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Block Five Diagonal Matrices and the Fast Numerical
Solution of the Biharmonic Equation1

By Louis Bauer and Edward L. Reiss

Abstract. A factoring and block elimination method for the fast numerical solution of
block five diagonal linear algebraic equations is described. Applications of the method are
given for the numerical solution of several boundary-value problems involving the bi-
harmonic operator. In particular, 22 eigenvalues and eigenfunctions of the clamped square
plate are computed and sketched.

1. Introduction. The system of linear algebraic equations

(1.1a) Mw = r

is of block five diagonal form if the matrix M is given by

M = [Ai3 B„ C<, Dit E(\

C,    Di   Ei 0
C2    D2   E2 0

B3    C3    D3     E3 0

At   Bi   C4     £>4      Et 0

0
(1.1b)

B2

A3

0

0 ■ • 0        AQ-y C,-, ö„_,

0 •       0      A,      B,      C J
Each of the matrices A{, Bit C,, Dt and E{ has p( rows and each of the matrices
.E,_2, £>,_!, C, Bi+1 and Ai+2 has p< columns. Thus, the main diagonal matrices
C, are square and M is square of dimension v = XXi P>-

Linear algebraic equations of the form (1.1) are obtained, for example, from
difference approximations of boundary-value problems for fourth-order elliptic
partial differential equations. A specific example is
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312 LOUIS BAUER AND EDWARD L. REISS

(1,2a) A2w = - 4- + jTTj + - v = r(Jt. jO,   in ä,
cU      d* dy dy

(1.2b) H> = n-Vw = 0, on B.

Here, J? is a region of the x, y plane, 7i is the boundary of R, n is the unit vector
normal to B and r(x, y) is a prescribed function on R.

When J? is a rectangle and the standard 13-point difference approximation of
the biharmonic operator is employed, then (1.2) is equivalent to the algebraic system
(1.1) , where px = p2 = ■ • ■ — pQ = p, and

C, = C„ = C + I,

(1.3a) C, - C, 7-2. 1,
■B, = £>,_, = 5, ; = 2, • • • , q,

Aj = £,_a = /, j = 3, ■ • • , q.

Here, I is the unit p X p matrix. The p X p matrices B and C are of scalar three and
scalar five diagonal form, respectively. They are defined by

B m [0, 2, -8, 2, 0],

d-3b)     Cm[U^Ck>_B>1]t     ^ J21, if
(20,   if  /c = 2, ■•■,/>— 1.

In (1.3b), we have applied the notation of (1.1b) to scalar matrices. Other difference
approximations of (1.2), which may be obtained, for example, by the finite element
method, may also yield algebraic equations of block five diagonal form. Specifically,
the algebraic equations obtained from the 25-point difference approximation of
(1.2) are of the form (1.1).

There are nonlinear problems and more complicated linear problems which
involve coupled systems of equations like (1.2), cf. Section 6. Approximate solutions
of these problems can be obtained by iterative procedures. Then, at each step, (1.2)
must be solved one or more times, r being determined from the previous iterates.
Since many iterations may be required for convergence, methods for the fast nu-
merical solution of (1.2), and therefore (1.1), are desirable. In this paper, we present
such a method. It is a direct method which is an extension to block five diagonal
matrices of the factoring method previously suggested for block three diagonal
matrices [1].

The unit inversion time for the solution of (1.1) by this method is significantly
less than that for iterative methods such as the alternating direction method [2].
This speed is achieved at the expense of large fast-access memory storage require-
ments. In Section 3, we present a modification of the method by applying a block
elimination procedure which reduces the storage requirement. This procedure is
related to the one proposed for harmonic boundary-value problems [3].

Applications of the factoring and block elimination methods are given in Sections
4-6. In Section 4, the numerical results are compared with exact solutions and with
numerical solutions obtained by other methods. In Section 5, we apply the present
methods and Richardson's mesh extrapolation procedure to obtain accurate estimates
of 22 eigenvalues (counting multiplicities) and eigenfunctions for the flexural vibrations

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLOCK FIVE DIAGONAL MATRICES 313

of clamped, square, elastic plates. The first 6 eigenvalues are in excellent agreement
with the results of the Ritz method [4], [5]. However, the present numerical results
show that the principal eigenfunction has nodal curves near the corners of the
plate. This seems not to have been observed previously. Finally, in Section 6, we
obtain numerical approximations for the lowest eigenvalue of the shallow, clamped
cylindrical panel. They are in excellent agreement with the values obtained by the
perturbation method described in the Appendix. Another application of the method
is given in [6].

2. The Factoring Method. We factor the matrix M, (1.1b), into the product
of an upper block triangular matrix U and a lower block triangular matrix L. That is,

(2.1) M = LU

where, using the notation in (1.1b), L and U are given by

(2 2) L= [a„ ßityu 0,0],

u = [o, o, /,,
The unit matrices /, are />, X p{. The matrices ait ßit y{, 5{ and n< are determined
by substituting (2.2) into (2.1) and then comparing both sides of the equation. We
find that

a, = Ait

ß, = 73, - Aiii-i,

(2.3) 7,. = C, - M*-i - AiVi-2,

«, = 77'[ö. - ß,Vi-il

Vi = l~iXEi,

— 3, • •• , q,

= 2, ■■ ■ , q,

= 1, 2, ••• , q,

= 1, 2, •■• , q - 1,

= 1, 2, ••• , q - 2.

where we define 5, = Vi = 0 for i g 0. Thus, the factorization is possible
if Tu 72, • • • , 7„-i are nonsingular matrices.

To solve (1.1), we first substitute (2.1) into (1.1) and define the vector v by

(2.4) Uw - v.

Then, (1.1) is reduced to

(2.5) Lv = r.

Since the systems (2.4) and (2.5) are of upper and lower block triangular form,
respectively, they can be solved directly. We partition r, v, and w into subvectors
to conform with the partitioning of L and U. Then the solution of (2.5), the forward
sweep, is

(2.6) v, = 7~'(ri - #<▼<_, - ^,v,_2), f = 1, 2, • •• , q,

where v, be 0 for i ^ 0. The solution of (2.4), the backward sweep, is

(2.7) w, = v.- — 8{Wm - 5?,w, + 2,      i = <?, q — 1, • • ■ , 1,

where w, = 0 for i > q.
Thus, only the intermediate matrices yjl, ßi, Ait 5,, and ?), are required to deter-

mine w. In the repeated solution of (1.1) for different vectors r, these matrices need
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314 LOUIS BAUER AND EDWARD L. REISS

only be computed once. To achieve greater speed in the computations, they are
stored in the fast-access (core) memory of the computer. The solution formulas
(2.6) and (2.7) involve only matrix-vector multiplications for which efficient machine
language subroutines have been developed.

We shall use a unit inversion time r to discuss the efficiency of the method. It
is defined as the time required to evaluate w from (2.6) and (2.7) for a fixed vector r.
Thus, t does not include the computing time necessary to generate and factor M,
since this occurs only initially.

The large storage requirement is clearly a disadvantage of the method, since it
restricts the size of the matrix M which can be considered. The intermediate matrices
could be stored in a slow-access memory device such as a tape or a disc. Then, sig-
nificantly larger matrices could be accommodated, but the large increase in t would
be inconsistent with the purpose of the method.

To give an indication of typical storage requirements, we consider the system
(1.1), (1.3). Since A( = F, = I, and 17, = 771, we need store only the matrices ß{,
7~\ and St. The total storage requirements for these matrices, when p = q = 25
are 15000, 15625, and 15000 words, respectively.2

The speed and accuracy of the method were evaluated by obtaining numerical
solutions of several boundary-value problems involving the biharmonic operator
on the unit square. In all problems, the boundary conditions (1.2b) were satisfied
and the 13-point biharmonic approximation was employed. For other boundary
conditions, such as w = wnn = 0, where wnn indicates the second normal derivative,
it may be possible to factor the biharmonic operator into the product of two harmonic
operators. Then, the solution could be obtained by successively inverting two-block
three-diagonal systems.

3. The Block Elimination Procedure. We shall describe the elimination pro-
cedure for (1.1) with Pi = p% = • • • = pa = p, and

Aj = E,--2 = /, j = 3, 4, • • • , q,

(3.1) Bj = JXt = B   and   C, = C,      / = 3, 4, • • • , q — 2,
D2 = ■£?„_, = B.

Here, B and C are not necessarily the matrices defined in (1.3b). We denote this
special system by

(3.2) M0w = r.

The matrices defined in (1.3) are included in (3.1). We shall first eliminate the even
indexed subvectors w2, w4, • • ■ from (3.2). Since we may wish to repeat the procedure,
it is convenient to simplify the elimination formulas by assuming that q is odd and
given by

(3.3) «=2*4-1.
We consider the equations in (3.2) corresponding to the five blocks j — 2, • • • ,

j + 2 for any odd integer j in the range, 5 ^ j ^ q — 4:

2 p = 25 corresponds to a mesh width of S = 1 /26 in the difference approximation of (1.2)
and q = p means a square region.
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BLOCK FIVE DIAGONAL MATRICES 315

w,_4 + Bw,_3 + Cw,-2 + ßw,-i + w, = r,_2,

w,_3 + Bw,-! + Cw,_, + 5w, + w, + 1 = r,_,,

(3.4) w,_2 4- ßWi-i 4- Cw, 4- ßw, + i 4- w)+2 = r„

w,_, 4- Bw, + Cw, + 1 -f- J3w,+2 4- wI+, = rI+1,

w, 4- Bwi+1 + Cw,+2 + jBw,+3 4- Wy+4 = rl+s.

We multiply the second and fourth equations by —b and the third equation by
K m BCB'1 and add the resulting five equations. This yields a reduced system in-
volving only the odd indexed subvectors. Equations equivalent to (3.4) are considered
for j = 1, 3, q — 2, and q separately. Special elimination formulas are then required.
The resulting system of equations is

(3.5) Mjw1 = r\

where Ml, w1, and r1 are defined below. The matrix Ml is of the same form as M0.
The elimination can therefore be repeated. After the 0" 4- l)st elimination, there
are qi+1 block rows in the resulting matrix Mi*1, where

(3.6) 9»> = («7 4- 2, + 1 - l)/2' + '

and

(3.7) Wj+,wi+1 = r'*1.

Here,

(3.8) wj + 1 = w2<_„      i = 1,2, ••• ,

The submatrices of Ml*1 are recursively defined by,8

C,+1 = 2[I - (B'f] + K'C\(3.9a)
Bi+1 = C - (B'f -f K\

for the general matrices, and

cr* = bW, - ixDir'd - B'Bi + i,
,i ou\ C2+1 = B'(d - C + IXDiT1 - 2(Bjf + K'C' +.1,(3.9b)

D\ + 1 = B'(C2 - I)(DiTl - (B*f + C\

B'2+1 = B\C2 - C" + I)(D[ylC[ - B'B'2 + K\

for the special matrices. The formulas for the special matrices C'*1, C'„t\, b'q*\ and
D{*\ can be obtained from (3.9b) in an obvious manner.

The reduced subvectors t'*1 are given by

r| + 1 = B'(d - IXDiT'ti - B'4 + 4,
(3.10)   f£*? = 2?'(d - C 4- WDlT'ri ~ B'4 + K'4 - B<4 + 4,

r! + 1 = r2i_3 - B'r2',-2 + AT'rL-i - B'42i - 4i + i,     i = 3, 4, • • • , &+1 - 2.

« The superscripts in (3.9M3.H) are indices that indicate the number of eliminations.
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316 LOUIS BAUER AND EDWARD L. REISS

The equations for the last two subvectors of r'+1 are obtained in an obvious way
from the first two equations in (3.10).

The eliminated vectors w2', wj, • • • , w£,_, are restored from w' + 1 by using (3.8)
and

w2 = (Dir'tr! - c;w; -

(3.11)      w2, = (BT'hi-, - wj,_3 - C'w,',-, - w2( + 1] - w2,_2>

i = 2, 3, ••• , («, - l)/2.
To solve (3.7) by the factoring method, it follows from (3.1), (2.6), and (2.7)

that we must store 3qi+1 — 2 matrices, each of dimension p2. In addition, we must
store 8(j + 1) matrices, of dimension p2, of (3.10) and (3.11). They are required to
form r\ • • • , r'+1 and to restore the eliminated subvectors. The elimination reduces
the number of matrices for the factoring method at each step by (#, — l)/2. However,
the addition of 8Q' + 1) new matrices makes the reduction uneconomical after very
few steps. A further consideration is that the matrices may become ill-conditioned
for j sufficiently large.

4. Applications to Biharmonic Boundary-Value Problems.4 Problems Bt and
B2 are defined by (1.2) on the unit square with

r(x, y) = ri(x, y)

(4 t) = 8[3/(l - ^)2 -f- 3x2(l - x)2 + (6x2 - 6x + 1)(6/ - 6y + 1)],

r(x, y) = r2(x, y)

= (2ir)4[4 cos 2ttx cos 2iry — cos 2tx — cos 2ny],

respectively. The solutions are

(4.2) w, = x2(l - xYy\l - y)2,      w2 = (1 - cos 2irx)(\ - cos 2tt^).

Numerical solutions of Problems Bj and B2 were obtained by the factoring method
with a mesh width of 5 = 1/26 and the results were compared at the mesh points
with (4.2). The pointwise error is defined as the difference between (4.2) and the
numerical values, divided by the maximum value of (4.2). The maximum errors
for Problems Bx and B2 occurred at the center x = y = 1/2 and were 1.13% and
.98%, respectively. Numerical solutions of Problems Bj and B2 were obtained also
by using the 25-point difference approximation of the biharmonic operator. Little
or no improvement was obtained in the accuracy.

To evaluate the speed of the method, we considered (1.2) on the unit square with

(4.3) rix.y) = 1.

The solution of this problem is unknown. Numerical solutions were obtained in [2]
using the alternating direction method. We repeated this calculation with 5 = 1/26
and the iteration parameters that are suggested in [2]. The convergence criterion was

* All the computations were performed on the CDC 6600 computer at the AEC Computing
and Applied Mathematics Center of the Courant Institute of Mathematical Sciences.
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BLOCK FIVE DIAGONAL MATRICES 317

(4.4) max \w*f — w?,'! < e.

Here, w„ is the mesh function corresponding to w(x{, >>,); the superscript on wtt
indicates the cycle number [2]; the maximum in (4.4) is taken over all mesh points;
and e is a prescribed small number. For « = 10"5, the difference in the results for
the present and the alternating direction methods were less than .03%. For t = 10~",
better agreement was obtained. For € = 10"5 and « = 10"9, 6.6 and 11 seconds of
computing time were required, respectively, to satisfy (4.4). By comparison, the"
unit inversion time for the factoring method is t = .09 seconds. Thus, if comparable
accuracy is desired, the alternating direction method is 60 to 100 times slower than
the factoring method. However, it is important to observe that finer mesh widths,
e.g., 5 = 1/80, can be employed with the alternating direction method. It was possible
to obtain 5 = 1/32 with the factoring method alone, and 5 = 1/40 and 8 = 1/46,
using the block elimination procedure once and twice, respectively.

We have made the comparison with the alternating direction method since it
seems to be the most efficient method previously presented in the literature for the
solution of biharmonic boundary-value problems. Elementwise, Gauss elimination
methods, using the sparseness of M and its submatrices, might be competitive or
superior to our method. However, applications of such methods to the system (1.1),
for the size of M that we consider, have not, to our knowledge, been reported in
the literature.

5. Natural Frequencies and Modes of a Clamped, Square Plate. The natural
frequencies and natural modes of vibration of a clamped elastic plate are obtained
from the eigenvalues X and the eigenfunctions w(x, y) of

(5.1a) A2h> = Xw,   for x, y in R,

(5.1b) w = n- Vh> = 0,   for x, y on B.

We assume that the eigenfunctions are normalized so that

(5.2) \\w\]* m fj w2 dx dy = 1.

The integral in (5.2) and all subsequent integrals are over R. If X is an eigenvalue
and w is an eigenfunction of (5.1), then

(5.3) X = k(w) = jj (Aw)2dxdy.JJ

We denote the eigenvalues of (5.1), counting multiplicities, by X1; X2, • • ■ , and
the corresponding eigenfunctions by w(l)(x, y), w<2)(x, y), • ■ ■ . We determine them
numerically by an iterative procedure that is related to the power method [7]. Thus,
we suppose that the first n — 1 eigenvalues and eigenfunctions are known. Starting
from an initial estimate w0n), we define a sequence of iterates X,,,, X„,2, • • • , X„, k, • ■ •
and w[n\ w(2n\ ■ ■ ■ ,w[n), ■ ■ ■ by the recursions

(5.4a) A2ivt+'i = X„.t^n), = n-Vflfc', = 0   on B,
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318 louis bauer and edward l. reiss

n-1
/C Au\ -1») -<»> v"1    *+1 (>)(5.4b) = wk^ — 2-,ai   w •

(5.4c) w£\ = *&V!i**:V||,     * = 0, 1, ...,
where X„. k and a* are defined by

(5.4d)      X„.t = A(wi"'),      «t+I = jj nfcV"     dy,      j = 1, 2, ••■,«- 1.

Thus, m>t("} is the normalized projection of the provisional iterate wk"\ into the or-
thogonal complement of the subspace spanned by wa), h><2), • • • , h><b_1). We em-
ployed the following convergence criterion for the iterations

(5.5) |X„.t+l - X„,4| < KT4.

Each iterate was numerically determined by solving (5.4a) by the factoring and
block elimination methods. The integrals in (5.4) were evaluated by Simpson's rule.
We applied the numerical method (5.4) to the unit square plate. Numerical approxi-
mations for each eigenvalue and eigenfunction were obtained for the three mesh
widths

(5.6) S, = 1/32,      <52 = 1/26,      83 = 1/20.
Richardson's mesh extrapolation procedure [7] was used to obtain an improved
approximation of the eigenvalue. That is, if X„(5) is the converged numerical value
with mesh width 8 for the nth eigenvalue, we assume that

(5.7) X„(5) = X„ -f ah2 + bb*

for some constants a and b. Here, X„ is the Richardson approximation of the eigen-
value. We determine X„ by substituting the three values of K(8) and 5 into (5.7).
For n < 13, (5.4a) was solved by the factoring method alone. For n ^ 13, the block
elimination procedure was required because of the additional storage needed for
the projection calculations (5.4b)-(5.4d).

The number of iterations that are required to satisfy (5.5) depends on the values
of h and n, and on the initial guess w(0"}. The number of iterations usually increases
with n. From 7 to 31 iterations were required to satisfy (5.5). For 8 = 1/32, the
unit iteration time for the first eigenvalue was approximately .1 seconds. The unit
iteration time increases with n because of the additional projection calculations
(5.4b) and (5.4d). The computation of 20 eigenvalues required a total of 381 iterations
which used approximately 4 minutes of computing time. According to the estimates
described in Section 4, the same results would require approximately 45 minutes
if the alternating direction method were employed.

To test the accuracy of the numerical method (5.4)-(5.7), we applied it to the
solution of the biharmonic eigenvalue problem consisting of (5.1a) on the unit square
and the simply supported boundary conditions, w = wnn = 0. The eigenvalues and
eigenfunctions of the simply supported plate are known explicitly. They are

(5.8) X = pmn = (m2 -\- n2)\*,       w = 2 sin mitx sin wry.

A comparison of the exact (5.8) and the numerically determined eigenvalues is
presented in Table I. Similar accuracy need not occur for the clamped plate. We
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Table I
A Comparison of the Exact (p\n) and the Numerically Determined Frequencies (ß1/2)

of the Square, Simply Supported Plate

% Diff.

1
2,3
4

5,6

19.7392081
49.348020
78.956830
98.69598

19.7392088
49.348022
78.956835
98.69604

.0000035

.000004

.0000063

.000061

observe that the accuracy decreases as n increases, i.e., as the number of waves in
the eigenfunction increases.

The results for the clamped plate (5.1) are summarized in Table II. They are
compared with the results of the Rayleigh-Ritz calculation in [4], [5] and the asymp-

Table II
Frequencies (X1/2) of the Clamped, Square Plate Obtained by the Numerical Method

(X\/2), the Ritz Method (R), and an Asymptotic Method [Bolotin].
The exact frequencies (ix\/2) of the simply supported plate are also given.

n u\'2 Xy2 R [4] % Diff. Bolotin [8]   % Diff.

1
2-3*
4
5
6

7-8*
9-10*
11
12
13

14-15*
16
17

18-19*
20
21
22

19.7392
49.3480*
78.9568
98.6960*
98.6960*

128.3049*
167.7833*
177.6529
197.3921*
197.3921*
246.7401*
256.6097*
256.6097*
286.2185*
315.8273
335.5665*
335.5665*

35.9844
73.3894

108.1986
131.5626
132.1859
164.9468
210.4574
219.8986
242.0102
243.0087
296.039
308.707
308.974
340.249
370.761
392.130
393.326

35.99
73.41

108.27
131.64
132.25
165.15

243.10 [5]

.016

.028

.066

.059

.048

.123

.038

35.096
72.897

107.47

131.63
164.39
210.35
219.32

242.20
295 .'69

308.929
340.244
370.66

392.80

-2.47
- .67
- .67

- .42
- .34
- .051
- .26

- .33
- .12

- .015
- .0015
- .027

- .13

totic approximations of Bolotin [8]. The eigenvalues of the simply supported plate
are also shown in Table II. Of course, there may be other eigenvalues between the
ones shown in Table II that we failed to determine with our numerical methods.
Multiple eigenvalues are denoted by an asterisk. All multiple eigenvalues that were
found had multiplicity two. Multiple eigenvalues were not discussed in [4], [5], [8].
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320 LOUIS BAUER AND EDWARD L. REISS

5.1. Nodal Properties of the Eigenfunctions. Perspective sketches of the nu-
merically determined eigenfunctions for the clamped, square plate are shown in
Fig. 1. Their nodal lines are shown in Fig. 2. We shall refer to the eigenfunction

6 7-8 9-10 II

12 13 14-15 16

Figure 1. Computer made sketches of the numerically determined eigenfunctions. The mode
number is indicated under each sketch. For each double eigenvalue, only one eigenfunction is shown.
The other eigenfunction is obtained by rotating the figure through ninety degrees about a vertical
axis through the center.

corresponding to the lowest eigenvalue as the principal eigenfunction. It is important
to observe that the numerically determined principal eigenfunctions for the meshes
8 = 1 /32 and 5 = 1 /26 have nodal curves near the corners of the plate.5 The existence
of nodal curves for the principal eigenfunction was not reported in [4], [5], [8]. Since
these nodal curves are close to the corners, we further studied their occurrence by
three special computations. First, we solved (5.1) by the iterative method (5.4)-(5.7)

6 The principal eigenfunction for the simply supported plate is free of nodes; see (5.8).
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using a 8 = 1/80 mesh and the alternating direction method. We found that the
nodal curves extended to approximately 1/20 of the length of a side. For this mesh,
there were a total of 10 mesh points between each nodal curve and the corner. The
amplitudes of the solutions in these corner regions were small and opposite in sign
to the solution in the center of the plate.

In the second computation, we used the numerical method to determine the
lowest eigenvalue X and principal eigenfunction of

(5.9) A2m> - TAw = \w,      w = n-Vw = 0   on B.

The eigenvalue problem describes the flexural vibrations of stretched, clamped,
square elastic plates [9]. T is the prescribed uniform stretch on the boundary of the
plate. When T = 0, (5.9) is reduced to (5.1). If T < 0, the plate is uniformly com-
pressed. We determined the principal eigenfunction of (5.9) numerically for a de-
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322 LOUIS BAUER AND EDWARD L. REISS

creasing sequence of T values starting at T = 5w2. For 5 = 1/32, it was free of nodes
for T = 5ir2. For T < 44, nodal curves occurred in the corners. The nodal curves
moved very slowly into the interior of the plate and the amplitude near the corners
increased as T decreased. For T = — 50, the nodal curves extended to approximately
3/32 the length of the edge.6

Finally, we considered the intermediate eigenvalue problem,

(5.10) A2w = Xtv,       w = (1 — e)wnn + en-Vw =0   on B,

for the square plate. The boundary conditions in (5.10) correspond to an edge that
is elastically restrained against rotation. When e = 0 or « = 1, (5.10) is the eigen-
value problem for the simply supported or the clamped plate, respectively. The
parameter e is related to the rotational spring constant of the edge. We determined
the principal eigenfunction of (5.10) numerically for a sequence of values of «. The
principal eigenfunction was free of nodes for e < .996 and corner nodal curves
appeared for e Si .996. Thus, the occurrence of nodal curves depends strongly on
the rotational stiffness of the boundary.

The computations demonstrate the existence of nodal curves for the principal
eigenfunction of (5.1) for the square plate. Since the results are numerical and the
amplitudes are small near the corners, a rigorous proof of the existence of the nodal
curves is still required.7 We recall that Weyl and Courant [10] have shown for a
class of second-order elliptic eigenvalue problems (including the vibrating membrane)
that the principal eigenfunction is always free of nodes.

Dufhn and Shaffer [11] announced that for the vibrating annular plate with
clamped inner radius rQ and clamped outer radius I, the principal eigenfunction
has a diametral nodal line if r0 is sufficiently small. Specifically, they found that r0
must be < 1/715. This seems to be the only previous example of a domain for which
the principal eigenfunction of the mathematical problem (5.1) has nodes.

Rayleigh [12] conjectured and Faber [13] proved that, of all vibrating membranes
of given area, the circular membrane possesses the smallest principal eigenvalue.
Szegö [14] proposed that a similar result holds for (5.1), i.e., of all clamped vibrating
plates of given area, the circular plate has the smallest principal eigenvalue. To prove
this theorem, Szegö assumed that the principal eigenfunction of (5.1) has no internal
nodes. Our results suggest that this assumption is invalid and that the proof is in-
complete, although the theorem may be correct.

5.2. Properties of the Spectrum. We observe that the eigenfunctions shown in
Figs. 1 and. 2 may be classed in three groups according to the properties of their
nodal lines:

(1) Eigenfunctions 1, 4, 11 and 20 have an equal number of nodal lines parallel
to the x and to the y axis. They correspond to simple eigenvalues.

(2) Eigenfunctions 2-3, 7-8, 9-10, 14-15 and 18-19 have nodal lines parallel to
the x and y axis. However, the number of nodal lines, Nx and Nv, in the two directions
is different. In addition, (Nx + N„) is odd. They correspond to double eigenvalues.

6 T « —52.34 is the lowest eigenvalue of the eigenvalue problem (5.9) with X = 0.
7 A related problem is to characterize the domains for which the principal eigenfunctions of

(5.1) have nodes or are free from nodes. Additional numerical results are discussed in the note added
in proof at the end of the paper.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



block five diagonal matrices 323

(3) The remaining eigenfunctions in Figs. 1 and 2 can be grouped in the pairs,
5-6, 12-13, 16-17, and 21-22. The eigenvalues corresponding to each pair are simple
but close in value (see Table II). We refer to them as weakly simple pairs. The member
of each pair with the lower eigenvalue has two diagonal nodal lines. For even values
of Nx + Nv, eigenfunctions only with nodal lines parallel to the x and y axis were
not determined. Bolotin's method fails to approximate the eigenvalues corresponding
to the eigenfunctions with two diagonal nodal lines.

We observe, by comparing the eigenvalues of the clamped and simply supported
plates in Table II, that to every simple eigenvalue of the simply supported plate,
there corresponds a simple eigenvalue of the clamped plate. To every double eigen-
value of the clamped plate, there corresponds a double eigenvalue of the simply
supported plate. However, every double eigenvalue of the simply supported plate
need not correspond to a double eigenvalue of the clamped plate. In fact, we see
from Table II that there are double eigenvalues of the simply supported plate, e.g.,
n = 5 and 6, which apparently split to form weakly simple pairs of eigenvalues of
the clamped plate.

To further study the splitting, we numerically determined the variation with a
of the eigenvalues of (5.10) which coalesce to the double eigenvalue n = 5, 6 for
« = 0 and split to the weakly simple pair n = 5 and « = 6for«=l. The results
are summarized in Table III. We observe that the double eigenvalue apparently

Table III
The Splitting of a Double Eigenvalue of the Simply Supported Plate into a Weakly

Simple Pair for the Clamped Plate

e n = 5 n — 6

0 9740.896 9740.896
.1 9741.134 9741.113
.2 9742.088 9741.990
.3 9744.349 9744.075
.5 9758.761 9757.518
.9 10511.620 10507.691
.99 15113.570 15244.616

1.0 17308.092 17472.486

splits immediately for e > 0. For e .91, the two eigenvalue branches intersect
again.

6. Natural Frequencies of Clamped Cylindrical Panels. We consider a thin
circular cylindrical panel of radius of curvature a, thickness h, axial length L and
circumferential length ad0. The natural frequencies and modes of the panel are
obtained from the eigenvalues X and eigenvectors [w(x, y), f(x, y)] of

(6.1a) A2w> = K1XX + Xvf,      A2/ = — w„,   for x, y in R,■
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(6.1b) w = n-Vw = / = n-V/ = 0,        for x, y on B.

The parameter K is defined by
,, , .                                  „ _ 12(1 — y )(a g0//i)
(6.1c) K = -—5-

The region is the rectangle: 0 t$ y ^ 1, 0 ^ * g / = L/(a60), where x and j> are
dimensionless axial and circumferential coordinates. The conditions (6.1b) imply
that the boundary is clamped and stress-free with respect to the midsurface stresses.
If K = 0, e.g., a —* oo with (ada)2/h fixed, the differential equations in (6.1a) uncouple.
The first equation in (6.1) is then equal to (5.1a).

We assume that the eigenfunctions of (6.1) are normalized so that

(6.2) IIHI2 = ]] yfdxdy - 1.

The eigenvalues and eigenfunctions are related by

(6.3) X = AK(w, f) - // [(Aw)2 + K(Af)~] dx dy.

We observe that A0 = A, which is defined in (5.3).
Approximations of the eigenvalues and eigenvectors of (6.1) were obtained by

iterative and numerical methods analogous to the ones used in the previous section
for the flat plate. For simplicity, we shall only consider the lowest eigenvalue. Thus,
we define a sequence of iterates       X^, • • • , (w^,/!.), • • • by the recursions

,c A. A2/„ = — wp,„,      A2wp+1 = Kjp,xz + \i,vwv,
(6.4)

Xi.p = AK(wp,/p),      wp+1 = ivp+1/[|vPp+1||.

All the calculations were made for the square panel, / = 1. The Richardson ap-
proximation of the eigenvalues, Xi, are summarized in Table IV. Usually, eight

Table IV
The Lowest Eigenvalue for the Clamped, Square, Cylindrical Panel Obtained by the

Numerical (X,) and Perturbation (P) Methods [see (A.7)].

K X, "     P % Diff.

0 1294.88
102 1306.50
103 1410.202 X 10:! 1523.54

1306.52 .0015
1411.24 .074
1527.60 .266

iterates were required for convergence. The unit iteration time is slightly larger for
this problem since it involves the solution of two biharmonic problems at each step.

In Table IV, we also list the approximations of Xi obtained by a perturbation
expansion for small K, i.e., an expansion in the neighborhood of the flat plate. The
perturbation method is described in Appendix A. The agreement between the
perturbation and numerical methods is excellent even for "large" values of K. The
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results indicate that the lowest eigenfunction also has nodal curves near the corners
of the panel.

Appendix A. The Perturbation Method for the Shallow Cylindrical Panel.
We assume that for small AT the lowest eigenvalue and eigenvector of (6.1) are analytic
in K, i.e.,

mao-fp*', (;)-§(;>•
The coefficients X<0, h>(° and/(,) are determined by inserting (A.l) into (6.1a), (6.1b)
and equating coefficients of the same powers of K. This gives, for / = 0, 1, • • • ,

^ 2) Aw— \w=F=fxx+2^^w

wuy = n-Vh>(0 = 0   on B,

and

(A.3) A 1 W" '
/<« = n-V/(,) = 0   on B,

where we define w<_1> = /<7n m 0. For i = 0, (A.2) is equal to (5.1). Thus, X<0) =
U(0) and w<0) are the lowest eigenvalue and normalized eigenfunction of the clamped
flat plate for which accurate numerical approximations are known. Since X(0> is an
eigenvalue of (4.1), each F'*', / = 1, 2, • • • , must satisfy the solvability conditions

r r
(A A) // t^' V0' dx dy = 0.JJ
In evaluating F(,), we consider, from (A.3),/*"\x) as a functional of w(,~l). Thus,
F'0 depends only on w(0), w(1), • • • , w'1"1'. For / = 1 in (A.4), we find, by using
(A.3) and integration by parts, that X(,) is given by

rr
(A.5) XU) =      [Afa)f dxdy.j j

Here,/10' is the solution of (A.3) with / = 0. It is determined numerically by the
factoring method using the numerical eigenfunction w<0>. Thus, from (A.l), we
have the following estimate for X,:

(A.6) X,(A-) & X(0) 4- Xn)A-.

For the square plate, we obtain XU)     .1163611, and

(A.7) \(K)     1294.88 4- (.1163611)*.

Notes Added in Proof. 1. We have numerically solved the eigenvalue problem
(5.1) for the clamped, rhombic plate with a 60° corner angle using the methods
described in Section 5. The numerical principal eigenfunction had nodal curves near
the 60° corners and no nodal curves near the 120° corners. The nodal curves occurred
further away from the corners for the rhombic plate than for the square plate. The
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results suggest that corner nodal curves disappear at obtuse angles and become more
pronounced near acute angles. Furthermore, we observed that corner nodal curves
occur in the first 9 modes for the rhombic plate.

2. In an attempt to prove our results concerning the existence of nodal curves for
the principal eigenfunction of (5.1), Professor S. Osher has proved that the Green's
function for (5.1) changes sign near the corner. This is a necessary condition for the
existence of corner nodal curves for the principal eigenfunction.
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