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Abstract. In order to improve the robustness of rigid registration algo-
rithms in various medical imaging problems, we propose in this article
a general framework built on block matching strategies. This framework
combines two stages in a multi-scale hierarchy. The first stage consists in
finding for each block (or subregion) of the first image, the most similar
subregion in the other image, using a similarity criterion which depends
on the nature of the images. The second stage consists in finding the
global rigid transformation which best explains most of these local cor-
respondances. This is done with a robust procedure which allows up to
50% of false matches. We show that this approach, besides its simplicity,
provides a robust and efficient way to rigidly register images in various
situations. This includes for instance the alignment of 2D histological sec-
tions for the 3D reconstructions of trimmed organs and tissues, the auto-
matic computation of the mid-sagittal plane in multimodal 3D images of
the brain, and the multimodal registration of 3D CT and MR images of
the brain. A quantitative evaluation of the results is provided for this last
example, as well as a comparison with the classical approaches involving
the minimization of a global measure of similarity based on Mutual Infor-
mation or the Correlation Ratio. This shows a significant improvement
of the robustness, for a comparable final accuracy. Although slightly
more expensive in terms of computational requirements, the proposed
approach can easily be implemented on a parallel architecture, which
opens potentialities for real time applications using a large number of
processors.

1 Introduction

Numerous intensity-based methods have been successfully devised for rigid reg-
istration of medical images [7]. For the monomodal as well as the multimodal
case, the general approach consists in assuming a global relationship between the
intensities of the images to register (e.g., affine, functional, statistical, etc.) [12],
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and then deriving and maximizing a suitable similarity measure (resp. correla-
tion coefficient [1], correlation ratio [13], mutual information [16, 6], etc.). Several
issues are common to these methods.

First, all the similarity measures are known to be highly non-convex with
respect to the transformation parameters. Thus, their global maximization is
seldom straightforward. In most implementations, for sake of low computation
time, this latter is performed using a standard deterministic optimization tech-
nique (simplex or Powell’s method, gradient descent, etc.) which is easily trapped
in local maxima. Moreover, the non-convexity of the criterion is enhanced by the
interpolation procedure which is used when considering sub-voxel transforma-
tions [10].

Second, the assumption of a global relationship between the image intensities
may be violated by the presence of various image artefacts. For instance, inten-
sity inhomogeneities are found in several image modalities (bias field in MR,
shadowing in ultrasound). Also, biological changes occur in temporal studies
(evolutive lesions, tumors, ischemia, etc.) and, more generally, the anatomical
structures to be matched may not be strictly equivalent (alignment of serial
sections, mid-sagittal plane computation, etc.). These artefacts or anatomical
disparities can bias a global criterion and hamper its maximization.

In this paper, we address these problems using a block matching strategy
interleaved with a robust transformation estimator. Block matching techniques
have already been used in non-rigid medical image registration [2, 4, 8], but
very rarely in rigid registration. Instead of maximizing a global similarity mea-
sure with respect to the transformation parameters, they treat the problem in a
sequential manner. The first step is to build a displacement field by locally trans-
lating image regions (or blocks) so as to maximize a given similarity measure;
thus, the global maximization is replaced by several local maximizations. The
second step is to determine the spatial transformation by regularizing the previ-
ous displacement field. This two-step procedure is generally applied iteratively
in a multi-scale hierarchy.

When using this approach to estimate a rigid transformation, the major dif-
ficulty is that the displacements to be found are generally much larger than in
a non-rigid context. Therefore, the blocks have to be moved in wider neighbor-
hoods, which may cause the resulting displacement field to contain some severe
outliers. These outliers may strongly affect the estimation of the rigid transfor-
mation. For that reason, the robustness of the transformation estimator is a key
issue.

Our implementation of block matching in rigid mode is described in Section 2,
while Section 3 presents results obtained in three different rigid registration
problems: alignment of histological sections, computation of the mid-sagittal
plane in brain images, and multimodal registration of CT with MR images.
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2 Description of the Method

The algorithm takes two images as input: a reference image I and a floating
image J . The output will be the transformation T and the image J ′ = J ◦ T−1,
which is aligned with I. The whole process follows from an iterative scheme
where, at each step, two successive tasks are performed. The first is computing
a displacement field between I and the current floating image J ′; this is done
through a block matching strategy. The second is gathering these displacements
to determine a rigid transformation S using a robust estimator. Updating the
current transformation according to T ← S ◦ T , we get the new floating image
J ′ by resampling only once the image J in terms of the new T . This two-step
procedure is integrated within an iterative multi-scale scheme.

In this section, we have chosen to describe the 3D implementation of the
method. However, it should be clear to the reader that the 2D adaptation is
straightforward.

2.1 Computation of Correspondences by a Block Matching Strategy

The basic principle is to move a block A of the floating image in a neighbor-
hood Ω, and to compare it to the blocks B that have coincident positions in the
reference image (see Figure 1). The block size and the size of the search neigh-
borhood are constant at a given scale level; they will be respectively denoted
Nx ×Ny ×Nz and Ωx ×Ωy ×Ωz . The best corresponding block B, with respect
to a given similarity measure, allows one to define a match (ai, bi) between the
centers of the blocks A and B. In order to improve the computation time, we
subsample the search set Ω by considering tentative matches every Σx (resp.
Σy, Σz) voxels along the x (resp. y, z) direction. These parameters determine
the resolution of the displacement field. Also, the centers of the test blocks A
are taken from a sub-lattice of the floating image. We thus introduce another
set of subsampling factors (∆x, ∆y, ∆z), which determines the density of the
displacement field.

Since the (N, Ω, Σ, ∆) parameters are voxel distances they are always inte-
gers. To take into account possible image anisotropy, their relative values are
chosen so as to correspond roughly to the same real distances.

Contrary to methods based on a global criterion, the block matching furnishes
explicit point correspondences. However, we should suspect some of them to
be unreliable. Bad matches often occur when the displaced block is uniform
or when it includes structures that are absent from the reference image. To
handle outliers, we first reject matches corresponding to similarity measures
that are below a given threshold. In this manner, a primary set of outliers is
detected. The remaining outliers will be rejected during the robust estimation
of the transformation parameters (see Section 2.2).
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Fig. 1. Illustration of the block matching strategy. In a given direction, the
parameters have the following meaning: N is the block size; Ω is the size of the
search set; Σ is the resolution of the displacement field; ∆ is the density of the
displacement field.

Multi-scale Scheme When choosing large search areas Ω, we expect the algo-
rithm to recover gross displacements while accurate matches may be achieved by
assigning low values to ∆ and Σ. Moreover, the complexity of our block matching
procedure is proportional to (N×Ω)/(∆×Σ). To optimize the trade-off between
performance and computational cost, we make use of a multi-scale scheme. We
start out with a coarse scale, large values for N , Ω, ∆, and Σ. When refining
the scale, all of these parameters are halved; in this manner, the complexity is
independent of the scale level. The details of this multi-scale implementation
will be found in [9].

Choice of the Similarity Measure We have implemented several similar-
ity measures. In practice, the correlation coefficient (CC) is well suited for
monomodal registration, whereas the correlation ratio (CR) and the mutual
information (MI) are better adapted to multimodal registration.

An important fact to bear in mind is that the cost of the block matching
procedure is strongly dependent on the time required to evaluate the similarity
measure between two blocks. In particular, the MI measure yields computation
times that are often prohibitive. Contrary to the case of CR, computing MI
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between two blocks requires first evaluating their joint histogram [13]. Then, one
still has to perform a considerable number of operations, mainly because na×nb

logarithm computations are needed, na and nb being the respective number of
intensity classes in the blocks A and B to be compared. As a consequence, the
computational cost of the block matching procedure using MI is one order of
magnitude greater than when using CR.

2.2 The Least Trimmed Squares Minimization

A least trimmed squares (LTS) regression is used to find the rigid transformation
T that best fits the displacement field computed through block matching. This
minimization scheme has been proven to be far more robust to outliers than
the classical least squares (LS) method [15]. It consists in solving the following
minimization problem,

min
T

h∑

i=1

‖ri:n‖2, (1)

where ‖ri:n‖2 are the squared ordered Euclidean norms of the residuals, ri =
ai−T (bi), n is the total number of displacement vectors, and h is set to h = �n/2�
to achieve a 50% breakdown point.

As discussed in [14], the LTS criterion may be minimized by means of a
simple iterative LS estimation. This technique, generally requiring no more than
10 iterations, has the advantage of being computationally very efficient owing
to the fact that the solution of one LS minimization is analytical [3]. We notice,
however, that this is not guaranteed to converge to the global minimum of the
LTS criterion, but only to a local minimum. Although we have not yet observed
cases where the iterative LS was trapped in aberrant solutions, more robust LTS
minimization strategies [14] will be looked into in future implementations.

3 Results and Discussion

We have applied this block matching algotrithm to three different medical image
registration problems. First, we present the histological slices alignment [9]. Sec-
ond, we present the computation of the mid-sagittal plane [11]. Finally, we have
evaluated the robustness of our method with the CT/MR registration problem.

3.1 Histological Slices Alignment

A similar block matching scheme was applied to estimate a 2D rigid transforma-
tion between successive anatomical brain slices [9] (see Figure 2 left). In partic-
ular, we realigned several datasets of rat’s brains containing about 25 sections
each with a resolution of 768× 576 pixels (0.03mm× 0.03mm) and an intersec-
tion gap of 0.4mm. The maximization of the global CC [5] were also applied.
Our method yields the best visual results, in particular for the inner strucures
(see Figure 2 right).
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Fig. 2. Two successive slices (top line) and the median perpendicular view of
the section set (bottom line): left, initial data; middle, after registration using
global CC; right, after registration using the block matching.

3.2 Mid-Sagittal Plane Computation

We present in Figure 3 the computation of the mid-sagittal plane for MR and
SPECT images. The MR image has a size of 2563, with a voxel size of 0.78mm3.
The SPECT image has a size of 643, with a voxel size of 3.12mm3. In [11], an
analysis of the accuracy and the robustness of our method has been presented
using artificial and real images. Several image databases have been created in or-
der to evaluate the influence of anatomical differences. A number of experiments
have demonstrated the robustness and the subvoxel accuracy of our algorithm.

3.3 CT/MR Rigid Registration

We have applied our block matching algorithm to the 3D registration of CT with
MR (T1 weighted) images. We used eight brain image pairs from the Vanderbilt
database (see Figure 5), each ground-truth transformation being known thanks
to a prospective, marker-based method [17]. As we are faced with a multimodal
registration problem, we have chosen CR as the similarity measure to drive the
block matching. Another choice, such as MI, is theoretically possible but, as
discussed in Section 2.1, this is prohibitive in terms of computation time.

In these experiments, the block matching algorithm is compared with two
methods based on the maximization of a global similarity measure, respectively
CR and MI. In these cases, the CR or MI measure was computed using par-
tial volume interpolation (PV) [6], and the maximization was undertaken using
Powell’s method in a two-step multiresolution scheme (the CT was subsampled
by factors 4 × 4 × 1 in the first step, and not subsampled at the second).



Block Matching 563

Fig. 3. axial (top) and coronal (bottom) views, for the initial MR and SPECT
and the reoriented and recentered image.

In all the (3 × 8 = 24) registration experiments, the initial transformation
between the CT and the MR was set to the identity. The registration errors we
obtained with the different methods are represented in Figure 4 and Table 1. On
the one hand, we consider the center error, i.e., the error made on the translation
of the CT image center. However, since this error does not reflect the errors in
the estimation of the rotation, we also define the corner error as the RMS error
computed over the eight vertices of a bounding box centered in the CT image,
with a relative size of 33%× 33%× 100%. This box is roughly tangential to the
patient’s head. Of course, to be meaningful, these errors have to be compared
with the images resolution: 1.25× 1.25× 4 mm3 for the MR, and 0.65× 0.65× 4
mm3 for the CT.

Table 1. Mean and median registration errors found using three different algo-
rithms in CT/MR registration.

Method Center errors Corner errors
Mean (mm) Median (mm) Mean (mm) Median (mm)

Global CR 6.57 6.29 7.45 5.80

Global MI 5.08 3.11 5.07 3.08

Block Matching with CR 2.39 2.03 3.70 3.32

These comparative performances lead us to the following observations. First,
it is clear that the global methods have both failed in one case (actually, for the
same patient dataset). Notice, it was possible to obtain better results by manu-
ally resetting the initial transformation parameters, but these are not presented
here since our goal is to compare fully automatic methods. We warn the reader
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Fig. 4. Registration errors of three different algorithms in CT/MR registration:
CR (global maximization), MI (global maximization), and CR+BM (the present
block matching algorithm using CR as local similarity measure).

that some other results obtained with the global methods might correspond to
a local, but non-global, maximum of the similarity measure.

As may be observed in Table 1, the block matching algorithm has provided
the best average and median center errors. However, the trend is different when
looking at the corner errors, as the performance of global MI and block matching
are actually comparable (better for the average for the block matching, while
better for the median for global MI). This means that the rotation was best
estimated when using global MI: mean rotation errors are 2.85o (global CR),
0.75o (global MI), and 1.68o (block matching).

Another observation is that the performances of the block matching algo-
rithm are remarkably stable across experiments. This is well reflected in Figure 4,
where one sees that the error measures corresponding to the block matching al-
gorithm are more concentrated than those corresponding to global CR and global
MI. We may thus conclude that the block matching algorithm has provided more
robust, if not accurate, estimates of the actual transformations than the global
approaches based on MI and CR.

4 Conclusion

In this paper, we have presented a general strategy for the rigid registration of
medical images which is based on the combination of a block matching technique
with a robust transformation estimator. We have presented experiments of his-
tological slices alignment, computation of the mid-sagittal plane in brain images,
and multimodal CT/MR registration. Our results suggest that, in some cases,
the block matching approach can significantly outperform global approaches in
terms of robustness.

Concerning the first two experiments, previous analysis [9, 11] has demon-
strated the accuracy and robustness of our method. Further analysis is needed in
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Fig. 5. CT/MR registration. Left: original CT; Center left: original MR; Center
right: registered CT to MR; Right: MR with registered CT contours superimposed

order to better demonstrate its interest in other multimodal registration prob-
lems. Moreover, a comparative study between mutual information and correla-
tion ratio within the block matching approach will be investigated.
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