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BLOCK ORIENTED SIMULATION OF COMBINED SYSTEMS 

EVZEN KINDLER 

(Received September 14, 1982) 

Summary. A programming system BOSCOS is described, which permits the computer to 

transform descriptions of combined systems into corresponding simulation programmes. The 

combined systems are composed of continuous blocks and discrete processes. The blocks behave 

according to ordinary differential equations or assignment statements, or represent networks 

composed of such blocks; the structure of the networks can vary in time. Interactions between 

blocks and processes are possible. The system has been implemented as a knowledge base (a class 

of formal definitions) in an object oriented programming language SIMULA. 

Keywords: 

1. INTRODUCTION 

1.1. Essence of combined systems 

The influence of digital computers has caused that more and more complicated 

systems are exactly studied. One aspect of this trend concerns the so called combined 

discrete-continuous systems, simply called combined systems, which can be charac

terized by the presence of the following attributes: 

1.1.1. a lot of parameters which develop continuously during the system time, 

1.1.2. plentitude of structural properties which develop discretely during the 

system time, 

1.1.3. mutual influence of the continuous parameter values on the structural 

properties and vice versa. 

In more detail, any combined system has some components (aspect, subsystems, 

elements, processes etc.) — called continuous components — which are comparable 

with the so called continuous systems, i.e. systems which can be described by ordinary 

differential equations where time derivatives occur [22]. Further, any combined 

system has some components (called discrete components) comparable with what 

is commonly called discrete event dynamic system, i.e. systems with discrete events 

in generally non-equidistant time steps, during which not only discontinuous changes 
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of some numerical and non-numerical parameters occur, but also relations among the 

elements change, new elements enter the system and other elements leave it, as in 

queuing systems [1]. During the discrete events, the discrete components affect 

the continuous ones by discrete changes of their parameters and - in case of the 

systems of combined type 3 (see 1.2.3) — the relations between the continuous com

ponents as well. The continuous components affect the discrete ones by causing the 

so called state events: such discrete events arise when a continuously developing 

parameter assumes a certain value (eventually in a certain direction). The parameters 

of continuous components can be distributed, i.e. their development can be describ-

able only by means of partial differential equations, where also other than time 

derivatives occur, but the ordinary differential equations are commonly considered 

to be sufficient for the plentitude noted in 1.1.1 [30], [31]. 

1.2. Classification of combined systems 

There is a hieararchy of three basic types of combined systems (see [2], [3], [4]): 

1.2.1. Systems of combined type 1 (shortly 1-systems) are composed of one con

tinuous component described by a fixed system of differential equations, and one 

or more discrete components, the number of which can vary in time. 

1.2.2. Systems of combined type 2 (shrotly 2-systems) are composed of continuous 

and discrete components which behave as transactions [3], [4], i.e. their number 

and mutual relations can change during the system time but no continuous interaction 

can be present between different continuous components: a continuous component 

can only cause a state event in a discrete component and that component can further 

modify a continuous component in a discrete way. 

1.2.3. Systems of combined type 3 (shortly 3-systems) whose continuous and 

discrete component behave as transactions similarly as in 1.2.2 but continuous trans

actions can mutually interact in a continuous way and so form another continuous 

transaction, called macro. As its structure can be modified by discrete events, its 

behaviour would be describable by a system of differential equations of a time-

dependent form, including the number of equations; such systems have not been 

introduced into the language of mathematics. 

The hierarchy described is essentially bound with the software for the modelling 

of combined systems: the programming languages specialized for the 1-systems 

(the GASP family, SAINT, SIMNON, SIMCOM/F, SMOOTH, SLAM) admit the 

users to describe the continuous components by means of differential equations 

which are written similarly as in the non-computer mathematics; the corresponding 

problems concerning the implementation of the continuous component models 

belong to numerical mathematics (integration methods, integration step control, 

state event detection etc.). 

The programming languages oriented to the 2-systems (CADSJM, BLOCADSIM, 

PROSIM, SSL, NGPSS, GSL, CDCSIS - see [4], table 3, or [3], par. 6) offer the 
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users similar facilities but must be combined with the dynamic allocation of data 

structures; the corresponding problems concerning the implementation of the con

tinuous components overpass the numerical mathematics in the direction of the 

theory of programming: they are related to the memory economizing and to the 

language security; namely, the greatest problem is to signalize an error in case a para

meter belonging to a continuous component becomes a coefficient in a differential 

equation describing another continuous component. 

The number of the programming languages oriented to the 3-systems is not too 

great (NEDIS [5], a nameless one [6] and COSY [7], which has not yet been 

implemented); in addition to some obstacles concerning implementation, there is 

a great problem of the expressing means, which would enable the user to describe 

the time dependent structures of the continuous components; commonly the means 

are based on the analog computing technique language [5], where the continuous 

systems are considered as networks of simple elements: in order to arrange that 

language for complex systems, facilities for iterating such a network constructions 

to define more and more complex "macros" must be available. One therefore starts 

with the "elementary" blocks (integrators, adders, multipliers etc), defines more 

complex ones (e.g. compartments, pools), then defines still more complex ones 

(e.g. a plate of a destination colon, then a destination colon), up to the whole system 

or continuous component. The creation and destruction of blocks in the structures 

(networks) is descibed similarly as the creation and destruction of a transaction in 

the discrete event simulation languages [1], [4], [5], [8] — [12]. 

1.3. The role of the modern programming languages 

The problem of the best and most effective implementation of the programming 

systems for simulation of combined systems (the so called combined simulation 

systems) has not been solved. The reasons are in the numerical mathematics, theory 

of programming and in the applications: numerical mathematics is stimulated by the 

combined simulation languages and therefore offers new methods of numerical 

integration and state event detection (and one can expect that new methods will be 

offered in the future as well); moreover, it is not yet known what is the most suitable 

algorithm for transforming partial differential equations into arrays of ordinary 

differential equations, though such an algorithm will be very actual in the nearer 

future, due to the increasing importance of the systems with distributed parameters 

and discoverings in the theory of ordinary differential equations [7]; theory of 

programming owes a lot to the combined simulation languages, beginning with such 

"trivial" problems as standard outputs and ending with problems which have no 

analogy, as e.g. automatic modelling of elements which can switch between their 

inputs and outputs, similarly as electronic circuits or elements; in the applications, 

no statistics has been constructed informing on such relations as e.g. between linearity 

of courses of continuous parameters and complexity if arithmetic expressions oc-
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curing in the differential equations: such relations would make it possible to prefab

ricate the most effective configurations of various numerical methods. 

In such a state of the art, any combined simulation system must be implemented 

in such a way to be relatively simply modifiable and extensible, i.e., it must be im

plemented as a set of modules which correspond to the notions of programming, 

description of (combined) systems and numerical mathematics. In other words, the 

implementation would be ideal, if it were a formalized theory, which legibly reflects 

the notions of system description, programming and numerical methods. Modern 

universal programming languages, namely SIMULA [9] — [12], reprezent a good 

tool for this pourpose, admitting to form stepwise richer and richer notions, reflecting 

both the mathematical languages as well as the natural ones. In the next part, 

a description of a combined simulation system oriented to the 3-systems (and, 

naturally to the other combined systems as well), based upon SIMULA, is presented. 

Compared with the other combined simulation systems based upon SIMULA 

(e.g. CADSIM [13], COMBINEDSIMULATION [14], SIMKOM/S [15] or 

DISCO [16]), the presented combined simulation system considers the classes of 

elements forming the combined systems (i.e. those used by the users) in a similar 

way as the classes of elements forming the numerical methods (i.e. those used by the 

implementors); such a technique is not only more effective, but it brings new dis

coveries in the theory of combined systems. 

2. DESCRIPTION OF BOSCOS 

BOSCOS (an acronym of Block Oriented Simulation of COmbined Systems) has 

been developed at Charles University in Prague. It is prepared to be applied, but at 

the present time it is being enriched by some facilities intended to further improve 

its function. It has been oriented to the 3-systems. 

2.L The hierarchy of basic BOSCOS concepts 

The basic concepts form the following list, ordered according to the increasing 

content and decreasing extent; the relation between notions is not only suitable 

from the system theoretical view, reflecting the basic semantical links between the 

notions, observed already by the ancient Greeks, but also from the viewpoints of 

implementation, for they directly correspond to SIMULA classes and subclasses. 

2.1.1. cycle seflects the elements, which iterate some action until they leave the 

system; 

2.L2. cycle 1 reflects the elements which enter some list (queue) and at the end 

of the action mentioned in 2.LI resume their action to the next element in the list; 

2.L3. block reflects the cycle 1 which sends a numerical signal to other elements; 

2.L4. dynamic reflects the simple elements which behave according to ordinary 

differential equations; with other elements taking part in the implementation, 
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dynamic blocks are joined by means of real functions function, VE, VG and VH; 

they are declared as virtual, i.e. their meaning is defined only for special classes of 

the dynamic blocks; 

2.1.5. continuous reflects the dynamic blocks for which the user himself defines 

the behaviour by means of a virtual procedure equations; in this procedure, the mathe

matical form of the equations is rewritten similarly as in CADSIM [13], i.e. state [i] 

means the value of the i-th continuous attribute of the block and rate [i] means its 

first derivative. If creating any continuous block, two parameters must be introduced: 

order of the equation, i.e. the greatest i, and output, i.e. the value of i for which 

state [i] represents the output signal of the block 

The hierarchy described present abstracts tools which are not intended for the 

users of BOSCOS, with the exception of continuous and block; the last one reflects 

a general function generator, giving signal — f(t); e.g. the sine wave generator 

can be introduced as a subclass of block in the following way: 

block class wave (amplitude, omega, phi); 

real aplitude, omega, phi; 

signal : = amplitude x sin(omega x t + phi); 

2.2. Basic user oriented concepts 

Similarly as a block, the users can apply the following concepts of a simple block 

with inputs: 

2.2.1. simple 1 reflects the simple block with one input carrying the output signal 

from another block; 

2.2.2. simple 2 reflects a block having a second input beside the input mentioned 

in 2.2.1; e.g. a multiplier is introduced in the following way: 

simple 2 class multiplier; 

signal := input. signal x second input. signal; 

For simple 1 and simple 2 the contents of the virtual procedure set to has been 

separately defined so that one can write e.g. B . set to (A) or C . set to (A, B), stating 

that A becomes respectively input of B or C and B becomes second input of C. 

After calling set to, its last parameter becomes last (i.e. it can be considered under 

the name last). 

2.2.3. integrator reflects all dynamic blocks with the equation rate [1] : = state [1], 

where rate [1] is the value of its input signal and its output is 1. In order to offer 

suitable basic concepts to the users, integrator is introduced as a special concept 

(subclass of dynamic) behaving similarly as simple 1 (including set to) and not 

demanding to declare its equations, output and order. Concerning its implementation, 

see sec. 3.1. 
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2.3. Concepts of macro 

2.3.1. composite reflects blocks with complicated internal structure; they contain 

an output block, the signal of which behaves as the signal of the whole composite 

block. The internal structure of the classes of "simiias" composite blocks is deter

mined by procedure form which is a virtual one for composite. 

2.3.2. macro is a composite block which takes place in the form procedure of 

some "greater" composite block. 

2.3.3. element is a composite block which does not take place in thefOrm procedure 

of any block; its interactions with the other components of the system are only 

through discrete events. It has its integration method and its integration step called 

tstep (because of SIMULA word step, it cannot be called simply step). 

2.3.3. macro 1 and macro 2 are special macros, which are joined with other blocks, 

from which input signals come; macro 1 has one input, comming as signal from 

the block denoted input; in addition, macro 2 has its second input, comming as 

signal from into the block denoted second input. 

As an example, we present two equivalently behaving declarations of the concept 

of block realizing the equation y' = y
2
 — sin(3t): 

continuous class C; begin procedure equations; 

rate [1] := state [1] f 2 — sin (3 x t); end; 

macro class D; begin procedure form; begin 

output: — new integrator; output. set to (new adder); 

last. set to (new wave (3, 1, 0), new multiplier); 

last. set to (output, output) end; 

end: 

3. IMPLEMENTATION OF BOSCOS 

3.1. Integration methods 

BOSCOS has the following methods for the numerical integration [17]: rectangu

lar (Euler), Simpson, Newton-Cotes, Runge-Kutta 4th,order with fixed step, 

Runge-Kutta 4th order with controlled step (Runge-Kutta-Simpson), Runge-Kutta-

-Merson, Runge-Kutta-England, 3/8-Runge-Kutta and Shampine-Euler for stiff 

systems [18]. Each of them is a SIMULA class, i.e. an abstract notion. If one 

wishes to use one or more of the methods, one creates an instance existing as an 

individual entity of the simulated system. Such an instance can be used by any 

element as its method (see 2.3.3). The parameters of any method with a controlled 

step are the minimum and maximum value of the step. SIMULA automatically 

permits an element to change its method during a discrete event. 
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halving (step halving method), regula falsi (regula falsi method) and Hermite. 

(method of inverse Hermite's polynomials), but also other ones are admissible, 

as e.g. Newton's method. The corresponding arithmetics uses virtual functions of 

dynamic blocks, mentioned in 2.1.4. Every flag has some parameters determining 

the maximal error for the state event detection, maximal number of iterations during 

one state event detection, etc. 

Every element (see 2.3.3) has a virtual procedure post step which is performed 

always after finishing an integration step, i.e. when the following two conditions 

are satisfied: 

the element is just developing continuously, 

i.e. its integration step has not been performed inside the iteration for a state event 

detection; 

in this development the integration step just performed has been taken as finished, 

i.e. the accuracy test has not been negative. 

Procedure post step can be let empty in case the development of the element should 

not be disturbed by any state event (e.g. in case of continuous simulation), but for 

the state event detection it is used to determine whether during the performed in

tegration step a state event has not occurred: in the affirmative case, a flag is activated 

to perform its work. In [19] it is shown that in every such case post step can call 

one flag existing during the system's whole existence as the only element of class 

flag, or every state event can have its own flag; both the possibilities have their ad

vantages and disadvantages. Naturally, post step can be used for quite different 

purposes, like outputs of results. 

3.3. Composite blocks 

Let A be a composite block and B a block created in the form of A. We say B 

is a node of A. An entity is called storage if it is a dynamic block or if it is a composite 

block with a node which is a storage. Every composite element has a list backbone 

and in case it is a storage it has another list stomach. Procedure sort, which is auto

matically applied to every composite block X, forms its backbone and sorts into it 

its nodes which are not storages; in case X is a storage, sort creates the stomach of X 

and puts the nodes of X which are storages into this stomach. In the last positions 

of the lists mentioned, special elements are placed, which return the computation 

either to the integration method (see 3.1) in case the list in question belongs to an 

element (see 2.3.3) or to the next element of the corresponding list of the composite 

block for which X is a node. These special elements belong to certain subclasses of 

class cycle (see 2.1.1). 

In case an integration method requires to compute the right hand sides of the 

corresponding differential equations, it resumes the control of the computation to 

the first element of the backbone of the element concerned (in the sense of 2.3.3). 

The action joined with the class macro begins by resuming the control to the first 
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element of its backbone. The special elements at the end of the backbone, mentioned 

above, cause that the whole hierarchy of the backbones of the same element is step

wise activated and after the computation of the right hand side the computing process 

returns to the integration method. In case an integration method requires to compute 

something which concerns only storages (namely, to store their signals to some of 

their auxiliary attributes) it resumes the control of the computing process to the 

stomach of the element in question and the hierarchical process is performed simi

larly. Let us mention that every composite storage which is a node of X is placed 

in the backbone of X and therefore the procedure sort applied to X automatically 

creates a special card and places it into the stomach of X in place of the storage 

itself; the card is an element of a subclass of cycle 1 (see 2.1.2). 

Procedure set to (see 2.2) is declared for various classes of macros so that it calls 

form and sort. The same procedures are also included at the beginning of the action 

of every element. Procedure sort should be called also in case the structure of a com

posite block is essentially modified during its existence in the system. Calling sort 

during the computation (and not during the compilation) makes BOSCOS a com

bined simulation system oriented to the 3-systems (and naturally also to the 1-

and 2-systems). 

In the composite blocks, implicit elements can be used making it possible to form 

algebraic (implicit) loops (see e.g. [20]); the implicit elements behave as elements 

of a subclass of class simple 1 (see 2.2.1) and use Wegstein's algorithm, which is 

considered as robust [21], [22]. 

4. CONCLUSIONS 

BOSCOS has no standard outputs, because of the absence of experience: the 

existing combined simulation systems are facilitated only by standard outputs com

monly known from continuous system simulation. At present time, the principles 

mentioned in 3.1 are studied for being adapted for multistep integration methods 

and for combining implicit integration principles with traditional explicit algorithms, 

similarly as mentioned in [18]. These tasks could mean an important contribution 

to the systematic algorithmization of numerical methods: the expressing of structural 

algorithmical properties of the numerical integration methods is far from being so 

exact as their analytical treatment concerning their accuracy and stability, and 

SIMULA seems to be an important tool in this development. 

All concepts mentioned in Parts 2 and 3 have been declared as attributes of class 

BOSCOS. This class has been designed as a subclass of SIMULA standard class 

SIMULATION, i.e. the definition of BOSCOS has been introduced by the following 

declaration: 

SIMULATION class BOSCOS; begin (classes of Parts 2.3> end : 

This fact enables the users to use in BOSCOS any tool introduced in SIMULATION; 

177 



thus one can make use of the list processing tools and of discrete event scheduling 

on a simulated time axis. Therefore we have not described those facilities in the 

present paper. Moreover, in BOSCOS one can make use of any subclass of SIMULA

TION: one can arrange it simply so that instead of the "prefix" SIMULATION 

one writes another prefix before the mentioned text class BOSCOS. The author has 

made a good experience especially with using prefixes GPSS and TRANSPORT. 

The first one [23], [24] introduces all common facilities concerning the queuing 

systems, the second one [25], [26], [27] introduces all tools concerning the material 

flow systems [28], [29]. 
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Souhrn 

BLOKOVĚ  ORIENTOVANÁ  SIMULACE  KOMBINOVANÝCH  SYSTÉMŮ 

EVŽEN  KINDLER 

V  článku  je  popsán  programovací  systém  BOSCOS,  který  umožňuje  strojový  překlad  popisů 
kombinovaných  systémů  do odpovídajících  simulačních programů.  Kombinované systémy  se  sklá
dají  z bloků  a  diskrétních  procesů.  Bloky  se  chovají  dle  obyčejných  diferenciálních  rovnic  nebo 
dosazovacích  příkazů,  nebo  představují  sítě  složené  z  takových  bloků.  Jsou  možné  interakce 
mezi  bloky  a  procesy.  Systém  byl  implementován  pomocí báze  znalostí (třídy  formálních  definic) 
v  objektově  orientovaném  programovacím  jazyku  SIMULA. 

Pe3K>Me 

CTPyKTyPHO  OPHEHTHPOBAHHOE  HMHTALIHOHHOE  MO/1EJ1HPOBAHME 
HEnPEPLIBHO-AHCKPETHbIX CHCTEM 

EVŽEN KINDLER 

B cTaTte onncaHa CMcreMa nporpaMMHpoBaHHH BOCKOC, KOTOpan opneHTHpOBaHa Ha  MauiHH-
HLIH nepeBOji  HenpepbiBHO-AHCKpeTHbix CHCTCM  H HX onHcaHHH B cooTBeTCTBVKmnie HMHTanHOHHbie 
n p O r p a M M L I .  HenpepBIBHO-JJHCKpeTHBie  CHCTeMbl  KOHCTpVHpyKDTCfl  H3  6H0K0B  H  AHCKpeTHbIX 

nponeccoB.  /jHHaMHKa 6JIOKOB  onncaHa oóbiKHOBeuHbrMH /jHcbepeHHHajibHbíMH ypaBHeHHMMH HJIH 
onepaTopaMH nô cTaHOBKH, HJIH npH noMornn  ceTH nofloÓHbix  6JIOKOB. Cym;eCTByK>T  HHTepaKHHH 
MOKay ÓJiOKaMH H npoueccaMH. CncTeMa 6buia  peajiH30BaHa  Ha íi3biKe CMMYJIA. 
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