose to correct the biases in the discriminant scores of block-

diagonal discriminant analysis. In simulation studies, our proposed method outperforms other approaches 

in various settings. We also illustrate our proposed discriminant analysis method for analyzing microarray 

data studies.
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1  Introduction

High-throughput expression profiling allows simultaneous measure of tens of thousands of genes at once. 

These data have motivated the development of reliable biomarkers for disease subtypes identification and 

diagnosis, and the identification of novel targets for drug treatment. Many methods have been developed in 

the literature, such as diagonal linear discriminant analysis (DLDA) (Dudoit et al., 2002), regularized linear 

discriminant analysis (Guo et  al., 2007), random forests (Breiman, 2001; Statnikov et  al., 2008), support 

vector machines (SVM) (Lee et al., 2004; Vapnik and Kotz, 2006), dimension reduction methods (Antoniadis 

et al., 2003; Dai et al., 2006), nearest shrunken centroids methods (Tibshirani et al., 2002, 2003; Dabney and 

Storey, 2007; Wang and Zhu, 2007), and penalized linear discriminant analysis (Guo, 2010). These methods 

have been applied and reviewed by many studies, e.g., Lee et al. (2005), Huang and Zheng (2006), Statnikov 

et al. (2008) among others.

The three main statistical problems in cancer genomics research are (1) the identification of tumor subtypes; 

(2) the classification of patients into known classes; and (3) the selection of genes that distinguish between 

tumor subtypes. In this article, we will focus on the second and third problems. The high dimensional nature 

of microarray data with the number of genes much larger than the number of samples presents a challenge to 

classical classification methods, such as the well-known linear discriminant analysis (LDA). To overcome the 

singularity problem, various approaches that rely on a diagonal approximation to the covariance matrices have 

been proposed. This leads to the so-called diagonal discriminant analysis which have been widely used for 

classification in high-dimensional data (Dudoit et al., 2002; Speed, 2003; Ye et al. 2004; Lee et al., 2005; Shieh 

et al., 2006; Wang and Zhu, 2007; Pang et al., 2009). Due to the small sample size, DLDA performs very well in 

practice and usually produced lower misclassification rates than more sophisticated classifiers. DLDA is easy to 

implement and have been widely adopted to analyze high-dimensional data in the fields of science.
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The diagonal discriminant methods have been shown to perform well for high-dimensional data with 

small sample sizes. Despite the popularity of the independence assumption in the literature (Dudoit et al., 

2002; Bickel and Levina, 2004; Tong and Wang, 2007; Hwang et al., 2009), it is unlikely to be true in practice. 

Expression data consist of genes that can be highly co-expressed (Horvath and Dong, 2008; Taylor et al., 

2009). In other words, the diagonal covariance matrix assumption can be too restrictive. Recently, Hu et al. 

(2011) have proposed a gene module based linear discriminant analysis strategy, by utilizing the correlation 

among genes in discriminant analysis. In essence, their method is a block-diagonal linear discriminant rule. 

However, this method may have lower accuracy than desired when the samples of the two classes are unbal-

anced. Unbalanced data sets, in which the number of samples in different subgroups are unevenly distrib-

uted, are common in biomedical studies. It is thus desired to correct the biases in the discriminant scores of 

block-diagonal discriminant analysis. The idea of bias correction in discriminant analysis has been around 

for some time (Ghurye and Own, 1969; Moran and Murphy, 1979; McLachlan, 1992). Moran and Murphy (1979) 

proposed several bias correction methods for the plug-in discriminant scores under the condition that the 

sample size for each class, n
k
, is larger than p. However, the improvement of their bias-corrected rules is 

small (McLachlan, 1992), because the ratio of p/n
k
 is small. On the other hand, for high-dimensional data like 

microarray, the ratio p/n
k
 can be very large. As a result, the block-diagonal linear discriminant analysis may 

have low prediction accuracy when the design is fairly unbalanced. In this paper, we propose to correct the 

biases in the discriminant scores of block diagonal discriminant analysis when p is larger than n.

The remainder of the article is organized as follows. In the first part of Section 2, we introduce the problem 

and briefly review the diagonal discriminant analysis and its bias-corrected version. In the second part of 

Section 2, we introduce block diagonal discriminant analysis and derive the bias-corrected block diagonal 

estimators of the discriminant score and show that they dominate the original ones. In Section 3, we conduct 

realistic simulation studies to investigate the performance of the proposed methods. We then apply them to 

two real microarray data sets in Section 4. Finally, we conclude the paper in Section 5 with discussions and 

future directions.

2  Diagonal discriminant analysis and its improvement

Diagonal discriminant rules have been successfully employed for high-dimensional classification problems. 

However, the diagonal covariance matrix assumption can be too restrictive and it is unlikely to be true in 

practice. We describe below the diagonal discriminant analysis and block-diagonal discriminant analysis. 

In this paper, we propose bias-corrected rules for block-diagonal discriminant analysis as an improvement.

2.1  Diagonal discriminant analysis and its improvement

The main purpose of discriminant analysis is to assign an unknown subject to one of K classes on the basis of 

a multivariate observation x = (x
1
, …, x

p
) T, where p is the number of covariates. For simplicity of notation, the 

class labels y
i
 are defined to be integers ranging from 1 to K. We assume that there are n

k
 observations in each 

class k are to be i.i.d. from a multivariate normal distribution with mean µ
k
 and covariance matrix Σ

k
, for k = 1, 

…, K. The total number of observations is n = n
1
+…+n

K
.

Under the normal distribution assumption, we assign a new subject x to class k which minimizes the follow-

ing discriminant score 1( )=( ) ( ) ln| | 2 ln ,Q T

k k k k k k
d x x xµ Σ µ Σ π−

− − + −  where π
k
 denotes the prior probability of 

observing a class k member, i.e., we assign x to class argmin ( ).Q

k

k

d x  This is the so-called quadratic discriminant 

analysis (QDA). When the covariance matrices are all the same, the 1n|Σ
k
| term disappears and Σ

k
 = Σ. We have 

LDA. Classification rules based on QDA are known to require larger samples than those based on LDA (Wald and 
Kronmal, 1977) and seem to be more sensitive to violations of the basic assumptions. These so-called “plug-in” 

estimates are straightforward to compute, but enjoy no optimality properties (Anderson, 1958; Friedman, 1989).
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QDA requires that min{n
1
, …, n

K
}  ≥  p to make ˆ

k
Σ  non-singular. LDA requires that n  ≥  p to make Σ̂  non-

singular. To overcome the singularity problem, Dudoit et al. (2002) introduced two simplified discrimination 

rules by assuming independence of components and replacing off-diagonal elements of the sample covari-

ance matrices with zeros. The first rule is called the diagonal quadratic discriminant analysis (DQDA). Spe-

cifically, they estimate 2 2

1
ˆ ˆ ˆdiag( , , ),
k k pk
= …Σ σ σ  which simplifies the QDA rule to

 

2 2 2

1 1

ˆ ˆ ˆ ˆˆ( )= argmin ( )= ( ) / ln 2 ln ,
p p

Q

k i ik ik ik k
i ik

x d x x
= =

 
− + −  

∑ ∑µ σ σ πC

 
(1)

where ˆ / .
k k
n nπ =  The second rule is DLDA where a common diagonal covariance matrix is assumed. Specifi-

cally, they estimate 2 2

1
ˆ ˆ ˆ= ( , , ),

p
diagΣ σ σ…  which simplifies the LDA rule to

 

2 2

1

ˆ ˆ ˆˆ( )= argmin ( )= ( ) / 2 ln .
p

L

k i ik i k
ik

x d x x
=

 
− −  

∑ µ σ πC

 
(2)

Due to the small sample size, DLDA and DQDA, perform very well in practice and usually produced lower 

misclassification rates than more sophisticated classifiers. Both DQDA and DLDA are easy to implement and 

have been widely adopted to analyze high-dimensional data in the fields of science. See for example Speed 

(2003), Ye et  al. (2004), Noushath et  al. (2006), Asyali et  al. (2006), Son and Lee (2006), Heilemann and 

Schuhr (2008), Natowicz et al. (2008), among many others.

DLDA is also called “naive Bayes” classifier because it arises in a Bayesian setting. For more theory on 

why the “naive Bayes” classifiers which assume independent covariates work well when p > n, see Bickel and 

Levina (2004). Although DLDA and DQDA have been shown to perform well for high-dimensional data with 

small sample sizes, they suffer from a serious drawback as their discriminant scores are biased. As a conse-

quence, DLDA and DQDA, may result in low prediction accuracy, especially when the design is fairly unbal-

anced. Huang et al. (2010) proposed bias-correction to improve DLDA and DQDA.

2.2  Block-diagonal discriminant analysis and its improvement

In the setting of microarray data analysis, Storey and Tibshirani (2001) suggested that the clumpy dependence 

(i.e., the block diagonal matrix) is a likely form of dependence, where the clumpy dependence means that 

the genes are dependent within groups and independent among groups. This is also mentioned in Langaas 

et al. (2005); Pang et al. (2009), etc. In recent development, Hu et al. (2011) proposed a clumpy dependence 

structure linear discriminant analysis method. Inspired by Huang et al. (2010), in this paper we propose bias-

corrected rules for block-diagonal discriminant analysis as an improvement.

2.2.1  Block-diagonal discriminant analysis

As before, we assume that there are n
k
 observations in each class k with

. .

,1 ,
, , MVN( , ), =1, , ,

k

i i d

k k n k k
x x k K… …µ Σ~

where µ
k
 and Σ

k
 are the corresponding mean vector and covariance matrix. The total number of observations 

is n = n
1
+…+n

K
.

Given the block-diagonal nature, we assume that all the genes can be assembled to a total of H groups 

(e.g., H pathways) with each group size p
h
, where h = 1, …, H and p

1
+…+p

H
 = p. Let µ

k
(h) and Σ

k
(h) be the mean 

vector and covariance matrix for group h, respectively. Note that the diagonal discriminant analysis is a 

special case of this general setting with p
1
 = … = p

H
 = 1 and H = p.

Without loss of generality, we can relabel the genes so that the first p
1
 genes are from group 1 (referred to 

as block 1), the subsequent p
2
 genes are from group 2 (referred to as block 2), and so on. Then we have
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( (1), , ( ) ) ,

=diag( (1), , ( )).

T T T

k k k

k k k

H

H

= …

…

µ µ µ

Σ Σ Σ

When the covariance matrices Σ
k
 are all the same, we denote it by Σ which has the form

Σ = diag(Σ(1), …, Σ(H)).

Let the new observation be x = (xT(1), …, xT(H))T. According to the above notations, the quadratic rule 

assigns x to class k which minimizes the following discriminant score

( ) ( )1

=1 =1

( )= ( ) ( ) [ ( )] ( ) ( ) ln| ( ) | 2 ln .
H H

T
BQ

k k k k k k

h h

d x x h h h x h h hµ Σ µ Σ π−− − + −∑ ∑

Similarly, when Σ
k
 are all the same, it reduces to a linear rule with the discriminant score as following:

1

=1

( )= ( ( ) ( ) ) [ ( )] ( ( ) ( ) ) 2 ln .
H

BL T

k k k k

h

d x x h h h x h hµ Σ µ π−
− − −∑

Note that both ( )BQ

k
d x  and ( )BL

k
d x  involve unknown quantities. To get the sample version rules, we 

need to have the estimates of π
k
, µ

k
(h), Σ

k
(h) and Σ(h), respectively. The same as before, we estimate π

k
 by 

ˆ = / .
k k
n nπ  The quantities µ

k
(h), Σ

k
(h) and Σ(h) are estimated by the following sample mean and sample covar-

iance matrices:

,
=1

, ,
=1

=1

1
ˆ ( ) ( ), =1, , ,

1ˆ ˆ ˆ( ) ( ( ) ( ))( ( ) ( ) ) ,
1

1ˆ ˆ( ) ( 1) ( ),

n
k

k k l

lk

n
k

T

k k l k k l k

lk

K

k k

k

h x h h H
n

h x h h x h h
n

h n h
n K

µ

Σ µ µ

Σ Σ

=

= − −
−

= −
−

∑

∑

∑

…

where ( ), , ,
(1), , ( )

T
T T

k l k l k l
x x x H= …  is the l-th observation from class k.

With the above sample estimates, the quadratic discriminant rule is given as ˆ( )= argmin ( ),BQ

k

k

x d xC  

where

 

1

1 =1

ˆ ˆ ˆ ˆˆ ˆ( ) ( ( ) ( ) ) [ ( )] ( ( ) ( ) ) ln| ( ) | 2 ln .
H H

BQ T

k k k k k k

h h

d x x h h h x h h hµ Σ µ Σ π−

=

= − − + −∑ ∑
 

(3)

We refer to it as the block-diagonal quadratic discriminant analysis (BD-QDA). Similarly, the sample version 

rule for the linear discriminant analysis is ˆ( )=  ( ),BL

k

k

x argmind xC  where

 

1

1

ˆ ˆ ˆˆ ˆ( ) ( ( ) ( ) ) [ ( )] ( ( ) ( ) ) 2 ln .
H

BL T

k k k k

h

d x x h h h x h hµ Σ µ π−

=

= − − −∑
 

(4)

We refer to it as the block-diagonal linear discriminant analysis (BD-LDA).

Finally, we mention that to avoid the singularity of the sample covariance matrices, to make BD-LDA work 

we require that max{p
1,
…, p

H
}  ≤  n. Similarly, to make BD-QDA work we require that max{p

1
,…, p

H
}  ≤  min{n

1
, …, 

n
k
}, a stronger requirement compared to that for BD-LDA especially when the data are fairly unbalanced. This 

makes BD-LDA a more applicable method for classifying high-dimensional data than BD-QDA.

2.2.2  Bias-corrected block-diagonal discriminant rules

Similarly as in Huang et al. (2010), the proposed block-diagonal discriminant rules, can be shown to suffer 

from the serious drawback of biased discriminant scores. With this insight, we propose bias-corrected rules 

Brought to you by | Hong Kong Baptist University

Authenticated | tongt@hkbu.edu.hk author's copy

Download Date | 10/4/17 7:28 AM



Herbert Pang et al.: Block-diagonal discriminant analysis and its bias-corrected rules      351

for BD-QDA and BD-LDA, respectively, by removing the biases in the discriminant scores in this section. Tech-

nical details for the bias-corrected rules will also be presented.

2.2.2.1  Bias-corrected rules for BD-QDA

For ease of notation, let

(1

1

( ) = ( ( ) ( ))  [ ( )] ( ( ) )) ,

ˆ ˆˆ ˆ( ) ( ( ) ( ) ) [ ( )] ( ( ) ( ) ),

T

k k k k

T

k k k k

Q h x h h h x h h

Q h x h h h x h h

Σ

µ Σ µ

−

−

− −

= − −

µ µ

where ˆ ( )
k

Q h  is the estimates of Q
k
(h) with h = 1, …, H and k = 1, …, K. Then for BD-QDA, the discriminant score 

(3) can be rewritten as

=1 =1

ˆ ˆ ˆ ˆ( )= ( ) ln| ( ) | 2 ln/ .
H H

BQ

k k k k

h h

d x Q h hΣ π+ −∑ ∑

To calculate the expectations of ˆ ( )
k

Q h  and ˆln| ( ) |,
k
hΣ  we employ the following well-known results (Das 

Gupta, 1968; McLachlan, 1992),

 

1 1
1

ˆ([ ( )] )= ([ ( )] ),
2

k

k k

k h

n
E h h

n p
Σ Σ

− −

−

− −  
(5)

 =1

1ˆ( ln| ( ) |)=ln| ( ) | ln( 1) ( ) ,
2

p
h

k k h k k
i

E h h p n n iΣ Σ Ψ
 

− − + −  ∑
 

(6)

where Ψ(·) is the digamma function Abramowitz and Stegun (1972).

By (5), together with the fact that ˆ ( )
k
µ h  and ˆ ( )

k
hΣ  are independent of each other, we have

{ }
{ }

1

1

ˆ ˆˆ ˆ[ ( )] tr ( ( ) ( ) ) [ ( )] ( ( ) ( ) )

ˆˆ ˆtr ( ( ) ( ) ) ( ( ) ( ) ) ([ ( )] )

1
( ) .

2

T

k k k k

T

k k k

hk

k

k h k

E Q h E x h h h x h h

E x h h x h h E h

pn
Q h

n p n

−

−

 = − − 
 = − − 

 −  
= + 

− −   

µ Σ µ

µ µ Σ

where “tr” is the trace of a matrix. This implies that

 

2
ˆ( )= ( )

1
k h h

k k

k k

n p p
Q h Q h

n n

− −

−

−

ɶ

 
(7)

is an unbiased estimator of Q
k
(h) for any h = 1, …, H and k = 1, …, K.

Note that

2

2 ˆ ˆvar( ( ))= var( ( ))<var( ( )).
1

k h

k k k

k

n p
Q h Q h Q h

n

 − −
 − 

ɶ

This shows that ( )
k

Q hɶ  has a smaller variance than ˆ ( ).
k

Q h  Then together with the fact that ( )
k

Q hɶ  is also 

an unbiased estimator of Q
k
(h), ( )

k
Q hɶ  is a better estimator as it has a smaller mean squared error (MSE) 

than ˆ ( ).
k

Q h  Or equivalently, we say that ( )
k

Q hɶ  dominates ˆ ( )
k

Q h  under the quadratic loss function 
2ˆ ˆ( , )=( ) .L θ θ θ θ−

By (6), an unbiased estimator of ln |Σ
k
(h)| is given as

 1

1ˆln| ( ) | ln( 1) ( ) .
2

p
h

k h k k
i

h p n n iΣ Ψ

=

 
+ − − −  ∑

 
(8)
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The same as above, the new estimator (8) dominates ˆln| ( ) |
k
hΣ  under the quadratic loss function.

By (7) and (8), we define the biased-corrected discriminant score of BD-QDA as

1 1

1ˆ ˆ( ) ( ) ln| ( ) | ln( 1) ( ) 2 ln .
2

p
H h

BQ

k k k h k k k
h i

d x Q h h p n n iΣ Ψ π

= =

  
 = + + − − − −    

∑ ∑ɶ ɶ

And correspondingly, we classify the new subject x to class argmin ( ).BQ

k

k

d xɶ

2.2.2.2  Bias-corrected rules for BD-LDA

For ease of notation, let

1

1

( ) ( ( ) ( ))  [ ( )]  ( ( ) ( )),

ˆ ˆˆ ˆ( ) ( ( ) ( ) ) [ ( )] ( ( ) ( ) ),

T

k k

T

k k k

L h x h h h x h h

L h x h h h x h h

Σ

µ Σ µ

−

−

= − −

= − −

k
µ µ

where ˆ ( )
k
L h  is the estimates of L

k
 (h) with h = 1, …, H and k = 1, …, K. Then for BD-LDA, the discriminant score 

(4) can be rewritten as

1

ˆ ˆ ˆ( )= ( ) 2 ln .
H

BL

k k k

h

d x L h π

=

−∑

Note that 
1

ˆ ˆ( ) 1 ( 1) ( ).
K

k kk
h n K n hΣ Σ

=
= − −∑  It is known that ˆ( ) ( )n K hΣ−  follows a Wishart distribution 

with n–K degrees of freedom (Das Gupta, 1968; McLachlan, 1992),. That is

ˆ( ) ( )~ ( ( ), ), =1, , .
p
h

n K h W h n K h HΣ Σ− − …

This leads to

 

1 1ˆ([ ( )] ) [ ( )] .
1

h

n K
E h h

n K p
Σ Σ

− −
−

=

− − −  
(9)

By (9), together with the fact that ˆ ( )
k
µ h  and ˆ ( )

k
hΣ  are independent of each other, we have

{ }
{ }

1

1

ˆ ˆˆ ˆ[ ( )] tr ( ( ) ( ) ) [ ( )] ( ( ) ( ) )

ˆˆ ˆtr ( ( ) ( ) )( ( ) ( ) ) ([ ( )] )

( ) .
1

T

k k k

T

k k

h

k

h k

E L h E x h h h x h h

E x h h x h h E h

pn K
L h

n K p n

−

−

 = − − 
 = − − 

 −  
= + 

− − −   

µ Σ µ

µ µ Σ

This implies that

 

1
ˆ( )= ( )h h

k k

k

n K p p
L h L h

n K n

− − −

−

−

ɶ

 
(10)

is an unbiased estimator of L
k
 (h) for any h = 1, …, H and k = 1, …, K. Noting that

2

1
ˆ ˆvar( ( )) var( ( ))<var( ( )),h

k k k

n K p
L h L h L h

n K

 − − −
= − 

ɶ

This shows that ( )
k
L hɶ  has a smaller variance than ˆ ( ).

k
L h  Then together with the fact that ( )

k
L hɶ  is also 

an unbiased estimator of L
k
(h), we can conclude that ( )

k
L hɶ  provides to be a better estimator as it has a 

smaller MSE than ˆ ( ).
k
L h  Or equivalently, we say that ( )

k
L hɶ  dominates ˆ ( )

k
L h  under the quadratic loss 

function.
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Finally, we define the biased-corrected discriminant score of BD-LDA as

=1

ˆ( )= ( ) 2 ln , =1, , .
H

BL

k k k

h

d x L h k Kπ−∑ɶ ɶ …

And correspondingly, we classify the new subject x to class argmin ( ).BL

k

k

d xɶ

To illustrate how the bias-corrected rules may perform better than the original rules, we consider BD-LDA 

with K = 2. Also assume that n and p
h
 are given. (i) When the data are balanced, i.e., when n

1
 = n

2
 = n/2, by (10) 

it is easy to verify that

1 2 1 2
ˆ ˆ( )> ( )    ( )> ( ).L h L h is equivalent to L h L hɶ ɶ

This indicates that the bias-corrected BD-LDA always provides a similar decision as the original BD-LDA, 

though ( )
k
L hɶ  is usually a better estimator of L

k
 (h) than ˆ ( ).

k
L h  (ii) When the data are unbalanced, i.e., when 

n
1
≠n

2
, however,

1 2 1 2
ˆ ˆ( )> ( )    ( )> ( ).L h L h doesnot necessarily lead to L h L hɶ ɶ

Therefore, the bias-corrected BD-LDA is likely to provide a different decision compared with the original 

BD-LDA for unbalanced designs. Such discrepancy may increase when the data are fairly unbalanced, i.e., 

when n
1
 and n

2
 are far different from each other.

2.2.3  Gene and network module selection

The selection of the top genes for all the methods was done according to the ratio of between-group to within-

group sums of squares (Dudoit et al., 2002). Specifically, the ratio for gene j is:

 

2

*

2

( )( )
( )

,
( ) ( )( )

i kj j
i k

i ij kj
i k

I y k x x
BSS j

WSS j I y k x x

= −

=
= −

∑∑

∑∑
 

(11)

where 
kj
x  denotes the average expression level of gene j across samples being in class k, and 

* j
x  denotes the 

average expression level of gene j across all the samples.

Therefore, the same number of genes as the number selected in network modules will be used in the 

non-block diagonal, support vector machines and k-Nearest Neighbor (k-nn). By doing this, we ensure that 

the differences in the results is not due to differences in the genes used for classification. For finding network 

modules, the top genes are then partitioned into groups based on affinity propagation clustering (Frey and 

Dueck, 2007; Bodenhofer et al. 2011). Affinity propagation clustering determines for each cluster an exemplar, 

a sample that is most representative for this cluster. Unlike most clustering algorithms (e.g., k-means), this 

clustering technique allow exemplars to be chosen among the observed data samples without pre-specifying 

the number of clusters. The affinity propagation clustering requires a similarity matrix. The similarity of data 

point a to data point b, called s(a,b), is the suitability of point b to serve as the exemplar for data point a. Let 

x(a) and x(b) are vector measures of points a and b, respectively. If the data are real-valued, a common choice 

for similarity is negative squared Euclidean distance: s(a,b) = –(x(a)–(x(b))T (x(a)–x(b)), where T represents 

the transpose. A squared negative distances similarity measure was used in accordance with the examples 

in Frey and Dueck (2007). Another popular distance measure, Gaussian kernel, was included as comparison. 

Gene network modules are more biologically interpretable and are suitable for the identification of drug 

targets (Suthram et al., 2010). The use of a non-parametric clustering method based on local shrinking was 

also investigated (Wang et al., 2007). However, the performance is less desirable than the Affinity propaga-

tion method. Therefore, those results are not presented here.
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2.2.4  Prediction accuracy

Prediction accuracy is widely used to assess the performance of classifiers. However, when the number of 

samples in the different classes is fairly unbalanced, commonly used classification methods that favor the 

majority class may appear to perform better (Qiao and Liu, 2009; Huang et al., 2010). In this article, we apply 

the class-weighted accuracy (CWA) criterion (Cohen et al., 2006) which is defined as 
=1

= ,
K

k kk
CWA w a∑  where 

a
k
 are the per-class predication accuracies and w

k
 are nonnegative weights with 

=1
=1.

K

kk
w∑  For simplicity, we 

assume equal weights, that is, w
k
 = 1/K, and set the prior probability π

k
 = 1/K as well. This is the same measure 

used by Huang et al. (2010). Qiao and Liu (2009) referred to the CWA criterion as the mean within group error 

with one-step fixed weights criterion.

3  Simulation study

We conduct simulation studies in this section to evaluate the proposed bias-corrected BD-LDA. The simula-

tion study is to investigate the misclassification rates by using the above discriminant scores. We examine the 

misclassification rates using CWA. Different simulation setups were considered to investigate the behavior of 

the proposed BD-LDA in a controlled manner. We chose SVM with radial basis and k-nn with k = 3, two well 

known classification schemes for comparison. These settings are chosen as they were found to be best in 

Pang et al. (2009) and Huang et al. (2010).

Realistic covariance matrix structures were used for simulations. We consider two classes of multivari-

ate normal distributions: MVN(µ
1
, Σ) and MVN(µ

2
, Σ). The covariance matrix Σ is a block-diagonal matrix of 

size 1000 × 1000 with each of the b × b diagonal blocks the compound symmetric matrix Σ
p
, and the rest of the 

matrix is zero, where
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Since having some signal and non-signal genes in a pathway is reasonable, block matrices of size b × b with 

b = 5, 10, and 20 for the respective number of signal genes of (2 or 3), (2 or 3), and (3 or 5) were chosen for dif-

ferent runs. For each gene i, we let µ
i
 = 0 if it is a non-signal gene and µ

i
 = 0.5 if it is a signal gene. Matrices with 

a compound symmetric structure with ρ = 0, 0.25, 0.5, 0.75 and 0.9 were chosen for this setup. Two scenarios 

of σs were considered. In one case, we set all of the σs to be 1. Therefore, when ρ = 0, it reduces to the identity 

covariance matrix. In the other case, σs are generated from Uniform[0.5, 1.5]. For each simulation, a training 

set of size n was generated as described above, and a validation set of size 2n was generated with the identical 

setup in order to assess the error rate. At each iteration of simulation, top 50 genes were selected according 

to the ratio of between-group to within-group sums of squares and are then partitioned based on affinity 
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propagation described in Section 2.2.3. The mean error rates for each method were obtained by running 300 

simulations and taking an average over them. For each setup, we generated training sets of n
1
 = 40 and n

2
 = 10 

for the respective validation set of sizes 2n
1
 and 2n

2
.

3.1  Simulation results

Denote BcBD-LDA as the bias-corrected block-diagonal LDA. We see that BcBD-LDA outperforms all other 

methods when the correlation gets large which closely resembles real microarray data, see Table 1. When ρ 

is small the results are similar for BcBD-LDA and Bc-DLDA. The pattern of DLDA and BD-LDA is similar to the 

two we have just discussed. As ρ gets large, BD-LDA outperforms DLDA. SVM and k-nn do not perform well 

under this setting. Their performance also decline when ρ becomes large. Overall, when there is a high cor-

relation among genes, BcBD-LDA should be chosen over Bc-DLDA. Results of the 1000 genes data simulations 

with 5 signal genes for each of the 50 blocks and with 2 signal genes for each of the 100 blocks with varying ρ 

values can be found in Figures 1 and 2, respectively. Additional figures of simulations results can be found in 

Supplementary Materials, Figures S1–10.

We also performed simulations with expression data generated using simulator from the “boost” R 

package (Dettling, 2004). This program allows us to retain the mean and correlation structure from real 

data. For this simulation, we used the Shipp et al. (2002) data set. Results are shown in supplementary table 

S1. Again, the results demonstrate that the superior performance of BcBD-LDA other methods under this 

setting. We also investigated the settings when half of the genes in each block are signal genes, e.g., Figure 

S20s block size of 20 has 10 signal genes per block, and Figure S21s block size of 10 has 5 signal genes per 

block. Under these settings, our approach still performs well when the correlation is high among genes 

within each block.

Table 1 CWA for simulated data sets 100 blocks with 3 signal genes in each block.

Method ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9

DLDA 0.731 0.732 0.732 0.728 0.721

Bc-DLDA 0.774 0.773 0.765 0.755 0.738

k-nn 0.652 0.653 0.645 0.661 0.637

SVM 0.613 0.622 0.623 0.634 0.628

BD-LDA 0.719 0.711 0.719 0.748 0.777

BcBD-LDA 0.752 0.743 0.757 0.799 0.825
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Figure 1 Results of a simulation study with 1000 genes, 50 blocks and 5 signal genes per block, σ s = 1, with varying ρ values.
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4  Applications to microarray data

In this section, we applied the proposed bias-corrected BD-LDA to real data sets and compare them with 

several other popular classification methods as we did in the simulations studies: 1) Bc-DLDA (Huang et al., 

2010), 2) BD-LDA, 3) SVM, and 4) k-nn methods. In order to assess the performance of the different methods, 

we randomly divide the data into a training set and a validation set. Approximately 60% of the samples are 

assigned to the training set. The rest, about 40%, is used as the validation set to assess the error rate. This 

process is repeated 100 times. For every training set, gene selection is performed as outlined in Section 2.2.3.

We presented two unbalanced microarray data sets with binary outcomes. Shipp et al. (2002) is a lym-

phoma study and Wong et al. (2009) is a pediatric critic care study, see Table 2. The Shipp et al. (2002) data 

set contains 6817 probe sets. It is a study consisting of 58 diffuse large B-cell lymphoma and 19 follicular lym-

phoma pretreatment biopsy samples. The goal of their study is to differentiate between the two lymphoma 

subtypes. Although the two types of lymphoma have different responses to cancer therapy, they share similar 

morphologic and clinical features over time. The Wong et al. (2009) data set is based on the Affymetrix HGU-

133plus2 chip with over 55,000 probe sets. It is an unbalanced design study with 18 normal control and 67 

pediatric patients with septic shock on the first day to understand pediatric septic shock of critically ill chil-

dren with sepsis and septic shock.

When we consider the top 50 genes for building the network modules, BD-LDA performed worst in Shipp 

et al. (2002) that was used as illustrations in Huang et al. (2010). The non-network module based methods, 

DLDA, Bc-DLDA, SVM, k-nn will have the same genes as what we used in network modules. For Shipp et al. 

(2002), we see that BcBD-LDA outperforms all of the other methods across including bias-corrected DLDA. An 

example of the network modules for this data set, can be found in Figure 3. For the Wong et al. (2009) data set, 

similarly, top 50 genes were used for building the network modules. Again, we see that BcBD-LDA performs 

0 0.2 0.4 0.6 0.8 1.0
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0.80

0.90
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k-NN
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1000 genes, 100 blocks, 2 signal genes, sigmas=1

Figure 2 Results of a simulation study with 1000 genes, 100 blocks and 2 signal genes per block, σs = 1, with varying ρ values.

Table 2 CWA for two real microarray data sets.

Method Shipp et al. (2002) Wong et al. (2009)

DLDA 0.828 0.869

Bc-DLDA 0.832 0.870

k-nn 0.835 0.891

SVM 0.824 0.884

BD-LDA 0.812 0.884

BcBD-LDA 0.868 0.894
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best among all the methods. DLDA did worst in this data set. However, the k-nn faired quite well compared 

with BcBD-LDA. Overall, BcBD-LDA has smaller misclassification rates than all the other methods and clearly 

beats the discriminant analysis-based counterparts. Network modules for this data set, can be found in Sup-

plementary Materials Figure S11.

5  Discussion

In this paper, we proposed new discriminant analysis rules that aim to better classify subjects and provide 

more precise prediction in gene expression data for unbalanced data sets than existing methods. This is 

done through the development of bias-corrected discriminant rules that allows non-independence blocks 

structure of genes. This approach overcomes the strong independence assumptions of diagonal discriminant 

analysis and corrects for bias in the case of imbalance subjects in different subgroups. It aids the interpreta-

tion of genes in microarray data as they tend to work in pathways rather than individually.

We have illustrated in simulations that under moderate correlation, our bias-corrected block-diagonal 

discriminant rules outperform existing methods. The simulation studies do attempt to model real situation 

in experimental gene expression data. In addition, we demonstrate the advantages of using our new method 

on two real microarray data.

Further work can be considered. For example, Pang et al. (2009) demonstrated good performance of the 

shrinkage-based discriminant rules. Their method’s performance is enhanced mainly due to reduced vari-

ances in the discriminant scores. However, the bias terms still remain for unbalanced data. Therefore, one 

may propose to correct the biases for the shrinkage-based block-diagonal discriminant rules.
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