

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/18249

To cite this version:

Dieumegard, Arnaud and Toom, Andres and Pantel, Marc Block
Library Driven Translation Validation for Dataflow Models in
Safety Critical Systems. (2016) In: FMICS - AVoCS 2016 (Joint
21st International Workshop on Formal Methods for Industrial
Critical Systems / 16th International Workshop on Automated
Verification of Critical Systems), 26 September 2016 - 28
September 2016 (Pisa, Italy).

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.1007/978-3-319-45943-1_8

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/18249
https://doi.org/10.1007/978-3-319-45943-1_8

Block Library Driven Translation Validation for
Dataflow Models in Safety Critical Systems

Arnaud Dieumegard1, Andres Toom2,3,4, and Marc Pantel2

1 Institut de Recherche Technologique Antoine de Saint Exupéry,
118 route de Narbonne, CS 44248, 31432 Toulouse Cedex 4, France

2 Institut de Recherche en Informatique de Toulouse, Université de Toulouse,
ENSEEIHT, 2 rue Charles Camichel, 31071 Toulouse Cedex, France

3 Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, EE-12618 Tallinn, Estonia

4 IB Krates OÜ, Mäealuse 4, EE-12618 Tallinn, Estonia

Abstract. Model driven engineering is widely used in the development
of complex and safety critical systems. Systems’ designs are specified and
validated in domain specific modeling languages and software code is of-
ten produced by autocoding. Thus the correctness of the final systems
depend on the correctness of those tools. We propose an approach for
the formal verification of code generation from dataflow languages, such
as Simulink, based on translation validation. It relies on the BlockLib-
rary DSL for the formal specification and verification of the structure,
semantics and variability of the complex block libraries found in these
languages. These specifications are then used here for deriving model and
block-specific semantic contracts that will be woven into the generated
C code. We present two different approaches for performing the block
matching and weaving step. Finally, we rely on the Frama-C toolset and
state-of-the-art SMT solvers for verifying the annotated code.

Keywords: Translation validation, Deductive verification, Data flow
languages, Block libraries, Why3 toolset, Frama-C toolset

1 Introduction

Automatic code generators (ACG) are nowadays used for the development of
most safety-critical systems in order to avoid human-related programming er-
rors, and ensure both quality standards conformance and efficient maintenance
cycles. As these tools replace humans in a key software production step, their
design or implementation flaws usually result in errors in the generated software.
Safety critical software development must usually satisfy certification/qualifica-
tion standards like the DO-178C for avionics which is one of the best known
and most stringent one. One key requirement in its Model Based Software Engi-
neering (MBSE) and Formal Methods (FM) supplements (DO-331 & DO-333)
is to provide a precise, complete and unambiguous specification of the input and
output languages for ACG.

Overview of the approach Figure 1 gives an overview of the elements in our spe-
cification and verification process. In [3, 4] we proposed a Domain Specific Lan-
guage (DSL) for writing and formally analyzing specifications for configurable
function blocks in dataflow languages. We refer to this as the BlockLibrary
specification language. In the current contribution it is used for the formal verifi-
cation of automatically generated code from dataflow models. The Why3 toolset
[2] is first used for the formal verification of the well-formedness and semantic
consistency of the specification. Then these specifications are used for the verifi-
cation of generated source code from dataflow models by weaving model-specific
formal annotations into the generated source code. The annotated code is then
verified using the Frama-C toolset5. Both verification steps are in turn relying
on SMT solvers and proof assistants as a formal backbone.

MyModel.mdl

Model BlockLibrary
BlockLibrary
Specification

BlockLibrary DSL
(ecore + OCL + syntax)

Dataflow modelling toolset (Simulink, ...) BlockLibrary modelling toolset

Instance of
Specifies

B n p u d e en n

b n e p k be y
bee b u p h k n

u k b e n be k
bee b nd ge
d e ned b e u p
b n p n e b ne

nde n h b
p d u e p k h p P k n p he

h en g nd und b e be e b k
p n e e de n h nk e
v n n u k
v n n p u g u d

und p g h k n
b ne h nk

h u ge p e k b ng
u ey n u p

 b e bee
v n n h bu ge u e g und

B n p u d e en n

b n e p k be y
bee b u p h k n

u k b e n be k
bee b nd ge
d e ned b e u p
b n p n e b ne

nde n h b
p d u e p k h p P k n p he

Use

MyBL.mdl MyBL.bls

b n e p k be y
b e b u p h en
hu k b e n e e k

b e b nd e e
d ne ne bee u p
b n p n e b ne
e de n h b
p nd u e p k h p P k n p he

h k n g und un bee be e b k
p n e nde n h n e
v n n u k
v n n p u g nd

u d p g h en
b e h nk

h bu e p e k b g
u k y n u p

 b e b e
v n n h bu e u ge g u d

BlockLibrary
Toolset

Specifies

Instance of

Instance of

Why3
Verification Tool

Formal verification toolset

Static
BlockLibrary
Formalisation

DataTypes

OCL

BlockLibrary
Language
Constructs

Structure and variability
Verification Goals

+
Blocks Semantics

Conforms to

SMT solvers

ImplementsCode Generation
Tool

Code generation
backends

Source
Code

Use

Annotations

Expresses

Code verification
tool (Frama-C, Spark, ...)

Translated to

Verifies

Verifies

Proof Assistant

Use

Fig. 1. The process for the formal specification of block libraries and the use of these
specifications for the verification of automatically generated code

Dataflow languages Dataflow languages are widely used for specifying control
and command algorithms. Simulink6 is the most used in the industry but there
exist other similar graphical formalisms, such as SCADE, Scicos, Xcos and
textual languages such as Lustre and Signal. The main constructs in dataflow
models are blocks (computation nodes) and signals (data connections). The con-
crete execution of dataflow models is divided into three phases: an initialization
phase, where the memories of all the blocks in the model are initialized; followed

5 http://frama-c.com
6 http://www.mathworks.com/simulink

by a recurring cycle alternating the compute and update phases. During the for-
mer each enabled block produces data to its outputs according to data at its
inputs, previous state(s) and configuration parameters. The computed data is
immediately available for the following blocks. The order of these computations
is defined statically by a sequencing algorithm such as [9], formalized in [7]. The
update phase updates the memories of all sequential blocks according to the data
at their inputs, previous values in memory and configuration parameters.

Use case Our final goal is the verification of the generated code for a complete
dataflow model with respect to requirements for the system expressed as top
level software contracts that are either manually written or generated from a
specification model (e.g. dataflow system observer). This part is not directly
addressed in the current work. However, the semantics of the model that im-
plements this top level specification is given by the semantics and configuration
of the blocks it relies on. We propose to weave the generated code with seman-
tic contracts derived from the BlockLibrary specifications for two purposes:
(a) verify that the generated code for each block matches its specification and
(b) help the deductive verification tools in proving the top level contracts. We
illustrate our proposal with the specification of the IntegerDelay block and the
verification of its code as generated by the GeneAuto ACG [17].

Organization of the paper This paper is organized as follows: Section 2 pro-
vides an overview of the BlockLibrary language and associated verification
technique. Section 3 focuses on the verification of the low-level requirements for
an ACG relying on a translation validation approach. Section 4 applies this ap-
proach on a use case. Section 5 compares our approach to related works. Planned
future extensions and a conclusion are given in Section 6.

2 Formal Specification of Blocks in Dataflow Languages

Besides the core principles of data flowing through signals from output ports to
input ports, the semantics of dataflow languages is mainly determined by the
semantics of elementary blocks that compute data on their outputs depending
on data on their inputs, memories and parameters. Tools such as Simulink
have large block libraries with highly configurable blocks. The BlockLibrary
DSL proposed in [3, 4] relies on the core concepts of Software Product Line
Engineering (SPLE) adapted to the domain of block libraries to handle this
variability. This DSL is expressed as a metamodel in MOF (OMG Meta Object
Facility standard) capturing the concepts required for the specification of both
the structure (ports, parameters and memories) and the semantic phases (initial-
ization, computation and memory update) of dataflow blocks. Each structural
element is parameterized by data types and constraints expressed in the OMG
standard Object Constraint Language (OCL) describing the set of allowed values
for valid instances of each structural elements. A semantic specification element
contains the specification of the behavior of one specific configuration of the

block expressed either in an axiomatic style using pre/post-conditions or opera-
tionally by giving the function’s definition. One can also provide both, since the
two styles offer different possibilities for automatic verification. The pre/post-
conditions are specified using OCL. Operational specifications are specified using
the BlockLibrary Action Language (BAL).

The next section illustrates the specification for a block family with an em-
phasis on the variability management relying on the Simulink IntegerDelay
block. The verification technique for the block specification is then summarized
(the interested reader can find more detailed information in [3, 4] and on the
project’s website http://block-library.enseeiht.fr/html). Finally, we will
elaborate on the verification of loop constructs.

2.1 Example of Block Specification: IntegerDelay

Listing 1.1 provides a partial specification of the IntegerDelay block that delays
data flow by a given number N of clock cycles. Such blocks are often used in
control and command algorithms for writing recurrent equations (the discrete
equivalent of difference equations). This block is one of the simplest, but its
Simulink version is nevertheless highly variable with multiple semantics varia-
tions. The number of delayed clock cycles is specified statically as a parameter.
As the block delays its input values by N clock cycles, it is mandatory to provide
the first N values to be used for the block’s output. These initial values IV are
either provided by a static parameter or via an input of the block. The block has
other parameters and inputs making this block representative of the typical var-
iability of Simulink blocks. In the complete specification also N can be provided
via the block’s input and there can be yet another input to dynamically reset
the block’s state (according to 4 different activation algorithm variants – rising
edge, falling edge, zero crossing and level). Finally, the specification provided
here only handles scalar and vector values of the double data type for the input
and output ports, whereas the full specification also allows integer (signed, un-
signed, 8, 16 or 32 bits) and boolean data types, as well as matrices of all of those
types. The full specification of this block family has 144 distinct configurations.

1 library BlockLibrary {
type signed realInt TInt32 of 32 bits
type realDouble TDouble
type array TArrayDouble of TDouble [-1]
blocktype IntegerDelay {

6 variant DelayParameter {
parameter N : TInt32 { invariant ocl { N.value > 0 } } }

variant IOScalar {
in data Input : TDouble
out data Output : TDouble}

11 variant IVScalarParam extends IOScalar {
parameter IV isMandatory : TDouble}

variant IVScalarInput extends IOScalar {
in data IV : TDouble }

variant IOVector {
16 in data Input : TArrayDouble

out data Output : TArrayDouble}

variant IVVectorParam extends IOVector {
parameter IV isMandatory : TArrayDouble }

variant IVVectorInput extends IOVector {
21 in data IV : TArrayDouble}

variant ScalarValues extends ALT(IVScalarParam , IVScalarInput)
variant VectorValues extends ALT(IVVectorParam , IVVectorInput)
variant ScalarOrVectorValues extends ALT(ScalarValues , VectorValues)
variant Mem extends AND(ScalarOrVectorValues , DelayParameter) {

26 invariant ocl { Input.size = Output.size }
invariant ocl { IV.size = N.value }
memory Mem {

datatype auto ocl { Input.value }
length auto ocl { N.value }}}

31 mode DelaySemantics implements Mem {
definition bal = init_Delay {

postcondition ocl { Mem.value = IV.value }
Mem.value := IV.value;}

definition bal = compute_Delay {
36 postcondition ocl { Output.value = Mem.value }

Output.value := Mem.value [0];}
definition bal = update_Delay {

postcondition ocl { Mem.value ->last() = Input.value }
postcondition ocl {

41 Mem.value := (Mem.value@pre)->subList(2,N.value)
->append(Input.value)}

Vector_Shift_Left(Mem.value , 1, Input.value);}
init init_Delay
compute compute_Delay

46 update update_Delay }}
}

Listing 1.1. Partial specification of the IntegerDelay block

2.2 Specifying a Block Family

A block family is a set of possible configurations for a given block (a product line
of blocks in the ”feature modeling” or FODA methodology and terminology from
Kang et al. in [8]). A block family specification in the BlockLibrary language
starts with the definition of block’s structure. The structure can be decomposed
using BlockVariants and BlockModes. BlockVariant is a basic specification unit
that defines a subset of structural or semantic elements. BlockVariants can be
reused in the specifications of different block types. They can be extended and
combined into larger units by using inheritance. A BlockMode, on the other hand,
is associated to a particular subset of the complete block configurations whose
behavior can be captured with a similar algorithm. Each BlockMode implements
one or more BlockVariants and inherits the elements defined in those. The spe-
cification of a block type thus consists of a structural variation graph (DAG)
whose roots and inner nodes are BlockVariants and leafs are BlockModes.

Two kinds of inheritance: AND and ALT, both n-ary operators, are avail-
able. For AND, respectively ALT, the inheriting node inherits the definitions
and contracts from all, respectively exactly one, of the inherited nodes. AND is
similar to multiple inheritance as found in many object oriented languages. In
our case, we require that all the inherited elements are distinct (i.e., no overload-
ing or overlap is allowed). This relation is thus unambiguous and commutative.
Line 25 of Listing 1.1 is an example of AND, and line 22 an example of ALT.

This last one specifies that, in one configuration of the Delay block, the initial
value is provided as a static parameter and, in the other, it is provided via an
input.

From a BlockLibrary specification we can extract the set of all valid block
configurations. Each configuration has exactly one BlockMode and one or more
BlockVariants. Figure 2 displays the block configurations extracted from the
specification in Listing 1.1. In a well-formed dataflow model, all block instances
must match to exactly one configuration in the respective block family.

Configuration 1
Semantics specification

Structural specification
DelaySemantics

Mem

ScalarOrVectorValues

DelayParameter

ScalarValues

IVScalarParameter

IOScalar

Configuration 2
Semantics specification

Structural specification
DelaySemantics

Mem

ScalarOrVectorValues

DelayParameter

ScalarValues

IVScalarInput

IOScalar

Configuration 3
Semantics specification

Structural specification
DelaySemantics

Mem

ScalarOrVectorValues

DelayParameter

VectorValues

IVVectorParameter

IOVector

Configuration 4
Semantics specification

Structural specification
DelaySemantics

Mem

ScalarOrVectorValues

DelayParameter

VectorValues

IVVectorInput

IOVector

Fig. 2. Configurations extracted from the specification of the IntegerDelay block

2.3 Verification and Validation of Block Specifications

The block specifications written in the BlockLibrary language are formally
assessed using a translation into the Why property and WhyML behavior spe-
cification languages [2]. These generated specifications can be verified using the
dedicated Why3 toolset relying either on automated proofs by SMT solvers
or manual ones using proof assistants such as Coq. The structural part of the
BlockLibrary specifications, including the variability aspects are translated
to Why. The blocks’ semantics are translated to WhyML. This translation is
currently written in Java and relies on the modeling support in EMF7. Block-
Library models are translated to Why and WhyML models that are serialized
using the XText toolset8. It is not the aim of this paper to assess the correctness
of this translation. On the one hand, it defines the semantics of the BlockLib-
rary language. On the other hand, it enables writing accurate specifications for
the blocks in the chosen languages (e.g., Simulink). This translation is being
validated using various testing strategies.

Verification of structure and variability For each block configuration extracted
from a BlockLibrary specification, we generate a Why theory containing the
definitions for each structural element contained in its structural specification

7 https://eclipse.org/modeling/emf/
8 https://eclipse.org/Xtext/

altogether with a set of predicates expressing the: a) explicit constraints de-
fined as invariants of the structural elements; b) implicit constraints related to
the structural elements’ data types; and c) global invariants constraining the
BlockVariant and BlockMode elements.

Two properties, completeness and disjointness, are used to assess the well-
formedness of the structure and variability of the specification. The first one
states that for all the well-formed instantiations of the block there exists at least
one suitable configuration in the specification. This covers both the fact that,
all BlockVariants are used and that no contradictions are present in the set of
associated constraints. The second one ensures the unambiguous interpretation
of any configuration of a block. Both properties are automatically converted to
goals relying on the previously generated predicates.

The verification is performed using the Why3 platform and SMT solvers.
In our experiments it was performed in a few seconds for most of the blocks
on a common modern laptop. Some block specifications with more variability
require more time (with a time factor of up to 100 in our experiments) for fully
automated verification. This cost is generally not an issue as this verification
must be done only once for each block specification.

Verification of semantics If the block’s semantics is specified both axiomatically
and operationally, then the consistency of these definitions can be verified. The
specification of the three execution phases (in Listing 1.1 the resp. sections are
following: initialization lines 32-34, computation lines 35-37 and update lines 38-
43) are translated to distinct WhyML functions. The body of each function is a
direct translation of the respective semantic function of the block in this mode.
This function is given a contract consisting of the pre/post conditions specified
in the axiomatic semantics and an additional pre-condition computed based on
the structural properties that hold in this particular mode.

The verification of the WhyML functions is done as previously by relying on
the Why3 platform and SMT solvers. While this verification can be straightfor-
ward for the specifications of simple blocks, it can require additional annotations
for code with more complex data types (vectors, matrices) or algorithmically
more complex blocks. In practice, fully automatic proofs are often only possi-
ble, when additional annotations are given in the form loop invariants, variants
and even ghost code. The BAL language allows one to write such annotations
and our transformation tool translates them into annotations in the generated
WhyML function body. If a consistent specification is provided, the verification
is usually handled automatically in a short time (a few tenths of a second) by
the SMT solvers. As the number of configurations can grow exponentially, the
verification of a complete block library specification can still take some time but,
as previously stated, this verification is only done once for a given library.

Validation of specifications While it is important to verify the specifications for
well-formedness and consistency, it is also necessary to validate that they ade-
quately capture the intended semantics of the corresponding blocks, e.g., that is
in the existing reference library implementations. The validation strategy that we

have planned and are currently implementing for the specifications of Simulink
blocks relies on the translation of all configurations of all blocks to correspond-
ing Matlab code. That code is executed and the execution result is compared
to the result of the simulation of a correspondingly configured Simulink block.
Test vectors for block inputs and parameters can be automatically generated
based on the block specifications. This work is currently ongoing and the results
will be reported in the future.

2.4 Handling Loop Constructs

Programs containing loops are the main difficulty in the automated deductive
verification. Loops usually must be annotated with complex invariants and vari-
ants. Loops are very common programming constructs that occur especially of-
ten in mathematical computations, including the ones done in dataflow blocks.
However, in this context, loops have often a very regular structure with similar
annotations. Thus, the specification designer should be relieved from the writ-
ing of these annotations. This topic has been addressed by many authors and
various solutions have been proposed. For example, Furia and Meyer [6] propose
a technique to generate invariants for certain loop patterns automatically, when
larger program units such as routines have explicit post-conditions which is also
the case in our context. The technique in [6] was partly implemented in the
Boogie tool. Unfortunately, in the general case such methods are also limited
due to undecidability. Recent work by Wiik and Boström [19] targets contract-
based verification of MATLAB-style matrix programs making this work very
relevant to ours. The authors propose a solution for efficient encoding of a sub-
set of MATLAB’s built-in matrix functions for deductive verification. However,
the specification of loop invariants is still required. According to the authors’
experiments, k-induction can be used to remove some, but still not all of these
invariants. The work currently addresses partial correctness only. Filliâtre and
Pereira [5] have presented an approach that can be applied to different iteration
paradigms including non-deterministic and infinite iterations as well as itera-
tions with side-effects. It does not completely remove the need to specify loop
invariants, but it allows encapsulating and hiding the implementation aspects of
iterators. Thus, simplifying considerably the specification left to the “users”.

In our context loop specifications occur in two places: specifications of the
blocks operational semantics and annotations of generated code. Given the state
of the art, we have chosen the following strategy to deal with them. As explained
earlier, the operational specification of blocks semantics is optional and is not
needed for the translation validation. However, it can be beneficial otherwise.
The BAL language contains for and while-style loop statements with both in-
variant and variant annotations that the user can explicitly specify. However,
explicit loop constructs can be in many cases avoided by using polymorphic op-
erators with implicit support for non-scalars and/or using higher order iterators.
For instance, element-wise operations on non-scalars can be specified in terms
of an elementary operation and a higher-order map operator and collapsing op-
erations using a fold operator (i.e., catamorphism). Other operations, such as

var iter = 0;
ghost { var i = 0; }
while (iter < (N.value - 1)){

invariant ocl { 0 <= iter < N.value }
5 invariant ocl { 0 <= i and i < iter and

Mem.value ->subList(1,i) = (Mem.value@pre)->subList(2,i+1) }
variant ocl { N.value - iter }
Mem.value[iter] := Mem.value[iter + 1];
iter := iter + 1;}

10 Mem.value[N.value - 1] := Input.value;

Listing 1.2. Expanded version of the Vector Shift Left operation

matrix product, require more specific encoding. The Vector Shift Left binary
operator used in line 43 of Listing 1.1 is another example. It is applied on a vec-
tor or a matrix. In case of a vector, it shifts all the values in the vector by one
position downwards, starting from the second element, and inserts a specified
new value as the very last element. If the first argument is a matrix, it applies
the same operation to each row of the matrix. The last argument should be a
vector in this case. Line 43 of Listing 1.1 is automatically expanded to Listing
1.2. The specification of these operators in BAL and their translation to Why
and WhyML are currently in progress. This work relies largely on earlier work
performed in GeneAuto [17] and its successor project QGen9 on specifying the
semantics of the embeddable subsets of Matlab and Simulink and can benefit
also from the formalization presented in [19]. The difference in our work is that
the invariants and variants for such operators will be generated based on the
static parameters of concrete block instances.

The same loop annotations are required in the translation validation context
for verifying the correctness of the generated code. The BAL language supports
such annotations and it would be thus possible to specify them manually. How-
ever, this is rather laborious. We could try to weave these annotations into the
generated code just like the pre- and post-conditions. However, this can be sig-
nificantly more complex. First, it would make the existence of the operational
specification mandatory for semantic functions containing loops. Secondly, it
would require the generated low-level code to be structurally very close to the
operational specification and prohibit the usage of more abstract operators in
the specifications or the generation of optimized code. One solution is to let the
ACG itself generate annotations for primitive operators involving loops. This
might seem to jeopardize the intent of translation validation. However, if ap-
plied with care, it does not. It is a similar situation to the Assertion Inference
Paradox stated in [6]. The pre- and post-conditions of the larger program units
(here code sections generated from block instances) are not generated by the
untrusted ACG whose output is under verification. The intent of the intermedi-
ate annotations derived from the primitive operators is to help the verification
tool in proving the satisfaction of the main contracts. If these annotations do
not introduce any axioms to the axiom base used by the deductive verification

9 http://www.adacore.com/qgen

toolset, then they cannot contribute to a false claim of correctness. In our case no
axioms would be generated. However, generally, it must be separately ensured.

The generated C code for the Vector Shift Left operator corresponding to
Listing 1.1, together with the generated annotations, can be seen in lines 32-42
of Listing 1.3. Note that in case the block’s semantics is not implemented using
operators supporting automatic annotation generation and uses general loop
constructs instead, the current deductive verification tools might not be able to
automatically prove the correctness of the code. Thus, it would be necessary to
use a proof assistant for proving these parts or add some annotations manually
in the generated code.

3 Verification of the Correctness of Generated Code

Automatic code generation is one of the key benefits of MBSE for critical sys-
tems. The correctness of the code can be assessed by verifying the correctness of
the ACG or by verifying that the code has the expected properties. For both ap-
proaches there are many techniques available. The assurance gained by classical
methods like testing or code reviewing has well-known limits. Formal methods
can provide a much higher level of confidence but they have a higher entry barrier
that requires good tool support and well integrated development processes.

We will detail below our approach for the formal verification of automati-
cally generated code relying on the Translation Validation (TV) methodology
proposed by Pnueli et al. in [15]. In TV the transformation (code generation)
workflow is complemented by an independent verification workflow. The lat-
ter relies on the common formalization of the input and output languages and
must establish whether the input and output data of a given transformation run
conform to the expected equivalence relation or not. In our case we rely on the
formalization of dataflow blocks in the BlockLibrary language and use that to
derive formal contracts for code generated from block instances in a given input
model. In particular ACSL [1] annotations for C code. The same principle can
also be applied for other languages providing Design By Contract or annotation
facilities like SPARK/Ada 2012, Spec#, JML, B method, Eiffel, etc.

The annotated code is passed to the Frama-C toolset and its weakest pre-
condition plugin generating proof obligations that are then verified using SMT
solvers. This can be done either directly through Frama-C or through the Why3
toolset. In many cases the verification can be performed fully automatically.
When this cannot be achieved, one can use proof assistants to complete the veri-
fication manually. Yet another option is to manually add additional annotations
such as loop invariants and ghost code into the generated code to assist the ve-
rification tools. This option is, however, undesirable, since it is rather laborious
and requires modifying the generated code, which impairs the whole process.

3.1 Semantic Annotation of the Generated Code

In order to derive appropriate semantic contracts for the block instances in the
input model the model must be first analyzed and the block instances and their

configurations must be identified. Secondly, the concrete (ACSL) contracts must
be generated and woven into the (C) code generated by the ACG. This involves
a number of technical steps. We have considered two alternatives for that.

White box approach. If the ACG source code is available, then a light-weight
option is to encode the annotation generation directly into the ACG, e.g., by
hand-writing the annotation generation functions for each block type. This is
rather laborious. Alternatively, these functions could be automatically generated
from the BlockLibrary specifications and integrated with the ACG source
code. However, this approach still isn’t true translation validation as it relies a
lot on the ACG internals. Also, according to DO-330 , this extra verification-
oriented code must be qualified with the same stringency as the rest of the tool as
it may introduce errors into the code generation. We have considered this option
as a compromise allowing one to concentrate on the BlockLibrary specific
aspects and paving the way for the more complete approach explained next.

Black box approach. In this case an external tool must parse the input model,
generate the annotations and weave them into the generated code. Regarding
DO-330 , such a separate verification tool must be also qualified in order to gain
certification credit for using it. However, the qualification process is much lighter
as the tool cannot have any direct impact on the generated code.

3.2 Verification Using the Frama-C Toolset

We decided to target C code annotated with ACSL as: a) this language is
widely used in the safety-critical systems industry, b) the GeneAuto ACG has
mainly been used and evaluated in this context, and c) the ACSL annotation
language is supported by formal analysis tools such as the Frama-C framework.
Similar work could have also been done based on most of the other alternatives
mentioned earlier.

The Frama-C framework targets the analysis of C code in order to ex-
tract information provided by various plugins. These plugins allow for the static
analysis of the source code to extract information like variables’ ranges and
scope, code metrics, detect dead code, and many others10. Verification of ACSL
annotations expressed on the source code is done through the WP plugin im-
plementing a weakest precondition calculus generating proof obligations to be
verified. Those are directly assessed using SMT solvers or sent to the previously
presented Why3 platform to rely both on a wider range of SMT solvers or,
when needed, on proof assistants. Proof assistants are used in order to manually
tackle difficult proofs when the automatic SMT solvers fail to achieve the proof.

White box experiment using the open source GeneAuto ACG. We have
extended GeneAuto with the support for annotation manipulation11. For this
purpose, we developed a metamodel based on a subset of the ACSL specification

10 Visit the Frama-C framework website for detailed information: http://frama-c.org.
11 This work has been performed in partnership with Timothy Wang from the Georgia

Institute of Technology and has been partly used in the context of the verification
of automatically generated code presented in [18].

including annotations, ghost code and function contracts. We relied on the EMF
framework to generate the corresponding Java classes that we integrated into
the GeneAuto source code. We also implemented printing facilities for ACSL
annotations. Finally, we implemented the annotation generation functions. As a
possible future alternative, the current version of Frama-C also accepts anno-
tations written directly in Why3 instead of ACSL.

Black box proposal through Frama-C. For the full translation validation we
are considering a following approach. The Frama-C toolset provides C code
manipulation facilities and is extensible using plugins. It is thus possible to define
a new Frama-C plugin to conduct automated annotation of the generated code.
This plugin must extract data from both the dataflow (Simulink) model, as
well as from BlockLibrary specifications. Developing a parser for these two
formalisms directly in the plugin would be very time-consuming. Instead, we plan
to develop or reuse a separate parser for dataflow models and provide within the
BlockLibrary toolbox a transformation exporting the derived contracts as a
data structure that would be easier to use within the Frama-C plugin. The
plugin must then weave the contracts into the generated code. It is reasonable
to simplify that part by relying on minimal traceability information provided by
the ACG relating blocks and corresponding code sections. ACGs used for the
development of critical software must anyhow provide such links for traceability.

For instance, GeneAuto provides them in the form of code annotations.

4 Translation Validation of IntegerDelay

As example, an instance of the IntegerDelay block is embedded in a small model
containing an Inport block In1 and an Outport block Out1. Such models can also
be generated automatically from BlockLibrary specifications. In this example,
the block’s input and initial conditions are scalars, and the delay length N is 2.
Listing 1.3 shows the code and annotations generated for this example.

The code for the initialization phase is defined in the system init function
while the computation and update phases are together in the system compute

function. While the initialization code is straightforward, the code for the two
other phases requires some explanation. The compute function starts with the
assignment of the Delay2 block’s output, since it only depends on the value of
the block’s memory (lines 14-17). Then the output of the In1 block is computed
based on the current input to the system (lines 18-21), and the output of Out1 is
computed (lines 22-25) based on the output of Delay2 computed earlier. Finally,
the memory of Delay2 is updated (lines 32-42).

Each code section generated for a block needs to be annotated with pre/post-
conditions (in the example, only post-conditions are used) derived from its
BlockLibrary specification. These are the ensures annotations surrounding
each block code. These annotations are currently generated and inserted into
the code using the ACG and the white box approach. Whereas in the black box
approach they would be generated directly from the BlockLibrary toolset and

woven into the code using the weaver plugin that relies just on the traceability
annotations provided by the ACG.

While these annotations make the core for the semantic verification of the
generated code, some additional annotations are required in order to ensure
that the generated code is embedded in a suitable environment: these annota-
tions specify properties like memory independence of the data structures (the
separated annotations) and correct instantiation of the previously described
data structures (the valid annotations). These annotations make explicit the
implementation choices made by the ACG for the generated code. The anno-
tated code in Listing 1.3 is verified automatically using the Frama-C toolset
and the Alt-Ergo12 and Spass13 SMT solvers in a few seconds.

/*@ requires \valid(_state_ ->Delay2_memory +(0..1)); */
void system_init(t_system_state *_state_) {

/* START Block: <SequentialBlock: name=Delay2 > */
/*@ ensures _state_ ->Delay2_memory [0] == 2;

5 ensures _state_ ->Delay2_memory [1] == 3;*/
{ _state_ ->Delay2_memory [0] = 2;

state ->Delay2_memory [1] = 3;}
/* END Block: <SequentialBlock: name=Delay2 > */

}
10 /*@ requires \separated(_state_ ->Delay2_memory , _io_);

requires \valid(_io_);
requires \valid(_state_ ->Delay2_memory +(0..1)); */

void system_compute(t_system_io *_io_ , t_system_state *_state_) {
/* START Block: <SequentialBlock: name=Delay2 > */

15 /*@ ensures system_Delay2 == _state_ ->Delay2_memory [0]; */
system_Delay2 = _state_ ->Delay2_memory [0];
/* END Block: <SequentialBlock: name=Delay2 > */
/* START Block: <SourceBlock: name=In1 > */
/*@ ensures system_In1 == _io_ ->In1; */

20 system_In1 = _io_ ->In1;
/* END Block: <SourceBlock: name=In1 > */
/* START Block: <SinkBlock: name=Out1 > */
/*@ ensures _io_ ->Out1 == system_Delay2; */
io ->Out1 = system_Delay2;

25 /* END Block: <SinkBlock: name=Out1 > *//
/* START Block memory write: <SequentialBlock: name=Delay2 > */
/*@ ensures append: _state_ ->Delay2_memory [1] == system_In1;

ensures sublist: \forall integer i; 0 <= i < 1 ==>
state ->Delay2_memory[i] ==

30 \old(_state_ ->Delay2_memory[i+1]);
*/
{/*@ loop invariant \forall integer i; 0 <= i < iter ==>

state ->Delay2_memory[i] ==
\at(_state_ ->Delay2_memory[i+1], LoopEntry);

35 loop invariant 0 <= iter < 2;
loop assigns iter , _state_ ->Delay2_memory [0];
loop variant 1 - iter; */

for (int iter = 0; iter < 1; iter ++){
state ->Delay2_memory[iter] = _state_ ->Delay2_memory[iter +1];

40 }
state ->Delay2_memory [1] = system_In1 ;}
/* END Block memory write: <SequentialBlock: name=Delay2 > */

}

Listing 1.3. Annotated code for a small subsystem containing the IntegerDelay block

12 http://alt-ergo.ocamlpro.com/
13 http://www.spass-prover.org/

5 Related Work

Our work relies on translation validation as introduced by Pnueli [15]. This
technique has suffered in its early years from scalability issues as the verification
was mostly done using model checking. This has improved with the use of modern
automated provers (SMT) and proof assistants. However, for complex blocks
handling complex data types, it still seems mandatory to rely on intermediate
annotations to avoid relying on proof assistants too often.

Recent examples of translation validation are found in the work of Ryabtsev
et al. [16] for the verification of the code generated from Simulink models and
[12] for the proof of preservation of clock related properties on generated code.
The BlockLibrary language allows for a simple specification of the blocks
semantics and its formal verification that was a missing point in Ryabtsev ap-
proach. Our approach differs as we do not interpret the generated code in order
to compare its semantics to the one of the input model, but we rather rely on
code verification tools to check that the generated code complies with the input
model semantics specified as code annotations.

O’Halloran [13] reports on the successful use of the CLawZ system for trans-
lation validation from a subset of Simulink to Ada independently from any
concrete ACG. This work relies on a Simulink formalization effort using the
Z notation performed over many years. The author reports that, in the last
versions, the translation validation can be performed fully automatically using
the ProofPower toolset which is a significant achievement. The Z notation
is a very general formalism that requires a sophisticated methodology to reach
fully automated proofs. Our BlockLibrary DSL is designed to model only
block families. Thus, it permits meta-level analysis such as the completeness
and consistency of specifications or automated generation of validation tests.
Inspection and testing techniques for the verification of implementations could
have been preformed also using a formal specification language such as SOFL
CDFD [10], but the specification of the blocks variability would suffer from the
same limitations.

Our proposal can also be related to proof-carrying code by Necula and Lee
[11] as the generated code contains annotations required to verify safety pro-
perties. But, in their setting the purpose of the carried proof was to ensure the
correctness of the executed code dynamically and to replay the proof during
execution. We do not have such need in our work as the correctness proof can
be performed once and for all prior to the compilation of the generated C code.

A similar approach was proposed by Pires et al. in [14] for the verification
of hand-written code. The system specification is written using the UML and
OCL languages. The implementation is hand written as the models are not
low level enough to generate the whole software. The generated annotations are
not sufficiently low level either to ensure the automatic verification of the user
code and the user may need to provide intermediate annotations and conduct
the proof. We believe and partly experimented that relying on formally verified
specification such as provided by the BlockLibrary language is providing a
higher level of automation and thus eases the verification task.

6 Conclusion and Future Work

To summarize, we have advocted the advantages brought by the formal speci-
fication of an existing complex language such as Simulink. We designed the
BlockLibrary DSL for capturing the specific complex features of block libra-
ries and have shown how to use that for verifying the correctness of generated
code in a formal translation validation style approach. The verification technique
has been demonstrated here on a simple block, but the white box strategy has
been experimented on a representative subset of the Simulink blocks selected
by the industrial partners of the GeneAuto project.

In the close future, we plan to prototype the black box annotation generation
process including the generation of loop annotations to simplify writing speci-
fications of complex blocks. The BlockLibrary specification language will be
used as a source for the automatic generation of a reliable set of test cases for
the verification of the ACG implementation. The test cases will be used for both
simulation and code generation. The results will then be compared for the veri-
fication and validation of the ACG. Another application direction is using the
block-level annotations in conjunction with top-level formal contracts expressed
for the entire system to aid proving the functional correctness of the latter. Our
current experiments have been performed mainly using the GeneAuto ACG.
We are currently extending the whole work and, among other things, are adapt-
ing it for the industrial DO-330 conformant qualification process of the QGen
ACG that is a successor of GeneAuto.

Acknowledgements This work has been funded by the French and Esto-
nian Ministries of Research, Industry and Defense through the Projet-P14,
Hi-MoCo15 and Vorace16 projects and through the Estonian Ministry of Ed-
ucation and Research institutional research grant no. IUT33-13. The authors
wish to thank the members of these, the QGen project and the anonymous
reviewers of this paper for providing valuable feedback for improving the work.

References

1. ANSI/ISO C Specification Language (ACSL). http://frama-c.com/acsl.html
2. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd

of provers. In: Proc. of 1st International Workshop on Intermediate Verification
Languages (Boogie 2011). pp. 53–64. (2011)

3. Dieumegard, A., Toom, A., Pantel, M.: Model-based formal specification of a DSL
library for a qualified code generator. In: Proc. of 12th Workshop on OCL and
Textual Modelling. pp. 61–62. ACM, New York. (2012)

4. Dieumegard, A., Toom, A., Pantel, M.: A software product line approach for se-
mantic specification of block libraries in dataflow languages. In: Proc. of the 18th

14 http://www.open-do.org/projects/p/
15 http://www.adacore.com/press/project-p-and-hi-moco/
16 http://projects.laas.fr/vorace/

International Software Product Line Conference, SPLC ’14. pp. 217–226. ACM,
New York. (2014)

5. Filliâtre, J.C., Pereira, M.: A Modular Way to Reason About Iteration. In:
Rayadurgam, S., Tkachuk, O. (eds.), NFM 2016, LNCS, vol 9690, pp. 322-336.
Springer, Heidelberg (2016)

6. Furia, C.A., Meyer, B.: Inferring loop invariants using postconditions. In: Blass,
A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation, Essays
Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday. LNCS, vol.
6300, pp. 277–300. Springer, Heidelberg (2010)

7. Izerrouken, N., Pantel, M., Thirioux, X.: Machine-checked sequencer for critical
embedded code generator. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 521–540. Springer, Heidelberg (2009)

8. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (1990)

9. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Transactions on Computers, C-36(1), 24–35
(1987)

10. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A Formal Engi-
neering Methodology for Industrial Applications. IEEE Transactions on Software
Engineering 24(1), 24–45 (1998)

11. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. SIGOPS
Operating Systems Review 30, 229–244 (1996)

12. Ngo, V., Talpin, J.P., Gautier, T., Le Guernic, P., Besnard, L.: Formal verifica-
tion of synchronous data-flow program transformations toward certified compilers.
Frontiers of Computer Science 7(5), 598–616 (2013)

13. O’Halloran, C.: Automated verification of code automatically generated from
Simulink. Automated Software Engineering 20(2), 237–264 (2013)

14. Pires, A.F., Polacsek, T., Wiels, V., Duprat, S.: Behavioural verification in em-
bedded software, from model to source code. In: Moreira, A., Schätz, B., Gray, J.,
Vallecillo, A., Clarke, P.J. (eds.) MODELS 2013, LNCS, vol. 8107, pp. 320–335.
Springer, Heidelberg (2013)

15. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

16. Ryabtsev, M., Strichman, O.: Translation validation: From Simulink to C. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009, LNCS, vol. 5643, pp. 696–701. Springer, Berlin
Heidelberg (2009)

17. Toom, A., Naks, T., Pantel, M., Gandriau, M., Wati, I.: Gene-Auto - an automatic
code generator for a safe subset of Simulink-Stateflow and Scicos. In: ERTS 2008.
Société des Ingénieurs de l’Automobile, http://www.sia.fr (2008)

18. Wang, T.E., Ashari, A.E., Jobredeaux, R.J., Feron, E.M.: Credible autocoding
of fault detection observers. In: 2014 American Control Conference. pp. 672–677
(June 2014)

19. Wiik, J., Boström, P.: Contract-based verification of MATLAB-style matrix pro-
grams. Formal Aspects of Computing 28(1), 79–107 (2016)

