
IMA Journal of Numerical Analysis (2009) 29, 350–375

doi:10.1093/imanum/drn014

Advance Access publication on April 4, 2008

Block-diagonal preconditioning for spectral stochastic

finite-element systems

CATHERINE E. POWELL†

School of Mathematics, University of Manchester, Oxford Road,

Manchester M13 9PL, UK

AND

HOWARD C. ELMAN‡

Department of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742, USA

[Received on 25 May 2007; revised on 9 January 2008]

Deterministic models of fluid flow and the transport of chemicals in flows in heterogeneous porous me-

dia incorporate partial differential equations (PDEs) whose material parameters are assumed to be known

exactly. To tackle more realistic stochastic flow problems, it is fitting to represent the permeability coeffi-

cients as random fields with prescribed statistics. Traditionally, large numbers of deterministic problems

are solved in a Monte Carlo framework and the solutions are averaged to obtain statistical properties

of the solution variables. Alternatively, so-called stochastic finite-element methods (SFEMs) discretize

the probabilistic dimension of the PDE directly leading to a single structured linear system. The latter

approach is becoming extremely popular but its computational cost is still perceived to be problematic

as this system is orders of magnitude larger than for the corresponding deterministic problem. A sim-

ple block-diagonal preconditioning strategy incorporating only the mean component of the random field

coefficient and based on incomplete factorizations has been employed in the literature and observed to

be robust, for problems of moderate variance, but without theoretical analysis. We solve the stochas-

tic Darcy flow problem in primal formulation via the spectral SFEM and focus on its efficient iterative

solution. To achieve optimal computational complexity, we base our block-diagonal preconditioner on

algebraic multigrid. In addition, we provide new theoretical eigenvalue bounds for the preconditioned

system matrix. By highlighting the dependence of these bounds on all the SFEM parameters, we illus-

trate, in particular, why enriching the stochastic approximation space leads to indefinite system matrices

when unbounded random variables are employed.
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1. Introduction

Fluid flow and the transport of chemicals in flows in heterogeneous porous media are modelled mathe-

matically using partial differential equations (PDEs). In deterministic modelling, inputs such as material

properties, boundary conditions and source terms are assumed to be known explicitly. Such assumptions

lead to tractable computations. However, simulations based on such over-simplifications cannot be used

in practice to quantify the probability of an unfavourable event such as, say, a chemical being transported
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at a lethal level of concentration in groundwater. If the input variables for the system being studied are

subject to uncertainty, then it is fitting to represent them as random fields. Solutions to the resulting

stochastic PDEs are then necessarily also random fields. Strategic decision making cannot be made

without some form of uncertainty quantification. Typically, a few moments of the solution variables are

required, or the probability distribution of a particular quantity of interest.

We focus on the case of uncertainty in material properties. The simplest and most commonly em-

ployed way of dealing with this is via the Monte Carlo Method (MCM). Large numbers of realizations

of the random system inputs are generated and each resulting deterministic problem is solved using the

available numerical methods and solvers. Results are post-processed to determine the desired statistical

properties of the solution variables. Care must be taken, however, to ensure that enough realizations are

generated so that the probability space is sampled appropriately. The exact number of trials required

depends on the problem at hand but hundreds of thousands of experiments are not untypical for realistic

flow problems with large variance. Easy access to parallel computers makes this feasible in the 21st

century. Quasi MCMs and variance reduction techniques can be used to reduce the overall number of

trials, making this technology even more competitive. However, minimizing the computational cost of

solving each deterministic problem is still a crucial and non-trivial step.

An alternative approach, pioneered in Ghanem & Spanos (2003), couples a Karhunen–Loève (KL)

expansion of the random field coefficients in the stochastic PDE with a traditional finite-element dis-

cretization on the spatial domain. The stochastic dimension of the problem is discretized directly. The

advantage of this so-called stochastic finite-element method (SFEM) is that a single linear system needs

to be solved. However, this is orders of magnitude larger than the subproblems solved in the MCM. The

components of the discrete solution are coefficients of a probabilistic expansion of the solution variables

which can easily be post-processed to recover the mean, variance and probability distribution of quanti-

ties of interest. SFEMs are becoming increasingly popular but their computational cost is perceived to

be high. The linear systems in question are, however, highly structured and researchers have been slow

to take up the challenge of solving them efficiently. Initial attempts were made in Ghanem & Kruger

(1996) and Pellissetti & Ghanem (2000). More recently, a fast and efficient linear algebra for alternative

SFEMs (see Deb et al., 2001; Babuška & Chatzipantelidis, 2002; Babuška et al., 2004) has been pro-

posed by linear algebra specialists (see Eiermann et al., 2007; Elman et al., 2005a; Elman & Furnival,

2007) and fast solvers and parallel computer architectures have been exploited in Keese (2003, 2004)

and Keese & Matthies (2002, 2003).

We focus on the numerical solution of the steady-state diffusion problem which, in its deterministic

formulation, is written as

− ∇ ∙ K∇u = f, in D ⊂ R
d ,

u = g, on ∂DD 6= ∅,

K∇u ∙ En = 0, on ∂DN = ∂D\∂DD. (1.1)

The boundary-value problem (1.1) is the primal formulation of the standard second-order elliptic prob-

lem and provides a simplified model for single-phase flow in a saturated porous medium (e.g. see Russell

& Wheeler, 1983; Ewing & Wheeler, 1983). In that physical setting, u and Eq = K∇u are the residual

pressure and velocity field, respectively. K is a prescribed scalar function or a d × d symmetric and

uniformly positive-definite tensor, representing permeability. Since the permeability coefficients of a

heterogeneous porous medium can never, in reality, be known at every point in space, we consider, here,

the case where K = K (Ex, ω) is a random field. We assume only statistical properties of K .
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To make these notions precise, let (Ω,B , P) denote a probability space where Ω , B , and P are

the set of random events, the minimal σ -algebra of the subsets of Ω and an appropriate probability

measure, respectively. Then K (Ex, ω) : D × Ω → R. For a fixed spatial location Ex ∈ D, K (∙, ω) is a

random variable, while for a fixed realization ω ∈ Ω , K (Ex, ∙) is a spatial function in Ex . The stochastic

problem then reads: find a random field u(Ex, ω) : D ×Ω → R such that P-almost surely

− ∇ ∙ K (Ex, ω)∇u(Ex, ω)= f (Ex), Ex ∈ D,

u(Ex, ω)= g(Ex), Ex ∈ ∂DD,

K (Ex, ω)∇u(Ex, ω) ∙ En = 0, Ex ∈ ∂DN = ∂D\∂DD, (1.2)

where f (Ex) and g(Ex) are suitable deterministic functions. The source term f can also be treated as a

random field in a straightforward manner (see Elman et al., 2005a; Deb et al., 2001) but we shall not

consider that case.

1.1 Overview

The focus of this work is the design of fast solvers for (1.2). In Section 2, we summarize the classi-

cal spectral SFEM discretization from Ghanem & Spanos (2003) and discuss some modelling issues

that affect the spectral properties of the resulting linear systems and ultimately the solver performance.

We highlight the structure and algebraic properties of the resulting linear system and implement the

block-diagonal preconditioning scheme advocated in Ghanem & Kruger (1996). For the subproblems,

however, we replace the traditional incomplete factorization schemes used in Ghanem & Kruger (1996)

and Pellissetti & Ghanem (2000) with a black-box algebraic multigrid (AMG) solver. We also com-

pare the computational effort required with that of traditional MCMs. Our main contributions, namely

the derivation of key properties of the finite-element matrices and eigenvalue bounds for the precondi-

tioned system matrices, are presented in Section 3. The bounds are shown to be tight for test problems

commonly used in the literature. Numerical results are presented in Section 4.

2. Spectral SFEMs for the steady-state diffusion problem

SFEMs can be divided into two categories: non-spectral and spectral methods. The former (see Deb

et al., 2001; Elman et al., 2005a) achieves a prescribed accuracy via polynomial approximation of a fixed

degree on an increasingly fine partition of a probability range space. The latter requires no such formal

partition and error is reduced by increasing the degree, p, of polynomial approximation. The methods

can be further subcategorized according to the choice of stochastic basis functions (orthogonal, as in

Ghanem (1998), doubly-orthogonal as in Babuška et al. (2004), etc.) We focus on the classical spectral

method outlined in Ghanem & Spanos (2003) and employ a standard orthogonal polynomial chaos

basis. The main advantage is that the dimension of this space grows more slowly than for other choices

(see Babuška et al. (2004) or Deb et al. (2001) for alternatives). However, the stochastic terms are fully

coupled and this is much more challenging for solvers. For notational convenience, we illustrate the

derivation of the spectral SFEM equations for the case of homogeneous Dirichlet boundary conditions

only. This derivation is completely standard and full details can be found in Ghanem & Spanos (2003),

Deb et al. (2001), Babuška & Chatzipantelidis (2002) and Babuška et al. (2004).

If the coefficient K (Ex, ω) is bounded and strictly positive, i.e.

0 < k1 6 K (Ex, ω) 6 k2 < +∞, a.e. in D ×Ω, (2.1)



PRECONDITIONING SPECTRAL STOCHASTIC FINITE-ELEMENT SYSTEMS 353

then (1.2) can be cast in weak form in the usual way, and existing theory (i.e. the classical Lax–Milgram

lemma) can be used to establish existence and uniqueness of a solution. In the present stochastic setting,

the idea is to seek a weak solution in a Hilbert space H = H1
0 (D) ⊗ L2(Ω), consisting of tensor

products of deterministic functions defined on the spatial domain and stochastic functions defined on

the probability space.

In order to set up variational problems, some notation is first required. Let X be a real random

variable belonging to (Ω,B , P) and assume that there exists a density function ρ : Rd → R such that

the expected value can be expressed via the integral

〈X〉 =
∫

R

xρ(x)dx .

If 〈X〉 < ∞, then X ∈ L1(Ω). The space L2(D) ⊗ L2(Ω) = {v(Ex, ω) : D × Ω → R | ‖v‖ < ∞}
consists of random functions with finite second moment where the norm ‖ ∙ ‖ is defined via

‖v(Ex, ω)‖2 =
〈∫

D

v2(Ex, ω)dEx
〉

. (2.2)

Next, we define V = {v(Ex, ω) : D×Ω → R | ‖v‖V < ∞, v|∂D×Ω = 0}, where the ‘stochastic energy’

norm ‖ ∙ ‖V is defined via

‖v(Ex, ω)‖2
V =

〈∫

D

K (Ex, ω)|∇v(Ex, ω)|2 dEx
〉

. (2.3)

If condition (2.1) holds, then the norm is well defined and it can be shown that there exists a unique

u = u(Ex, ω) ∈ V satisfying the continuous variational problem
〈∫

D

K (Ex, ω)∇u(Ex, ω) ∙ ∇v(Ex, ω)dEx
〉

=
〈∫

D

f (Ex)v(Ex, ω)dEx
〉

∀ v(Ex, ω) ∈ V . (2.4)

To convert the stochastic problem (2.4) into a deterministic one, we require a finite set of random

variables {ξ1(ω), . . . , ξM (ω)} that represent appropriately and sufficiently the stochastic variability of

K (Ex, ω). One possibility is to approximate K (Ex, ω) by a truncated KL expansion, a linear combination

of a finite set of uncorrelated random variables. We discuss this in Section 2.1. After formally replac-

ing K (Ex, ω) by KM (Ex, Eξ), it can be shown that the corresponding solution also has finite stochastic

dimension and the variational problem (2.4) can be restated as follows: find u = u(Ex, Eξ) ∈ W satisfying

∫

Γ

ρ(Eξ)
∫

D

KM (Ex, Eξ)∇u(Ex, Eξ) ∙ ∇w(Ex, Eξ)dEx dEξ =
∫

Γ

ρ(Eξ)
∫

D

f (Ex)w(Ex, Eξ)dEx dEξ (2.5)

∀w(Ex, Eξ) ∈ W . Here, ρ(Eξ) denotes the joint probability density function of the random variables and

Γ = Γ1 ×∙ ∙ ∙×ΓM is the joint image of the random vector Eξ . A key point is that if the random variables

are mutually independent, then the density function is separable, i.e. ρ(Eξ) = ρ1(ξ1) ∙ ρ2(ξ2) ∙ ∙ ∙ ρM (ξM )

and the integrals in (2.5) simplify greatly. Many practitioners use Gaussian random variables because

uncorrelated Gaussian random variables are independent (e.g. see Ghanem & Spanos, 2003, or Elman &

Furnival, 2007). However, (2.1) is not satisfied in this case, so the resulting problem (2.4) is not well

posed. Other authors (see Deb et al., 2001; Elman et al., 2005a; Babuška & Chatzipantelidis, 2002)

work with random variables with bounded images in order to satisfy (2.1) and introduce independence

as an extra modelling assumption. An approach that leads to well-posed problems without an explicit

assumption of independent variables is given in Babuška et al. (2007).
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Formally, the space W differs from V since the definition of the norm induced by the inner product

in (2.5) is defined in terms of the density ρ(Eξ). Hence, to make (2.5) understood, we define

W = H1
0 (D)⊗ L2(Γ ) = {w(Ex, Eξ) ∈ L2(D × Γ ) | ‖w(Ex, Eξ)‖W < ∞ and w|∂D×Γ = 0} (2.6)

and the energy norm

‖w(Ex, Eξ)‖2
W =

∫

Γ

ρ(Eξ)
∫

D

KM (Ex, Eξ)|∇w(Ex, Eξ)|2 dEx dEξ .

Representing the stochastic behaviour of K (Ex, ω) by a finite set of random variables (a form of

model order reduction) can be viewed as the first step in the discretization process. To obtain a fully

discrete version of (2.5), we now need a finite-dimensional subspace Wh ⊂ W = H1
0 (D)⊗ L2(Γ ). The

key idea of the SFEM is to discretize the deterministic space H1
0 (D) and the stochastic space L2(Γ )

separately. Hence, given bases

Xh = span{φi (Ex)}N x
i=1 ⊂ H1

0 (D), S = span{ψ j (Eξ)}Nξ
j=1 ⊂ L2(Γ ), (2.7)

which may be chosen independently of one another, we define

W h = Xh ⊗ S = {v(Ex, Eξ) ∈ L2(D × Γ ) | v(Ex, Eξ) ∈ span{φ(Ex)ψ(Eξ), φ ∈ Xh, ψ ∈ S}}. (2.8)

We choose the basis for Xh by defining the functions φi (Ex) to be the standard hat functions associated

with piecewise linear (or bilinear) approximation associated with a partition Th of the spatial domain

D into triangles (or rectangles). Different classes of SFEMs are distinguished by their choices for S.

In Elman et al. (2005a), Deb et al. (2001) and Babuška et al. (2004), tensor products of piecewise

polynomials on the subdomains Γi are employed. In this approach, the polynomial degree is fixed and

approximation is improved by refining the partition of Γ . The classical, so-called spectral SFEM (see

Ghanem & Spanos, 2003; Elman & Furnival, 2007; Le Maitre et al., 2003; Sudret & Der Kiureghian,

2000) employs global polynomials of total degree p in M random variables ξi on Γ . In this approach,

there is no partition of Γ and approximation is improved by increasing the polynomial degree. We shall

adopt the latter method.

When the underlying random variables are Gaussian, the spectral approach uses a basis of multidi-

mensional Hermite polynomials of total degree p, termed the ‘polynomial chaos’ (see Wiener, 1938).

The use of Hermite polynomials ensures that the corresponding basis functions are orthogonal with

respect to the Gaussian probability measure. This leads to sparse linear systems, a crucial property that

must be exploited for fast solution schemes. If alternative distributions are used to model the input

random field, then appropriate stochastic basis functions should be used to ensure orthogonality with

respect to the probability measure they induce (see Xiu & Karniadakis, 2003). For example, if uniform

random variables with zero mean and unit variance (having support on the bounded interval [−
√

3,
√

3])

are selected, Legendre polynomials are the correct choice. Convergence and approximation properties

of the resulting SFEM, when random variables with bounded images are employed, are discussed in

Babuška et al. (2004).

To illustrate the construction of S, consider the case of Gaussian random variables with M = 2

and p = 3. Then S is the set of two-dimensional Hermite polynomials (the product of a univariate Her-

mite polynomial in ξ1 and a univariate polynomial in ξ2) of degree less than or equal to three. Each basis

function is associated with a multi-index α = (α1, α2), where the components represent the degrees of

polynomials in ξ1 and ξ2. Since the total degree of the polynomial is three, we have the possibilities



PRECONDITIONING SPECTRAL STOCHASTIC FINITE-ELEMENT SYSTEMS 355

α = (0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2) and (0, 3). Given that the univari-

ate Hermite polynomials of degrees 0, 1, 2, 3 are H0(x) = 1, H1(x) = x , H2(x) = x2 − 1 and

H3(x) = x3 − 3x , we obtain

S = span{ψ j (Eξ)}10
j=1

= {1, ξ1, ξ
2
1 − 1, ξ3

1 − 3ξ1, ξ2, ξ1ξ2, (ξ
2
1 − 1)ξ2, ξ

2
2 − 1, (ξ2

2 − 1)ξ1, ξ
3
2 − 3ξ2}.

Note that the dimension of this space is

Nξ = 1 +
p
∑

s=1

1

s!

s−1
∏

r=0

(M + r) = (M + p)!

M!p!
.

In the sequel, we provide results for Gaussian random variables and Hermite polynomials, which are

popular with practitioners (see Elman & Furnival, 2007; Ghanem & Kruger, 1996; Ghanem & Spanos,

2003; Keese, 2004; Pellissetti & Ghanem, 2000) as well as bounded, independent uniform random

variables with Legendre polynomials (see Deb et al., 2001; Elman et al., 2005a). Other distributions can

be accommodated in the same framework provided that the correct choice of orthogonal polynomial is

made.

2.1 KL expansion

A random field K (Ex, ω) with continuous covariance function

C(Ex, Ey) = 〈(K (Ex, ω)− 〈K (Ex)〉)(K (Ey, ω)− 〈K (Ey)〉)〉 = σ 2̺(Ex, Ey), Ex, Ey ∈ D,

admits a proper orthogonal decomposition (see Loéve, 1960) or KL expansion

K (Ex, ω) = μ+ σ

∞
∑

i=1

√

λi ci (Ex)ξi , (2.9)

where μ = 〈K (Ex)〉, the random variables {ξ1, ξ2, . . .} are ‘uncorrelated’ and {λi , ci (Ex)} are the set of

eigenvalues and eigenfunctions of ̺(Ex, Ey). Here, C(∙, ∙) is non-negative definite, the eigenvalues are real

and we label them in descending order λ1 > λ2 > . . .. Now we can employ the truncated expansion

K (Ex, Eξ) ≈ KM (Ex, Eξ) = μ+ σ

M
∑

i=1

√

λi ci (Ex)ξi , (2.10)

for computational purposes in (2.5). This choice is motivated by the fact that quadratic mean square

convergence of KM (Ex, Eξ) to K (Ex, ω) is guaranteed as M → ∞. The truncation criterion, and hence

the choice of M , is usually based on the speed of decay of the eigenvalues since |D|Var(K)= ∑

λi .

Hence, in applications where the eigenvalues decay slowly, due to small correlation lengths, M might

be very large. However, care must be taken to ensure that for the chosen M , (2.5) is well posed. For

the conventional analysis, we require that the truncated coefficient be strictly positive and bounded, and

thus satisfy

0 < k1 6 KM (Ex, ω) 6 k2 < ∞ a.e. in D × Γ.
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This is not the same as (2.1). In Babuška & Chatzipantelidis (2002), it is shown that we require KM (Ex, ω)
to converge to K (Ex, ω) uniformly as M → ∞. To achieve this, we require that ξ1, . . . , ξM have uni-

formly bounded images and that the eigenvalues of the covariance function decay sufficiently fast (see

Frauenfelder et al., 2005). Gaussian random variables have unbounded images, but are widely used by

practitioners, as we previously mentioned, because uncorrelated Gaussian random variables are inde-

pendent and this simplifies (2.5). At a discrete level, it often seems that Gaussian random variables are

adequate since, for a fixed variance, it is always possible to choose the parameters M and p so that the

system matrix to be defined in (3.4) is positive definite. This is misleading since it is not clear what

solution is being approximated. Indeed, we will show that it is always possible to choose values of

M and p that lead to an indefinite or singular system matrix. Using random variables with bounded

images is not a simple fix, however. Uncorrelated random variables with bounded images are not neces-

sarily independent. Independent random variables are assumed for the standard stochastic finite-element

technology described here. If it is not fitting, however, to assume independence of the random variables,

alternative techniques such as those considered in Babuška et al. (2007) and Eiermann et al. (2007)

should be considered.

2.1.1 Truncated KL expansion. To illustrate the positivity issue, consider the following example. The

covariance function employed in Ghanem & Spanos (2003), Elman & Furnival (2007), and Deb et al.

(2001) and in the MATLAB-based code described in Sudret & Der Kiureghian (2000) is

C(Ex, Ey) = σ 2 exp

(

−|x1 − y1|
c1

− |x2 − y2|
c2

)

, (2.11)

where c1 and c2 are correlation lengths and D = [−a, a] × [−a, a]. The attraction of working with

(2.11) is that analytical expressions for the eigenfunctions and eigenvalues exist. To see this, note that

the kernel is separable and so the eigenfunctions and eigenvalues can be expressed as the products of

those of two corresponding 1D problems. That is, ci (Ex) = c1
k (x1)c

2
j (x2) and λi = λ1

kλ
2
j , where the

eigenpairs {c1
k (x1), λ

1
k}∞k=1 and {c2

j (x2), λ
2
j }∞j=1 are solutions to

∫ a

−a

exp(−b1|x1 − y1|)c1
k (y1)dy1 = λ1

kc1
k (x1),

∫ a

−a

exp(−b2|x2 − y2|)c2
j (y2)dy2 = λ2

j c
2
j (x2), (2.12)

with bi = c−1
i , i = 1, 2. Solutions are given in Ghanem & Spanos (2003). As i increases, the eigenfunc-

tions become more oscillatory. The more random variables we use to represent K (Ex, Eξ), the more scales

of fluctuation we incorporate. In Fig. 1, we plot a sample of the eigenfunctions for the case c1 = 1 = c2.

In Fig. 2, we plot three realizations of the corresponding truncated coefficient (2.10) with standard de-

viation σ = 0.5. Observe that in one of these realizations (M = 50), the truncated KL expansion is

not strictly positive. This fits with theoretical arguments given in Babuška & Chatzipantelidis (2002).

The truncated coefficient is not strictly positive a.e in D × Ω . However, if the variance is ‘not large’,

we can still choose M and p so that the discrete SFEM system has a positive-definite system matrix.

We investigate this issue further in Sections 3 and 4.
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FIG. 1. First, 20th and 50th eigenfunctions of the covariance kernel in (2.11) with c1 = c2 = 1.

FIG. 2. Realizations of KM (Ex, ω) with M = 5, 20, 50, c1 = 1 = c2, μ = 1, σ = 0.5 and ξi ∼ N (0, 1), i = 1 : M .

3. Linear algebra aspects of spectral SFEM formulation

Given KM (Ex, Eξ) and bases for Xh and S, we now seek a finite-dimensional solution uhp(Ex, Eξ) ∈ W h =
Xh ⊗ S satisfying

∫

Γ

ρ(Eξ)
∫

D

KM (Ex, Eξ)∇uhp(Ex, Eξ) ∙ ∇w(Ex, Eξ)dEx dEξ =
∫

Γ

ρ(Eξ)
∫

D

f (Ex)w(Ex, Eξ)dEx dEξ (3.1)

∀w(Ex, Eξ) ∈ W h . Expanding the solution and the test functions in the chosen bases in (3.1), we see that

uhp(Ex, Eξ) =
Nξ
∑

s=1

Nx
∑

r=1

ur,sφr (Ex)ψs(Eξ) =
Nξ
∑

s=1

usψs(Eξ), (3.2)

leads to a linear system Au = f of dimension Nx Nξ × Nx Nξ with block-structure

A =















A1,1 A1,2 . . . A1,Nξ

A2,1 A2,2 . . . A2,Nξ

...
...

. . .
...

ANξ ,1 ANξ ,2 . . . ANξ ,Nξ















, u =















u1

u2

...

uNξ















, f =















f
1

f
2

...

f
Nξ















. (3.3)
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The blocks of A are linear combinations of M + 1 weighted stiffness matrices of dimension Nx , each

with a sparsity pattern equivalent to that of the corresponding deterministic problem. That is,

Ar,s = 〈ψr (Eξ)ψs(Eξ)〉K0 +
M
∑

k=1

〈ξkψr (Eξ)ψs(Eξ)〉Kk,

K0(i, j) =
∫

D

μ∇φi (Ex)∇φ j (Ex)dEx, Kk(i, j) = σ
√

λk

∫

D

ck(Ex)∇φi (Ex)∇φ j (Ex)dEx, (3.4)

where k = 1 : M and μ = 〈K (Ex)〉. K0 contains the mean information of the permeability coefficient,

while the other Kk blocks represent fluctuations. In tensor product notation, we have

A = G0 ⊗ K0 +
M
∑

k=1

Gk ⊗ Kk, f = g
0
⊗ f

0
, (3.5)

where the stochastic matrices Gk are defined via

G0(r, s) = 〈ψr , ψs〉, Gk(r, s) = 〈ξkψrψs〉, k = 1 : M, (3.6)

and the vectors g
0

and f
0

are given by g
0
(i) = 〈ψi 〉, f

0
(i) =

∫

D
f (Ex)φ(Ex)dEx . Since the stochastic

basis functions are orthogonal with respect to the probability measure of the distribution of the chosen

random variables, G0 is diagonal. If doubly orthogonal polynomials are used (see Babuška et al., 2004),

then each Gk is diagonal, so that A is block-diagonal. This can be handled very easily by solving Nξ
decoupled systems of dimension Nx . We do not consider that case here.

The block-structure of A obtained from the spectral SFEM is illustrated in Fig. 3. Many of the

coefficients in the summation in (3.4) are zero, due to the orthogonality properties of the stochastic

basis functions (see Section 3.1), and the matrix is highly sparse in a block sense. In particular, K0

occurs only on the main diagonal blocks. It should also be noted that A is never fully assembled. As

pointed out in Ghanem & Kruger (1996), we store only M + 1 matrices of dimension Nx × Nx and

the entries of each Gk in (3.6). If the discrete problem is well posed, then A is symmetric and positive

definite but is ill conditioned with respect to the discretization parameters. We can solve the system

FIG. 3. Matrix block-structure (each block has dimension Nx × Nx ), M = 4 with p = 1, 2, 3 (left to right).
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iteratively, using the conjugate gradient (CG) method (performing matrix–vector products intelligently)

but a preconditioner is required. We discuss this in Section 3.1.

3.1 Matrix properties

We examine first the properties of the stochastic G matrices in (3.6). Each stochastic basis functionψi (Eξ)
is the product of M univariate orthogonal polynomials. That is, ψi (Eξ) = ψi1

(ξ1)ψi2
(ξ2) ∙ ∙ ∙ψiM

(ξM ),

where the index i into the stochastic basis is identified with a multi-index i = (i1, . . . , iM ),
∑

is 6 p,

where p is the total polynomial degree, and M is the number of random variables retained in (2.10).

If Gaussian random variables are used, each ψis (ξs) is a univariate Hermite polynomial of degree is . If

uniform random variables are more appropriate, we use Legendre polynomials. The ordering of these

multi-indices is not important for the calculations but some simple eigenvalue bounds for these matrices

are obvious if a specific ordering is used.

Using orthogonality of the polynomials and independence of the random variables yields

G0(i, j) =
∫

Γ

ψi (Eξ)ψ j (Eξ)ρ(Eξ)dEξ =
M
∏

s=1

∫

Γs

ψis (ξs)ψ js (ξs)ρs(ξs)dξs =
M
∏

s=1

〈

ψ2
is
(ξs)

〉

δis , js .

G0 is a diagonal matrix and is the identity matrix if the stochastic basis functions are normalized. For

example, if Hermite polynomials in Gaussian random variables on the interval (−∞,∞) are employed,

we obtain

G0(i, j)=
M
∏

s=1

is!δis , js =
(

M
∏

s=1

is!

)

δi, j =
{

∏M
s=1 is!, if i = j,

0, otherwise.
(3.7)

Using, in addition, the well-known three-term recurrence for the Hermite polynomials,

ψk+1(x) = xψk(x)− kψk−1(x) (3.8)

for k = 1 : M , we obtain

Gk(i, j)=
∫ ∞

−∞

∫ ∞

−∞
∙ ∙ ∙
∫ ∞

−∞
ξkψi (Eξ)ψ j (Eξ)ρ(Eξ)dEξ

=





M
∏

s=1,s 6=k

〈

ψis (ξs)ψ js (ξs)
〉





〈

ξkψik
(ξk)ψ jk (ξk)

〉

=















(∏M
s=1,s 6=k is!δis , js

)

(ik + 1)!, if ik = jk − 1,
(∏M

s=1,s 6=k is!δis , js

)

ik!, if ik = jk + 1,

0, otherwise

=















(∏M
s=1,s 6=k is!

)

(ik + 1)!, if ik = jk − 1 and is = js, s = {1 : M} \ {k},
(∏M

s=1 is!
)

, if ik = jk + 1 and is = js, s = {1 : M} \ {k},
0, otherwise.
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Due to (3.8), Gk has at most two nonzero entries per row. Gk(i, j) is nonzero only when the multi-

indices corresponding to i and j agree in all components except the kth one, where the entries differ by

one. This is true when the basis is built from any set of univariate orthogonal polynomials.

In Section 3.2, it will be necessary to have a handle on the eigenvalues of G−1
0 Gk or, equivalently,

the symmetrically preconditioned matrices

Ĝk = G
− 1

2

0 Gk G
− 1

2

0 , k = 1 : M,

for a fixed value of p. The next result relies on the well-known fact that roots of orthogonal polynomials

are eigenvalues of certain tridiagonal matrices (see Golub & Welsch (1969) or a standard numerical

analysis text such as Stoer & Bulirsch (1980)).

LEMMA 3.1 If Hermite polynomials of total degree p in M Gaussian random variables are used for

the stochastic basis, the eigenvalues of Ĝk = G
−1/2
0 Gk G

−1/2
0 , for each k = 1 : M , lie in the interval

[−Hmax
p+1, Hmax

p+1], where Hmax
p+1 is the maximum positive root of the univariate Hermite polynomial of

degree p + 1.

Proof. Using the definitions of G0 and Gk , observe that Ĝk has at most two nonzeroes per row:

Ĝk(i, j)=



























(

∏M
s=1, s 6=k is !

)

(ik+1)!
√

(

∏M
s=1 is !

)
√

(

∏M
s=1 js !

) , if ik = jk − 1 and is = js, s = {1 : M} \ {k},
(

∏M
s=1 is !

)

√

(

∏M
s=1 is !

)
√

(

∏M
s=1 js !

) , if ik = jk + 1 and is = js, s = {1 : M} \ {k},

0, otherwise

=



















√
ik + 1, if ik = jk − 1 and is = js, s = {1 : M} \ {k},

√
ik, if ik = jk + 1 and is = js, s = {1 : M} \ {k},

0, otherwise.

Let M and p be fixed but arbitrary and consider, first, the matrix Ĝ1. It is possible to choose an ordering

of the stochastic basis functions that causes Ĝ1 to be block tridiagonal. Recall that the sum of the

multi-index components does not exceed p. First, list multi-indices with first component ranging from

0 to p with entries in the second to M th components summing to zero: (0, 0, . . . , 0), (1, 0, . . . , 0), . . . ,

(p, 0, . . . , 0). This accounts for p + 1 basis functions. Given the definition of Ĝ1, the leading (p + 1)×
(p + 1) block, namely Tp+1, is then necessarily tridiagonal

Tp+1 =























0 1

1 0
√

2

. . .
. . .

. . .
√

p − 1 0
√

p
√

p 0























. (3.9)
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Next, we list multi-indices with first components ranging from 0 to p − 1 and with entries in the second

to M th components that add up to one, but grouped to have the same entries in those components:

(0, 0, . . . , 0, 1)

(1, 0, . . . , 0, 1)

...

(p − 1, 0, . . . , 0, 1)

(0, 0, . . . , 1, 0)

(1, 0, . . . , 1, 0)

...

(p − 1, 0, . . . , 1, 0)

. . . . . .

. . . . . .

. . . . . .

. . . . . .

(0, 1, . . . , 0, 0)

(1, 1, . . . , 0, 0)

...

(p − 1, 1, . . . , 0, 0)

This accounts for (M − 1) × p basis functions. Ĝ1 then has M − 1 copies of a tridiagonal matrix Tp

defined analogously to Tp+1. We continue to order the multi-indices in this way until, finally, we list

multi-indices that are 0 in the first component and in the second to M th components are the same and

have entries that add up to p. Then, Ĝ1 is a symmetric block tridiagonal matrix with multiple copies of

the symmetric tridiagonal matrices Tp+1, Tp, . . . , T1 = 0 as the diagonal blocks. The number of copies

of Tp+1 is one and the number of copies of T j , j = 1 : p, that appear is

1

(p − j + 1)!

p− j
∏

r=0

(M − 1 + r).

The eigenvalues of Ĝ1 are the eigenvalues of the {T j }. The eigenvalues of each tridiagonal block are

just roots of a characteristic polynomial p j (λ) that satisfies the recursion (3.8). That is,

p j+1(λ) = (λ− 0)p j (λ)− (−
√

j)2 p j−1(λ).

Hence, p j (λ) is the Hermite polynomial of degree j (see Golub & Welsch, 1969, or Stoer & Bulirsch,

1980, Chapter 3). Since the roots of lower-degree Hermite polynomials are bounded by the extremal

eigenvalues of higher-degree polynomials, the maximum eigenvalue of Ĝ1 is the maximum root of the

(p + 1)th-degree polynomial Hp+1 or, equivalently, the maximum eigenvalue of Tp+1. The minimum

eigenvalue is identical to the maximum eigenvalue but with a sign change.

Now, if the basis functions have not been chosen to give Ĝ1 explicitly as a block tridiagonal matrix,

there exists a permutation matrix P1 (corresponding to a reordering of the stochastic basis functions)

such that G̃1 = P1Ĝ1 PT
1 is the block tridiagonal matrix described above. The eigenvalues of G̃1 are the

same as those of Ĝ1. The same argument applies for the other matrices Ĝk, k = 2 : M . There exists a

permutation matrix Pk so that G̃k = Pk Ĝk PT
k is block tridiagonal and whose extremal eigenvalues are

given by those of Tp+1. �

REMARK 3.2 The above result refers specifically to Gaussian random variables. However, it can be

easily extended to other types of random variables. The stochastic basis is always constructed from a

set of orthogonal univariate polynomials that satisfy a three-term recurrence. Hence, Ĝk is always a per-

mutation of a symmetric, block tridiagonal matrix. The characteristic polynomial for the eigenvalues of

each block always inherits the same three-term recurrence as the original set of orthogonal polynomials.

Further discussion and generalization of this point, as well as a discussion of other properties of the

matrices Ĝk , can be found in Ernst & Ullmann (2008).

We specify the result in the case of uniform random variables as follows.
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LEMMA 3.3 If Legendre polynomials of total degree p in M uniform random variables with support

on the bounded symmetric interval [−γ, γ ] are used for the stochastic basis, the eigenvalues of Ĝk , for

each k = 1 : M , lie in the interval [−Lmax
p+1, Lmax

p+1], where Lmax
p+1 is the maximum positive root of the

univariate Legendre polynomial of degree p + 1.

Proof. Follow the proof of Lemma 3.1, replacing the definitions of G0 and Gk and the three-term

recurrence (3.8) by those appropriate to the Legendre polynomials on the interval [−γ, γ ]. �

For Hermite polynomials, Hmax
p+1 is bounded by

√
p − 1 + √

p. This is observed by applying

Gershgorin’s theorem to Tp+1 in (3.9). In contrast, for Legendre polynomials, Lmax
p+1 is bounded by

γ independently of p. If the uniform random variables have mean zero and unit variance, then γ =
√

3.

We now examine the eigenvalues of the matrices Kk coming from the spatial discretization.

LEMMA 3.4 Let K0 and Kk be the stiffness matrices defined in (3.4). If ck(Ex) > 0, where {λk, ck(Ex)} is

the kth eigenpair of ̺(Ex, Ey), then

0 6
σ

μ

√

λkcmin
k 6

xT Kk x

xT K0x
6
σ

μ

√

λkcmax
k ∀ x ∈ RNx ,

where cmin
k = infEx∈D ck(Ex) and cmax

k = supEx∈D ck(Ex) = ‖ck(Ex)‖∞. Alternatively, if ck(Ex) is not uni-

formly positive, then

−σ
μ

√

λk‖ck(Ex)‖∞ 6
xT Kk x

xT K0x
6
σ

μ

√

λk‖ck(Ex)‖∞ ∀ x ∈ RNx .

Proof. Given any x ∈ RNx , define a function v ∈ Xh via v = ∑

xiφi (Ex). If ck(Ex) > 0, then

xT Kk x =
∫

D

σ
√

λkck(Ex)∇v ∙ ∇v dD 6
σ

μ

√

λkcmax
k

∫

D

μ∇v ∙ ∇v dD = σ

μ

√

λkcmax
k xT K0x,

xT Kk x =
∫

D

σ
√

λkck(Ex)∇v ∙ ∇v dD >
σ

μ

√

λkcmin
k

∫

D

μ∇v ∙ ∇v dD = σ

μ

√

λkcmin
k xT K0x .

If μ is positive, dividing through by the quantity xT K0x gives the first result. Now, if ck(Ex) also takes

on negative values, we have

|xT Kk x | = σ
√

λk

∣

∣

∣

∣

∫

D

ck(Ex)∇v ∙ ∇v dD

∣

∣

∣

∣

6
σ

μ

√

λk‖ck(Ex)‖∞xT K0x .

Arguing as in the first case gives the second result. �

3.2 Preconditioning

When the global matrix A is symmetric and positive definite, we can use the CG method as a solver.

However, the system is ill conditioned and a preconditioner is required. In Pellissetti & Ghanem (2000)

and Ghanem & Kruger (1996), it is noted that if the variance of K (Ex, ω) is small, then the preconditioner

P composed of the diagonal blocks of A, i.e.

P = G0 ⊗ K0, (3.10)
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is heuristically the simplest and most appropriate choice. Working under the assumption that the variance

is ‘sufficiently small’ is not suitable for some applications but the user is, in fact, limited to this if

employing Hermite polynomials in Gaussian random variables. In this section, we obtain a theoretical

handle on these observations. First, we explain why preconditioning is required.

LEMMA 3.5 If G0 is defined using Hermite polynomials in Gaussian random variables and piecewise

linear (or bilinear) approximation is used for the spatial discretization, on quasi-uniform meshes, the

eigenvalues of (G0 ⊗ K0) lie in the interval [μα1h2, μα2 p!], where μ is the mean value of K (Ex, ω),
p is the degree of stochastic polynomials, h is the characteristic spatial mesh-size and α1 and α2 are

constants independent of h, M and p.

Proof. If vξ is an eigenvector of G0 with corresponding eigenvalue λξ and v x is an eigenvector of K0

with corresponding eigenvalue λx , then (G0 ⊗ K0)(vξ ⊗ v x ) = λξλx (vξ ⊗ v x ). Using (3.7), we deduce

that 1 6 λξ 6 p!. A bound for the eigenvalues of K0 can be obtained in the usual way, e.g. see Elman

et al. (2005b, pp. 57–59), to give

μα1h2
6
vT

x K0v x

vT
x v x

6 μα2 ∀ v x ∈ RNx .

The result immediately follows. �

REMARK 3.6 Note that if the polynomial chaos basis functions are normalized with 〈ψi , ψ j 〉 = δi j ,

then with any choice of random variables, the stochastic mass matrix is the identity matrix and the above

eigenvalue bound is simply [μα1h2, μα2] and is independent of p. It is always worthwhile normalizing

the basis functions for this reason. We shall assume that this is the case in the sequel.

Now, we can expect the eigenvalues of the global unpreconditioned system matrix (3.5) to be a

perturbation of the eigenvalues of G0 ⊗ K0.

LEMMA 3.7 If the matrices Gk in (3.6) are defined using either normalized Hermite polynomials in

Gaussian random variables or normalized Legendre polynomials in uniform random variables on a

bounded symmetric interval [−γ, γ ], and piecewise linear (or bilinear) approximation is used for the

spatial discretization, on quasi-uniform meshes, then the eigenvalues of the global stiffness matrix A in

(3.5) are bounded and lie in the interval [μα1h2 − δ, μα2 + δ], where

δ = α2σCmax
p+1

M
∑

k=1

√
λk‖ck(Ex)‖∞,

Cmax
p+1 is the maximal root of an orthogonal polynomial of degree p + 1, h is the spatial discretization

parameter and α1 and α2 are constants independent of h, M and p.

Proof. First note that the maximum and minimum eigenvalues νmax and νmin of

(

(G0 ⊗ K0)+
M
∑

k=1

(Gk ⊗ Kk)

)

v = νv

can be bounded in terms of the maximum and minimum eigenvalues of the matrices in the sum. Using

normalized stochastic basis functions, the matrices Ĝk in Lemmas 3.1 and 3.3 are the same as the

matrices Gk in (3.6). Hence, the eigenvalues of Gk belong to the symmetric interval [−Cmax
p+1,Cmax

p+1],
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where Cmax
p+1 is equal to Hmax

p+1 or Lmax
p+1. Using a similar argument to that presented in Lemma 3.4, the

eigenvalues of Kk , k = 1 : M , lie in the bounded interval

[σ
√
λkcmin

k α1h2, σ
√
λkcmax

k α2], if ck(Ex) > 0,

[−σ√
λk‖ck(Ex)‖∞α2, σ

√
λk‖ck(Ex)‖∞α2], otherwise.

Denoting the minimum and maximum eigenvalues of (Gk ⊗ Kk) by γ k
min and γ k

max, respectively, and

applying the result of Lemma 3.5, we have

νmin > μα1h2 +
M
∑

k=1

γ k
min, νmax 6 μα2 +

M
∑

k=1

γ k
max.

Now, noting that the eigenvalues of the Kronecker product of two matrices are the products of the

eigenvalues of the individual matrices, we have, for any k,

νmin > μα1h2 − σα2Cmax
p+1

M
∑

k=1

√

λk‖ck(Ex)‖∞, νmax 6 μα2 + σα2Cmax
p+1

M
∑

k=1

√

λk‖ck(Ex)‖∞.

�

Using the preceding arguments, we can now establish a result that determines the efficiency of the

chosen preconditioner.

THEOREM 3.8 The eigenvalues {νi } of the generalized eigenvalue problem, Ax = νPx , where the

matrices Gk are defined using either normalized Hermite polynomials in Gaussian random variables

or normalized Legendre polynomials in uniform random variables on a bounded symmetric interval

[−γ, γ ], lie in the interval [1 − τ, 1 + τ ], where

τ = σ

μ
Cmax

p+1

M
∑

k=1

√

λk‖ck(Ex)‖∞, (3.11)

σ and μ are the standard deviation and mean of K (Ex, ω), {λk, ck(Ex)} are the eigenpairs of ρ(Ex, Ey) and

Cmax
p+1 is a constant (possibly) depending on p.

Proof. First note that the eigenvalues that we are seeking satisfy ν = θ + 1, where

M
∑

k=1

(G0 ⊗ K0)
−1(Gk ⊗ Kk)v = θv.

Hence, using standard properties of the matrix Kronecker product, and assuming normalized stochastic

basis functions, we have

M
∑

k=1

(Gk ⊗ K −1
0 Kk)v = θv.

Now, let K̂k = K −1
0 Kk . Applying Lemmas 3.4, 3.1 and 3.3, the eigenvalues of Gk belong to the symmet-

ric interval [−Cmax
p+1,Cmax

p+1], where Cmax
p+1 is equal to Hmax

p+1 or Lmax
p+1 depending, on the choice of random
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variables, and the eigenvalues of K̂k belong to the interval

[

σ

μ

√

λkcmin
k ,

σ

μ

√

λkcmax
k

]

or

[

−σ
μ

√

λk‖ck(Ex)‖∞,
σ

μ

√

λk‖ck(Ex)‖∞

]

,

depending on the positivity of ck(Ex). Proceeding as in Lemma 3.7, and denoting the minimum and

maximum eigenvalues of Gk ⊗ K̂k by γ k
min and γ k

max, we have, in both cases,

θmin >

M
∑

k=1

γ k
min > −

M
∑

k=1

Cmax
p+1

σ

μ

√

λk‖ck(Ex)‖∞, θmax 6

M
∑

k=1

γ k
max 6

M
∑

k=1

Cmax
p+1

σ

μ

√

λk‖ck(Ex)‖∞.

The eigenvalues that we need are the values νi = 1 + θi , i = 1 : Nx Nξ . �

REMARK 3.9 As σμ−1 → 0, the bound collapses to a single cluster at one. This is intuitively correct,

since the off-diagonal blocks, which are not represented in the preconditioner, become insignificant. For

increasing σμ−1, the upper and lower bounds move away from one. The lower bound may be negative.

Note that when σμ−1 is too large, the condition (2.1) is violated for even low values of M and the

unpreconditioned matrix A is not positive definite.

REMARK 3.10 The bound depends on the value Cmax
p+1. As we have seen, if Gaussian random variables

are used, this constant grows like
√

p − 1 + √
p. Hence, the preconditioner P does not improve the

conditioning of A with respect to p. If uniform random variables are employed, Cmax
p+1 = Lmax

p+1 6 γ and

so there is no ill-conditioning in the preconditioned or unpreconditioned systems with respect to p.

REMARK 3.11 The bounds are pessimistic in M , due to the fact that we have bounded the maximum

eigenvalue of a sum of matrices by the sum of the maximum eigenvalues of the individual matrices (and

similarly with the minimum eigenvalue). The bound is sharp when M = 1 with any p, μ and σ (since

then there is no sum) and is tighter in M when the eigenvalues decay rapidly or when σ is very small.

For the case p = 1, a tighter bound (with respect to M) can be established. We illustrate this below

for Gaussian random variables.

THEOREM 3.12 When p = 1, for any M , the eigenvalues {νi } in Ax = νPx , where A and P are defined

in (3.5) and (3.10) and the matrices Gk are defined as in (3.6) using normalized Hermite polynomials in

Gaussian random variables, lie in the interval [1 − τ, 1 + τ ], where

τ = σ

μ

(

M
∑

k=1

λk‖ck(Ex)‖2
∞

)

1
2

, (3.12)

σ and μ are the standard deviation and mean of K (Ex, ω) and {λk, ck(Ex)} are the eigenpairs of ρ(Ex, Ey).
Proof. When p = 1, each Ĝk is a permutation of an (M + 1) × (M + 1) block tridiagonal matrix G∗
with leading block

T2 =
(

0 1

1 0

)
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and all remaining rows and columns filled with zeros. Hence, following the proof of Theorem 3.8,

M
∑

k=1

Ĝk ⊗ K̂k =

















0 K̂M . . . K̂1

K̂M 0 . . . 0

...
...

. . .
...

K̂1 0 . . . 0

















(or some block permutation thereof). It is then a trivial task to show that the eigenvalues of this sum are

either 0 or ±
√

λ
(∑M

k=1 K̂ 2
k

)

or, in other words, the eigenvalues of the matrix

Ĝ∗ ⊗
(

M
∑

k=1

K̂ 2
k

)

1
2

(since the eigenvalues of G∗ are −1, 0, 1). Using the result of Lemma 3.4, noting that the eigenvalues

of K̂ 2
k are non-negative, and denoting the maximum eigenvalue of K̂k by γ k

max, we have

θmax 6

(

M
∑

k=1

(γ k
max)

2

)

1
2

6
σ

μ

(

M
∑

k=1

λk‖ck(Ex)‖2
∞

)

1
2

,

θmin >−
(

M
∑

k=1

(γ k
max)

2

)

1
2

> −σ
μ

(

M
∑

k=1

λk‖ck(Ex)‖2
∞

)

1
2

.

The eigenvalues we need are the values νi = 1 + θi , i = 1 : Nx Nξ . �

REMARK 3.13 The above bound is tighter with respect to M as the sequence λ1, λ2, . . . decays more

rapidly than the sequence
√
λ1,

√
λ2, . . .. Unfortunately, for other values of p there is no nice represen-

tation for the sum of matrices in the form G∗ ⊗ X for some matrix X that is easy to handle.

We now explore the accuracy of the bounds. In each example below, we list the computed extremal

eigenvalues of P−1 A and the bounds on those eigenvalues calculated using Theorems 3.8 and 3.12. For

the stochastic basis, we employ Hermite polynomials in Gaussian random variables.

EXAMPLE 3.14 We consider first the case where the covariance function is (2.11) with σ = 0.1, μ = 1,

c1 = 1 = c2 and h = 1
8

. Computed eigenvalues and their estimated bounds are listed in Table 1.

EXAMPLE 3.15 Next, we consider the same example but with a very small standard deviation σ = 0.01.

Computed eigenvalues and their estimated bounds are listed in Table 2.

EXAMPLE 3.16 Observe what happens when we use a large standard deviation σ = 0.3 and increase

p, the stochastic polynomial degree. In this example, in Table 3, we also list the extremal eigenvalues

of A. Thus, it can be seen that when Hermite polynomials (with infinite support) are employed, for

fixed values of h, M and σ , we can always find a value of p that causes the system matrix A and the

preconditioned system matrix P−1 A to be indefinite. The eigenvalue bounds in Theorems 3.8 and 3.12

predict this. Figure 4 summarizes this for the case M = 1.
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TABLE 1 Example 3.14: extremal eigenvalues of P−1 A and bounds on
extremal eigenvalues of P−1 A

M p νmin(P
−1 A) νmax(P

−1 A) Bounds Hmax
p+1

1 1 0.9155 1.0845 [0.9151, 1.0849] 1
2 0.8537 1.1463 [0.8529, 1.1471] 1.7321
3 0.8028 1.1972 [0.8017, 1.1983] 2.3344
4 0.7586 1.2414 [0.7573, 1.2427] 2.8570

2 1 0.9125 1.0875 [0.9037, 1.0963] 1
2 0.8485 1.1515 [0.7743, 1.2257] 1.7321
3 0.7959 1.2041 [0.6958, 1.3042] 2.3344
4 0.7502 1.2498 [0.6277, 1.3723] 2.8570

3 1 0.9107 1.0893 [0.8935, 1.1065] 1
2 0.8453 1.1547 [0.6957, 1.3043] 1.7321
3 0.7915 1.2085 [0.5899, 1.4101] 2.3344
4 0.7449 1.2551 [0.4981, 1.5019] 2.8570

TABLE 2 Example 3.15: extremal eigenvalues of P−1 A and bounds on
extremal eigenvalues of P−1 A

M p νmin(P
−1 A) νmax(P

−1 A) Bounds Hmax
p+1

1 1 0.9916 1.0170 [0.9915, 1.0085] 1
2 0.9854 1.0146 [0.9853, 1.0147] 1.7321
3 0.9803 1.0197 [0.9802, 1.0198] 2.3344
4 0.9759 1.0241 [0.9757, 1.0243] 2.8570

2 1 0.9913 1.0176 [0.9904, 1.0096] 1
2 0.9849 1.0151 [0.9774, 1.0226] 1.7321
3 0.9796 1.0204 [0.9696, 1.0304] 2.3344
4 0.9750 1.0250 [0.9628, 1.0372] 2.8570

3 1 0.9911 1.0089 [0.9893, 1.0107] 1
2 0.9845 1.0155 [0.9696, 1.0304] 1.7321
3 0.9792 1.0208 [0.9590, 1.0410] 2.3344
4 0.9745 1.0255 [0.9498, 1.0502] 2.8570

EXAMPLE 3.17 Finally, consider the case where the covariance function is (2.11) with σ = 0.1, μ = 1,

c1 = 10 = c2 and h = 1
8
. Here, the eigenvalues of the covariance functions decay more quickly than in

the first two examples. Eigenvalues of the preconditioned system are listed in Table 4.

In all cases, the extremal eigenvalues of P−1 A exhibit the behaviour anticipated by the bounds in

Theorems 3.8 and 3.12. They are symmetric about one, increase very slightly with p and retract to one

for small variance. For small values of σ , the dependence on p is not evident. These results together

with Theorem 3.8 tell us that when Gaussian random variables are used, the preconditioned system is

positive definite only when the variance and the polynomial degree are not too large. Now we turn to

the question of implementation and focus on cases where A is positive definite.
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FIG. 4. h = 1
8

. Example 3.16: eigenvalues of P−1 A, σ = 0.3, M = 1, varying p.

TABLE 3 Example 3.16: extremal eigenvalues of A and P−1 A and bounds on extremal eigenvalues of
P−1 A

M p νmin(A) νmax(A) νmin(P
−1 A) νmax(P

−1 A) Bounds Hmax
p+1

1 4 0.1080 6.4326 0.2758 1.7242 [0.2720, 1.7280] 2.8570
5 0.0756 6.8636 0.1574 1.8426 [0.1529, 1.8471] 3.3243
6 0.0427 7.2569 0.0493 1.9507 [0.0443, 1.9557] 3.7504

7 −0.1545 7.6206 −0.0506 2.0506 [−0.0561, 2.0561] 4.1445
8 −0.4640 7.9605 −0.1439 2.1439 [−0.1500, 2.1500] 4.5127

2 4 0.1052 6.5085 0.2505 1.7495 [−0.1169, 2.1169] 2.8570
5 0.0717 6.9464 0.1279 1.8721 [−0.2996, 2.2996] 3.3243
6 0.0333 7.3450 0.0161 1.9839 [−0.4662, 2.4662] 3.7504

7 −0.2725 7.7130 −0.0873 2.0873 [−0.6202, 2.6202] 4.1445
8 −0.5972 8.0563 −0.1838 2.1838 [−0.7642, 2.7642] 4.5127

4. Numerical results

In this section, we present iteration counts and timings for two test problems using Gaussian random

variables. We implement block-diagonal preconditioning with CG. The theoretical results above tell us

that we can expect the iteration count to be independent of the spatial discretization parameter, h, and

almost independent of p (polynomial degree) and M (KL terms). It is required, however, in each CG

iteration to approximate the quantity P−1r , where r is a residual error vector. Applying the precondi-

tioner therefore requires Nξ approximate solutions of subsidiary systems with coefficient matrix K0.

The number of subproblems can be very large for increasing M and p. (See Table 5 for details.) Fortu-

nately, approximately inverting each of the diagonal blocks of the preconditioner is equivalent to solving
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TABLE 4 Example 3.17: extremal eigenvalues of P−1 A and bounds
on extremal eigenvalues of P−1 A

M p νmin(P
−1 A) νmax(P

−1 A) Bounds Hmax
p+1

1 2 0.8298 1.1702 [0.8297, 1.1703] 1.7321
3 0.7706 1.2294 [0.7704, 1.2296] 2.3344
4 0.7192 1.2808 [0.7190, 1.2810] 2.8570

2 2 0.8291 1.1709 [0.7961, 1.2039] 1.7321
3 0.7697 1.2303 [0.7252, 1.2748] 2.3344
4 0.7182 1.2818 [0.6637, 1.3363] 2.8570

3 2 0.8286 1.1714 [0.7626, 1.2374] 1.7321
3 0.7689 1.2311 [0.6800, 1.3200] 2.3344
4 0.7172 1.2828 [0.6084, 1.3916] 2.8570

TABLE 5 Values of Nξ (dimension of stochastic basis) for varying M and p

p M = 2 M = 4 M = 6 M = 8 M = 10 M = 15 M = 20 M = 30

1 3 5 7 9 11 16 21 31
2 6 15 28 45 66 136 231 992
3 10 35 84 165 286 816 1,771 32,736

a standard diffusion problem. Exact solves are too costly for highly refined spatial meshes. However, we

can benefit from our experience of solving deterministic problems by replacing the exact solves for K0

with either an incomplete factorization preconditioner (see Pellissetti & Ghanem, 2000, and Ghanem

& Kruger, 1996) or a multigrid V -cycle. In fact, any fast solver for a Poisson problem is a potential

candidate. Moreover, the Nξ approximate solves required at each CG iteration are independent of one

another and can be performed in parallel. Crucially, set-up of the approximation to or factorization of

K0 needs to be performed only once.

Below, we implement the preconditioner using both incomplete Cholesky factorization and one V -

cycle of AMG with symmetric Gauss–Seidel (SGS) smoothing to approximately invert K0. The latter

method has the key advantage that the computational cost grows linearly in the problem size. Our partic-

ular AMG code (see Silvester & Powell, 2007) is implemented in MATLAB and based on the traditional

Ruge-Stüben algorithm (see Ruge & Stüben, 1985). No parameters are tuned. We apply the method as a

black box in each experiment. Using geometric multigrid to solve these systems is discussed in Elman &

Furnival (2007) and Le Maitre et al. (2003). All iterations are terminated when the relative residual error,

measured in the Euclidean norm, is reduced to 10−10. All computations are performed in serial using

MATLAB 7.3 on a laptop PC with 512MB of RAM.

4.1 Homogeneous Dirichlet boundary condition

First, we reproduce an experiment performed in Deb et al. (2001). The chosen covariance function is

(2.11) with c1 = 1 = c2, standard deviation σ = 0.1 and mean μ = 〈K (Ex)〉 = 1. We solve (1.2) on
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D = [−0.5, 0.5]×[−0.5, 0.5] with homogenous Dirichlet boundary condition and f = 2(0.5−x2−y2).

Post-processing the coefficient blocks of the solution in the spectral expansion (3.2) to recover the mean

and variance of the solution is trivial. Solutions obtained on a 32 × 32 uniform spatial grid are plotted in

Fig. 5. The maximum values of the mean and variance obtained with h−1 = 16, p = 4 and M = 6 are

0.063113 and 2.3600 × 10−05, respectively. Using the SFEM, a single system of dimension 152 × 210

is solved. By way of comparison, in Table 6 we record the maximum values of the estimated mean and

variance of the pressure solution obtained using a traditional MCM, with N realizations of K (Ex, ω).
The random field inputs were generated using the circulant embedding method described in Dietrich

& Newsam (1997), with the same grid used for the spatial discretization. Note that the value σμ−1

is sufficiently small in this example that no negative values of the sampled diffusion coefficients are

encountered.

In Table 7, we record iteration counts and timings for preconditioned CG applied to the SFEM sys-

tems, with varying h, M and p. Now we can compare implementations based on incomplete Cholesky

factorization and on our suggested AMG solver. Note that the performance of the former is sensitive to

the choice of drop tolerance parameter and we have not sought to optimize this. The black-box AMG

version of the preconditioning scheme proved to be optimal with respect to the spatial discretization

without tuning any parameters. Indeed, the matrix V corresponding to a single V -cycle of the AMG

algorithm is a spectrally equivalent approximation to K0 (see Table 8). The maximum eigenvalue of

V −1 K0 is one, independently of h. The efficiency of this approximation is completely unaffected by the

choice of p, M and standard deviation σ .

The efficiency of both implementations of the block-diagonal preconditioner deteriorates with in-

creasing σμ−1. For fixed μ, as σ increases, the off-diagonal blocks of A become more significant

and they are not represented in the preconditioner. Iteration counts, for exact preconditioning, for fixed

FIG. 5. Mean (left) and variance (right) of pressure on a 32 × 32 mesh for the case M = 4 with p = 2.

TABLE 6 Maximum values of sample mean and standard deviation after N realizations

N = 100 N = 1, 000 N = 10, 000 N = 40, 000

Max(sample mean) 0.063608 0.063299 0.063127 0.063134

Max(sample variance) 2.1611 × 10−05 2.4065 × 10−05 2.2584 × 10−05 2.3160 × 10−05
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TABLE 7 Preconditioned CG iterations and timings in seconds (set-up + total iteration times)

Preconditioner h p = 2 p = 3 p = 4

M = 4

None 1
4

19 30 55
1
8

43 73 139
1
16

92 161 314
1
32

188 335 666

Block-diagonal 1
16

10 (0.00 + 0.33) 11 (0.00 + 1.05) 12 (0.00 + 2.88)

(cholinc, 1 × 10−3) 1
32

11 (0.02 + 1.23) 13 (0.01 + 4.24) 15 (0.01 + 9.42)
1
64

21 (0.10 + 9.68) 22 (0.10 + 30.33) 24 (0.09 + 67.74)
1

128
38 (0.61 + 91.44) 42 (0.61 + 272.17) 45 (0.61 + 613.92)

Block-diagonal 1
16

10 (0.06 + 0.53) 12 (0.06 + 1.76) 13 (0.13 + 4.50)

(AMG) 1
32

11 (0.20 + 1.60) 12 (0.20 + 5.71) 13 (0.29 + 13.41)
1
64

11 (0.88 + 6.38) 12 (0.99 + 20.50) 13 (0.96 + 47.15)
1

128
12 (6.72 + 36.40) 13 (6.84 + 104.64) 14 (5.18 + 233.44)

M = 6

None 1
4

19 29 55
1
8

44 76 146
1
16

93 169 332
1
32

190 350 702

Block-diagonal 1
16

10 (0.07 + 0.90) 11 (0.00 + 4.11) 12 (0.00 + 17.21)

(cholinc, 1 × 10−3) 1
32

13 (0.01 + 3.98) 13 (0.00 + 14.51) 15 (0.01 + 44.00)
1
64

21 (0.09 + 24.17) 23 (0.10 + 91.21) 24 (0.60 + 242.06)
1

128
38 (0.61 + 240.10) 42 (0.68 + 876.49) 46 (0.60 + 2,610.48)

Block-diagonal 1
16

11 (0.06 + 1.39) 12 (0.06 + 6.06) 13 (0.06 + 24.02)

(AMG) 1
32

11 (0.20 + 4.37) 12 (0.20 + 16.66) 13 (0.20 + 51.93)
1
64

11 (0.88 + 15.67) 13 (0.98 + 58.32) 14 (6.75 + 180.48)
1

128
12 (6.78 + 89.66) 13 (6.75 + 310.61) 14 (6.75 + 886.46)

TABLE 8 M = 4. Minimum eigenvalue of V −1 K0 where V
is one V -cycle of AMG (with SGS smoothing)

h p = 2 p = 3 p = 4
1
8

0.9882 0.9882 0.9882
1
16

0.9707 0.9707 0.9707
1
32

0.9525 0.9525 0.9252
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TABLE 9 CG iteration counts with exact block-diagonal precon-

ditioning, h = 1
16

, M = 4

σ
μ

p = 2 p = 3 p = 4

0.1 8 10 11
0.2 11 14 17
0.3 14 21 30
0.4 18 35 532

TABLE 10 Dimension of global stiffness matrix

h p = 2 p = 3 p = 4

M = 4 1
16

4,335 10,115 20,230
1
32

16,335 38,115 76,230
1
64

63,375 147,875 295,750
1

128
249,615 582,435 1,116,870

M = 6 1
16

8,092 24,276 60,690
1
32

30,492 91,476 228,690
1
64

121,968 365,904 887,250
1

128
465,948 1,397,844 3,494,610

FIG. 6. Mean (left) and variance (right) of pressure on a 32 × 32 mesh for the case M = 4 with p = 2.

M and h and varying σ are listed in Table 9. Choosing σ to be too large compared to μ causes A to

become indefinite and in that case, CG breaks down. This is observed when p = 4 and σμ−1 = 0.4.

Dimensions of the global systems for the problems considered are summarized in Table 10. Observe

then that using our multigrid method, we can solve more than 3.5 million equations on a laptop PC in un-

der 15 min. Furthermore, it should be noted that multigrid algorithms have lower memory requirements

than incomplete factorization methods, even with optimized parameters.
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4.2 Mixed boundary conditions

Next we consider steady flow from left to right on the domain D = [0, 1] × [0, 1] with f = 0,

∂DD = {0, 1} × [0, 1] and ∂DN = ∂D\∂DD . We set Eq ∙ En = 0 at the two horizontal walls so that flow

is tangent to those boundaries. The Dirichlet data are u = 1 on {0} × [0, 1] and u = 0 on {1} × [0, 1].

Again, we employ the covariance function (2.11) with c1 = 1 = c2, σ = 0.1 and μ = 1. The mean

and variance of the primal variable, obtained on a 32 × 32 uniform grid using four terms in the KL ex-

pansion of K (Ex, ω) and quadratic Hermite polynomial chaos functions for the stochastic discretization,

are plotted in Fig. 6. Preconditioned CG iteration counts and timings are recorded in Table 11. Again

we observe that convergence is insensitive to M and h and slightly dependent on p (since we have used

TABLE 11 Preconditioned CG iterations and timings in seconds (set-up + total iteration times)

Preconditioner h p = 2 p = 33 p = 4

M = 4

None 1
4

39 61 118
1
8

73 129 247
1
16

139 246 498
1
32

266 485 984

Block-diagonal 1
16

10 (0.00 + 0.45) 11 (0.00 + 1.11) 11 (0.00 + 2.75)

(cholinc, 1 × 10−3) 1
32

13 (0.02 + 1.55) 14 (0.18 + 4.71) 15 (0.02 + 10.97)
1
64

23 (0.10 + 11.63) 24 (0.12 + 32.78) 26 (0.11 + 76.11)
1

128
42 (0.66 + 106.59) 45 (0.66 + 284.94) 49 (0.66 + 650.37)

Block-diagonal 1
16

10 (0.07 + 0.75) 11 (0.07 + 1.89) 12 (0.07 + 4.70)

(AMG) 1
32

10 (0.27 + 1.95) 11 (0.21 + 5.63) 12 (0.21 + 12.25)
1
64

10 (0.91 + 6.36) 11 (1.00 + 18.63) 12 (0.91 + 40.64)
1

128
10 (5.25 + 32.62) 11 (6.89 + 84.65) 12 (6.84 + 193.24)

M = 6

None 1
4

40 68 128
1
8

75 138 270
1
16

142 264 533
1
32

273 511 1,029

Block-diagonal 1
16

10 (0.00 + 0.88) 11 (0.00 + 4.42) 11 (0.00 + 16.51)

(cholinc, 1 × 10−3) 1
32

13 (0.02 + 3.44) 14 (0.18 + 16.69) 15 (0.02 + 53.79)
1
64

22 (0.11 + 26.93) 24 (0.11 + 103.18) 26 (0.11 + 307.86)
1

128
42 (0.66 + 260.22) 45 (0.66 + 877.54) 48 (0.66 + 2,566.47)

Block-diagonal 1
16

10 (0.07 + 1.54) 11 (0.07 + 6.40) 12 (0.07 + 23.21)

(AMG) 1
32

10 (0.22 + 4.53) 11 (0.22 + 16.91) 12 (0.22 + 52.48)
1
64

10 (1.00 + 15.34) 11 (0.92 + 54.60) 12 (1.02 + 166.29)
1

128
10 (6.90 + 73.30) 11 (7.05 + 270.38) 12 (6.74 + 767.19)
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Gaussian random variables). The efficiency of the preconditioning deteriorates for increasing standard

deviation, σ.

5. Conclusions

The focus of this work was the design of a fast and robust solver for the model elliptic stochastic

boundary-value problem (1.2). Our goals were to provide a theoretical basis for a simple, popular pre-

conditioning scheme employed by other authors and to suggest a practical, efficient implementation

based on multigrid. We described the classical spectral SFEM discretization and outlined the structure

of the resulting symmetric linear systems. We analysed the exact block-diagonal preconditioner pro-

posed in Ghanem & Kruger (1996), based on the mean component of the system matrix, and established

an eigenvalue bound for the preconditioned system in the case that either Gaussian random variables

or uniform random variables are employed to represent the diffusion coefficient. Those eigenvalues are

independent of h but depend on σ and additionally on p if unbounded random variables are used. In that

case, the bounds predict that the system matrix will become indefinite when the stochastic approxima-

tion space is enriched. This corresponds to the fact that the underlying variational problem is not well

posed. The bound is slightly pessimistic in M , the number of terms retained in the truncated KL expan-

sion of K (Ex, ω), but the dependence on all other SFEM parameters is sharp. We tested the robustness

of the preconditioner with approximate solves for the mean stiffness matrix computed via incomplete

Cholesky factorization and using a V -cycle of black-box AMG. The black-box AMG scheme was ro-

bust with respect to the spatial discretization parameter without tuning any parameters. It also has lower

memory requirements than factorization methods for fine spatial meshes.
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BABUŠKA, I., TEMPONE, R. & ZOURARIS, G. E. (2004) Galerkin finite element approximations of stochastic

elliptic partial differential equations. SIAM J. Numer Anal., 42, 800–825.
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RUGE, J. W. & STÜBEN, K. (1985) Efficient solution of finite difference and finite element equations by algebraic

multigrid (AMG). Multigrid Methods for Integral and Differential Equations (D. J. Paddon & H. Holstein eds).

The Institute of Mathematics and its Applications Conference Series. New Series 3. Oxford: Clarendon Press,

pp. 169–212.

RUSSELL, T. F. & WHEELER, M. F. (1983) Finite element and finite difference methods for continuous flows

in porous media. The Mathematics of Reservoir Simulation (R. E. Ewing ed.). Philadelphia, PA: SIAM,

pp. 35–106.

SILVESTER, D. J. & POWELL, C. E. (2007) PIFISS Potential (Incompressible) Flow & Iterative Solution Software

guide. MIMS technical report 2007.14. University of Manchester. http://eprints.ma.man.ac.uk/700/.

STOER, J. & BULIRSCH, R. (1980) Introduction to Numerical Analysis. New York: Springer.

SUDRET, B. & DER KIUREGHIAN, A. (2000) Stochastic finite element methods and reliability, a state-of-the-art-

report. Report No. UCB/SEMM-2000/08. Berkeley, CA: Department of Civil and Environmental Engineering,

University of California.

WIENER, N. (1938) The homogeneous chaos. Amer. J. Math., 60, 897–936.

XIU, D. & KARNIADAKIS, G. E. (2003) Modeling uncertainty in steady state diffusion problems via generalised

polynomial chaos. Comput. Methods Appl. Mech. Eng., 191, 4927–4948.


	Introduction
	Overview

	Spectral SFEMs for the steady-state diffusion problem
	KL expansion
	Truncated KL expansion.


	Linear algebra aspects of spectral SFEM formulation
	Matrix properties
	Preconditioning

	Numerical results
	Homogeneous Dirichlet boundary condition
	Mixed boundary conditions

	Conclusions

