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Block-Orthogonal Space-Time Code Structure and Its Impact on QRDM
Decoding Complexity Reduction

Tian Peng Ren, Yong Liang Guan, Chau Yuen, Er Yang Zhang

Abstract—Full-rate space time codes (STC) with rate = STC, fast-decodable structure is proposedlin [21], however
number of transmit antennas have high multiplexing gain, but the associated complexity reduction is upper bounded by the

high decoding complexity even when decoded using reduced- ; i .
complexity decoders such as sphere or QRDM decoders. In maximum code rate of (quasi-)orthogonal STC/[22], and hence

this paper, we introduce a new code property of STC called IS I'm't_ed‘ ) ) .
block-orthogonal property, which can be exploited by QR-  Basically, quasi-orthogonality and fast-decodabilitySihC
decomposition-based decoders to achieve significant dedogl imply additional zero entries in the upper triangle matifitee
complexity reduction without performance loss. We show tha QR decomposition of the equivalent channel matrices, these
such complexity reduction principle can benefit the existig ;arq entries are exploited in breadth-first search or depth-

algebraic codes such as Perfect and DJABBA codes due to.
their inherent (but previously undiscovered) block-orthogonal first search decoders such as QRDM and sphere decoders

property. In addition, we construct and optimize new full-rate t0 achieve decoding complexity reduction. In this paper, we
BOSTC (Block-Orthogonal STC) that further maximize the introduce a new property for full rate STC, callddock-

QRDM complexity reduction pote_ntial. Simu_lation result; o bit orthogonalproperty, and propose further QRDM complexity
error rate (BER) performance against decoding complexity how reduction for codes with such property. The proposed decpdi

that the new BOSTC outperforms all previously known codes as . . . o .
long as the QRDM decoder operates in reduced-complexity mad principle can benefit many existing algebraic codes due to

and the code exhibits a desirable complexity saturation prperty.  their previously undiscovered block-orthogonal propeRyr
example, D-STTD code and DjABBA code have about 50%

Index Terms—Space-time codes (STC), orthogonal STC, quasi- d€coding complexity reduction. Moreover, we design new
orthogonal STC, block-orthogonal STC, QRD-M algorithm, de  full-rate codes called block orthogonal STC (BOSTC) that

coding complexity. further exploit the block-orthogonal property for comptgx
reduction in QRDM decoders. Besides the usual bit error
|. INTRODUCTION rate (BER) against signal-to-noise ratio (SNR)investayat

L . . approach, we also adopt a new approach: BER comparison

Eggl:lse ;)f;;:ee.ltr‘rsgmgézen;az(émré?_llﬁihhocr)g E)l\r/lthl doer;against decoding complexity, which gives interesting new

g, Sp ! . with pure. 9 %?ights into codes which are optimal with respect to specifi
property have received considerable attention in the p

%Secoding complexity levels.
decadei[l][4]. However, the code rates of orthogonal SEC af The rest of this paper is organized as follows. System model

mostly low[S]. To increase the code rates, pure orthogonali

. : . Is presented in Sectiof] Il. Block-orthogonal property and
has been relax.ed to quas_|—olrthogonal|ty.for STCLn l6]_'[15]BOSTC are introduced and studied in Secfionh Ill. In Section
To pursue high transmission rates, high-rate STC such

Bell Labs layered space-tme (BLAST) [16], dowble spacig i, "0 (Cre U ode AOPE TS (R
time transmit diversity (D-STTD) codé [17], DjABBA code ) y

[18] and algebraic STC [19][20] have been developed, pare constructed and o_pt|m|z_ed in Section V Th_e bit erraz rat
. X oo . (BER) performance simulations are provided in Secfioh VI.
they demand a high maximum-likelihood (ML) decoding., . . . .
his paper is concluded in Sectibn VII.

complexitﬂ due to the non-orthogonal code structure. In

order to reduce the decoding complexity of existing algebra In what follows, bold lower case and upper case letters de-
9 plextty 949 hote vectors and matrices (sets), respectiiRlgndC denote
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-, 85} wheres; are real-valued information symbBIsﬁor B. Code Rate of STC

transmission. To transmifsy, 52, ,sr} from N, transmit Lemma 1. [23][24] In an N, x N, MIMO system, the code
antennas ovefl’ symbol durations, an STBC matriX € 416 of STC applied cannot exceed the minimum of transmit
CT*Nt is designed following the signal model in [23]: and receive antenna numbers. i.e.
L
L
X = Z $1Cy (1) Rate = oT < min(N, N,.). 4)
=1

Definition 1 (Full-Rate STC) An STC for N; x N, MIMO

whereC; € CT*Ne (I = 1,---,L) are called dispersion . ) .

. , S systems is full-rate when its code rate achieves the value of
matrices. The code rate |§f considering complex symbol ™~ Ny, N,) -
transmission, and the average energy of the code métisx min(N, Nr).
constrained tefx = E||X||? = T. In this paper, we always assume thét < N,., hence an

The received signalg;,, of the mth (m = 1,---,N,) STC is full-rate when its code rate achieves the valu&Vaf
receive antenna at time (¢t = 1,---,T) can be arranged
inaT x N, matrixY = [y, ¥, -+ Yy |. Thus, the transmit- 1. BLOCK-ORTHOGONAL STC

receive signal relation can be represented as: ) )
In this section, block-orthogonal STC (BOSTC) and block-

Y = \/5X|:| +2Z (2) orthogonal code property [25] are defined and discussed.

whereH y, xn. = |hy hy - HNTJI is the channel coefficient

matrix. We often assume that the communication channelAs Definition of BOSTC

quasi-static Rayleigh fading with coefficient of indepenilie  Most reduced-complexity MIMO decoders such as sphere

identically distributed (i.i.d.)CN'(0,1) entries; Zrxn, = decoder [26] and QR decoder with M-algorithm (QRDM)

(21 23 -+ Zn,] = [24] is the additive white Gaussian noisgp7][28] are based on QR decomposition. With QR decom-

(AWGN) matrix where the entries,,, are independently, position, BOSTC is defined as follows:

identically distributed (i.i.d.CN(0,1); p is the average SNR ] )

at each receive antenna. Definition 2 (BOSTC_) Suppose thaHgTerL. is the equiv-
Following the signal model i [23], the received signal caflént channel matrix when an STEr., is applied in

also be shown to be: Ny x N, MIMO systems. Denoting QR decomposmo_n on

H assH = QR whereQ = [q; --- q;] € R?TN-xL jg

y=+pHs+z (3) unitary andR € RE*L is upper-triangularX is called block-
with i =1,2,---,L and orthogonal STC (BOSTC) and have block-orthogonal strectur
if
o hy 2 P
o1 i 51 51 2 2r
Vi hy 51 4 R=1, S ; ©)
y - . ) h - ,S - ,Z - . O 0 . DI‘
yn i Zy,
ygvr ﬁﬁvr SL zf\; where the sub-bloclD; is full-rank diagonal matrix of
" L "N, " size k; x k; as shown in[(6), and the information sym-
bols corresponding to the same sub-block are independent
H=hy,hy,---,hy]=[ €th %h ... %ph | (i.e., their values represent independent informationdl an
orthogonal (i.e., their dispersion matrices satisfy thasiu
G 0 -0 orthogonal constraints (QOC) in_[10]f is the number of
@ = o & - 0 ¢ = { Cf; —%{ ] sub-blocksD’s and Zir:l ki = L; E;i,(iy = 1,2,--- , T —
oo ’ ¢ C I, 1, i =11+1,---,I') denotes matrix containing arbitrary
0 0 - Nox N values. ]
wherey € R2TN-xl g ¢ RLX1 7z ¢ RZTN-x1 gnd D; = diag (ui1, iz, -, Uik,) (6)
H € R2TN-*L gre the equivalent received signal vector, infor-
mation symbol vector, equivalent noise vector and equitale N Def.[2,D; (i =1,2,---.T) in (€) are diagonal matrices

channel matrix, respectively. with non-zero scalar diagonal entries. If these scalaratiafy
To avoid rank deficiency at the decodenk(H) = L is €ntries are replaced with square upper-triangular matgaeh

required, which means thit should be “tall”, i.e..L < 2T'N, as:
[23][24]. Therefore, we assume that the number of receiver

R R R D; =di U;1, U; coey U g, 7
antennasV, > .. Moreover,[3], [&2],--+, [SF] must be o = diag (Ui, Uiz, -+, Uiko) ™
K . 1 2 I, . . .
linearly independent to guaranteenk(H) = L [15]. where U, ;, are full-rank upper-triangular matrices of size
. r ks .
2 . Vi X Vi With Zi:l Zn:l Yiw = Ly i = 1,2,--- T,
The in-phase component or the quadrature component of alemmpﬁ — 1,2.--- . k;, then the code can be viewed asblck-

information symbol is real, hence, this signal model is agplicable for . X
complex information symbol transmission. quasi-orthogonal codginstead of block orthogonal). The
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information symbols corresponding to the same sub-blbck 2) I'-Block BOSTCT > 2):
and differentUs are independent and orthogonal.

In general, the size of (block-)diagonal matrid@s and
upper-triangular matrice)’s can be arbitrary. In this paper
only the case thab’s have the same sizke x k (i.e., k1 =
ky = --- = kr £ k) andU’s have the same size x ~ (i.e.,

Definition 3. Consider an STC with dispersion matrices
{Ai1,--- ,Ax} and{By,--- ,B;} and an associated equivalent
channel matrixH, the matrice{By, - - - , By} is said to satisfy
block QOC (i.e., conditions (8b) and (8c)) under matrices
Vil = = oYiE = = orL = = ra 2 4) S {A1,~)- ,Ag} if thelzir a:}ssociatedﬁ(k+1 : ]k+l<:,|]k+1 :
o ’ ’ k + k) is diagonal, whereR is the upper-triangular matrix
considered. Hence, block-(quasi-)orthogonal structare lwe after QR decomposition oH, R(k + 1 : k + k,k + 1 :

unified by three parameters &, k, 7): k + k) is the sub-matrix constituted by thg + 1)th to

e I the number of matriceB (i.e., sub-blocks) irR; (k + k)th rows and the(k + 1)th to (k + k)th columns of
e [ the number of scalarg or matricesU in D’s; R. -
e ~: the number of diagonal entries in matridds(y = 1
for scalarsu ). Based on Def[]3, a sufficient condition to check whether

To simplify the notations further, in the sequel of this ptapéer STC has block-orthogonal structif®, k, 1) is provided

we will not make distinction between block-orthogonal ST&S follows.
and block-quasi-orthogonal STC. They will both be calletheorem 2. Denoting the equivalent channel matrix

“block-orthogonal STC"with paramete(§', k, 7). of an STC with dispersion matrice$A;,---,Ax} and
{Bl,"' ,Bk} asH = [Hl HQ], Hl = [hl h]k]; H2 =
[Nk41 -+ hiyg], the matrices{B,--- ,B;} satisfy block-

B. Block-Orthogonal Property OC under matrice$A Ayl if
1,0 Ak

In this section, we present sufficient conditions for an ST8 1) {B,,--- By} satisfy the QOC;

to attain block-orthogonal structure. o _.2) the projection coefficient matrix of vectors
1) 2-Block BOSTCWe first propose a sufficient cond|t|0nh]kJrl .-+ hgsr onto vector space{h;,---,hyg}, ie.
for an STC to achieve block-orthogonal structuf® = e gup-matrix formed by the first column to theth column
2,k,v = 1). The case of > 2 will be discussed subsequently, 4 the(k + 1)-th row to the(k + k)-th row of B in (B), is
Theorem 1. Considering an STC of sizd x N, with para-unitar. u
dispersion matrices, -~ , Ay, Bi,---,B;fi. Let The proof of Theorenil]2 is given in AppendiX B. Using
AR Al B _p! Theoremd R, we can classify the block-orthogonal structure
Ai = [ Al[ ARl } , Bi = { BZ( BRl } achieved by many existing codes, as shown in Table I. We

can see that all these codes have block-orthogonal steuctur
and Az £ [ai“p]QTXQNt’ Bl £ [bi“p]QTXQNt (’L = with & < 2.
1ok, u=1,---,2T, p=1,--- ,2N;), then this ST

has block-orthogonal structute, &, 1) if C. Relationship with the Existing Works

1. {Ay, -, Ag, By, -+, By} is of dimention2k; (8a) TheR’s after the QR decomposition on the equivalent chan-
nel matriceH’s of group-decodable, fast-decodable structure

2. AT A =1, BIBi=1 (i=1,--- ,k); (8b) and block-orthogonal STC are compared graphically in Fig.
[@. The group decodable codes can not achieve full code

3. ATA; = —AJTAZ- (i,j=1,--- k andi # j); (8¢c) rates [15]. On the other hand, the fast-decodable codes[21]
have very few zeros in thB matrix, hence limited decoding

4. BZ-TBJ- = —BJ-TB;- (i,j=1,--- k andi # j); (8d) complexity reduction. This is the reason why we introduce

full-rate block-orthogonal structure in this paper.
5.0 ) dpgsr =0(d,j=1,--- k,andi # j)

(Pa,5,1)€8 (8e) IV. BENEFIT OFBLOCK-ORTHOGONAL STRUCTURE
hered zk: QXT:b QZT:b DECODING COMPLEXITY REDUCTION
wnere t = i a . ivg Aot . . . i X §
e o\ B ot e In this section, we first review the breadth-first search de-

. _ coding used irraditional QRDM [27][28], and then propose a
eaclh élzmentf(tuple) of s& includes 4 umquely-permutedSimp"ﬁedQRDM that exploits the block-orthogonal structure.
scalari drawn from{1, .-, 2N }. ®  Next, we use the D-STTD code with block-orthogonal struc-

The proof of Theoreril1 is given in AppendiX A. Based ofure (2,4, 1) to illustrate the decoding complexity reduction.
Theorent(L, the x 2 fast-decodable codes ih [29]=]31] can Assume that the real information symbols corresponding to
be shown to have block-orthogonal structy®e4, 1). an upper-triangular matrik are drawn from a constellation

of size M. For example, if each real information symbol in an

SFor ease of presentation, here we empl@y} and {B} as dispersion STC ,Wlth block-orthogonal structur&’, k, v) is 4-PAM (pulse .
matrices, instead ofC} presented in[{1). amplitude modulation) modulated, the symbols correspandi

“For exampley” ; 5 1 1yes dpgst = di112 +d1121 +di211 +do111 and - to the same) are drawn from a constellation of sidd = 47.

22(1,2,3,1)es dpgst = d1123 + d1132 + d1213 + diz12 + di231 + diz21 +
do2113 + d2131 + d2311 + d3112 + d3121 + d3211. 5A is para-unitary ifAFA = 1.
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BLOCK-ORTHOGONAL STRUCTURE OFEXISTING CODEZAF?)IEIJEVL TRANSMIT ANTENNAS OVERT SYMBOL DURATIONS®.
‘ Ny T r k 5
BLASTI[16] Ny 1 Ny 2 1
Golden code[19] 2 2 4 2 1
D-STTD cod€[17] 4 2 2 4 1
DjABBA code[18] 4 4 4 2 2
Perfect codé€[20] 3 (or 6) 3 (or 6) 9 (or 36) 1 2
4 4 16 2 1

“ Without special requirements (e.g., to achieve full diitgronstellation rotation is required for DjABBA
code [18] and HEX constellation is applied for Perfect codéhv@ (or 6) transmit antenna$ [20]), we
assume that each complex information symbol is drawn fromuare QAM without constellation rotation,
equivalently, each real information symbol is drawn fromre-a@limension constellation.

4-Group-Decodable Structure Fast-Decodable Structure Block-Orthogonal Structure Block-Orthogonal Structure
in[12] in [22] 4, k1) (4, 4, v) with y>1

Fig. 1. R’s of group-decodable structure, fast-decodable stracamd block-orthogonal structure.

A. Traditional QRDM M"Y 10 Oryadional = kMM, = kML= In this case,

In traditional QRDM, the surviving paths with smalleronly the orthogonality in the upper-left sub-block of thedk-

accumulated Euclidean distance (Euclidean metric) ateefic orthogonal s_truc.tgre is exploited. In the_following, we lW”,
from the full (ML decoding) or partial(near-ML decoding)Pmpose a simplified decoding that exploits the orthogtnali

search tree. Assume that at each stagepaths are reserved in all the sub-blocks of block-orthogonal structure to reglu
as shown in Fig[l2 wheréZ, — 3. At the beginning, all "M, to Mg for Euclidean metric calculations, and hence
c . 1

the search paths are reserved until the number of total lsedfeducing the decoding complexity](9) further, but without
paths exceeds\/.; then only M. paths with the smallest performance loss.

accumulated Euclidean metrics, surviving paths, are pliéée

the Euclidean metric calculations in the next stage. Indage, B. Simplified QRDM for Block-Orthogonal Structure

MM, metrics neeq to _be _calculated i_n each stage. Hence, the\s denoted in the dashed box of Fid. 2, we assume that
decoding complexity (likelihood function calculation nb&Y) 5 (a5 information symbolgs,, s,_1} drawn from a signal

under traditional QRDM is: constellation with)// = 4 are in a sub-block of an STC
1A with block-orthogonal structurél’, k,1) (kK > 2) and this
Oraditional = = Z[Mc < ML= sub-block is not a first-decoded block. Singeands,,_; are
T= ©) independent, the Euclidean metric calculationssfpands,,_;

) ([Mc > ML—l] ME [M, < ML—I]MC) , can be separated. Under QRDM willi. = 3, the Euclidean

_ _ metric calculation number fos, is O, = M.M = 12.
where [Condition] will be 1 when Condition is true, or without loss of generality, the surviving candidates fpmay
0 when Condition is false. In [9), 7 means that the de- bes, 1, 5,2 ands, 4 (as shown in Fig]2) based on the updated
coding complexity is averaged over the symbol durationgecumulated Euclidean distance.
I =L,---,1 means that the decoding process is conductedyext we calculate the Euclidean metrics foy_;. Since
from s;, t0 s1; [M, < M"~"*!] being 1 means that the ands, , are orthogonal to each othes, will not affect
number of total search paths exceetit. and Euclidean the Eyclidean metric calculations faf,_;. Hence the two

metrics need to be calculated. _ Euclidean metrics fos,_; along path
Note that 1) if M, = 1, traditional QRDM has successive S
interference cancelation (SIC) arid (9) becomBsgitional = (-++ = Spr1,1 — Sp1 — sp-1,5) : blue line in Fig[2

7 LM (the first point seems useles®) if M. = M*~%, 4
" . path
traditional QRDM becomes the same complexity as fast
decoding [[2]] and the decoding complexity is reduced fromi-- — sp41,1 — sp2 — Sp—1,;) : green line in Fig[R
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2500

—— M (e, M)
c,p c

— — —M% _ (SNR=4dB) eq _
2000 opl Mep™e |
- Mj“l'ﬂ (SNR=14dB)

Mi‘:)_l (SNR=24dB)

1500

quivalent Surviving Paths

1000

eq
Mcp 1

500

c

eq

= Mcp 2
eq

Mcp3

M®%: Number of E

Fig. 2. Simplified QRDM trellis diagramM = 4). 0 500 1000 1500 2000 2500
Mc: Number of Surviving Paths (D-STTD, 8-PAM, p=4)

3. M1 k—1, p=4, k= 4) for the D-STTD code
are the same, which is equal to the Euclidean metric along WI%ere cach Voal (lilformatlon Symbolp is drawn fror)n 8-PAM.

virtual path (for Euclidean metric calculation only)

(~-- = spy1.1 — sp-1;) : red dashed line in Fid.] 2 1) Decoding Complexity Reduction Boun@onsidering a

sub-block{sy, sp—1,--- , sp—k+1} Of block-orthogonal struc-
with j = 1,2,3 and4. Then the number of Euclidean metrlcture (I, k,1), it is easy to see thaf/*? . achieves the

c,p—1t
calculatlon forsp 1 will be reduced fromM .M = 12 minimum value ofMz (; =0, .-,k — 1) when each node in
Op_1 = MM = 8 where M¢? = 2 is the equwalent

M?
L the reserved decoding search tree haschildren and hence
surviving path number of- - - sp42, spt1, 5p } fOr 5,1, Or the
surviving path number of- - - sp42, sp+1} for s,—1. Note that

as few parent nodes as possible are reserved. The minimum
f ‘ - simplified decoding complexity of this sub-block can be show

the red virtual path does not exist under traditional QRDN}) pe (assume thatl, < ML—?)

without considering block-orthogonal structure. Thus,- un ‘-

der proposed simplified QRDM considering block-orthogonal S g eq N~ MM,
structure, the surviving paths for Euclidean metric catiohs Opart simplfied, min= Z MM, = Z M

are theM ¢4 reserved paths of these symbls- s, 2, sp41} . =0

decoded in previous blocks, not tié. reserved paths of all — M* -1 MDM. ~ M MM..
these symbolg- - - s,2,5,41,5,} decoded previously. Note MF — ME=1T275C T M — ‘

that with the use of virtual path, we can reduce the Euclideflompared with the traditional per-sub-block decoding com-

metric calculation number, but will not reduce the surviyinplexity kM M, ( whenM, < M*%~=P), the simplified decoding

path number. Hence, the decoding complexity reduction witbmplexity of this sub-block can even be reduced-tg-—-.

not cause any loss in BER performance at all. Without loss bibte that this result is available to all non-first-decoded

generality, after updating the accumulated Euclidearadist, sub-blocks. For the block-orthogonal structig &, ) with

M. = 3 surviving paths in this stage may be ~v > 1, the~ information symbols corresponding to an upper-

triangular matrixU should be viewed as a unit drawn from a

(1) -+ = spy11 —> sp1 —> sp—1,2 : blue line in Fig[2 constellation of size\f”, instead ofM. Hence we can make
(2) --+ = Spt1,1 = Sp2 — Sp—1,2: green line in Fig[R2  the following remark:

(3) +++ = Sp+1,2 = Spa — sp—1,4: pinkline in Fig.l2  Remark 1. Compared with the traditional decoding, the
. maximum amount of decoding complexity reduction of block-

Suppose that{s, sp—1, -~ ,sp-k+1} are in the same orthogonal structure(T’, k,~) with simplified decoding is
sub-block of block-orthogonal structurgT', k,1) and M anproximately, which is a decreasing functioniof
their equwalent surviving path numbers are denoted éﬁ‘é”M%)
M4, M5y, M5, ., respectively. Then, instead of
@), we can rewrite the decoding complexity under proposed2) Decoding Complexity Reduction Examplerom [10),
simplified QRDM as: we can see that the decoding complexity is mainly determined
by the equivalent surviving path numbhffeq Since the actual
M:4 value can only be estimated expenmentally, simulations

1
. . L—1+1
Osimplified = T Z [Me < M M are conducted in ax2 MIMO system where the D-STTD

=L (10) code with block-orthogonal structufe, 4, 1) is applied, and
(Mo > MET) MET (M, < ML_Z]Mf_,ql) - M of s;(I = 4,---,1) in the non-first-decoded sub-block
are enumerated. In the simulations, the communication-chan
It is easy to see thadl. = M7 > Mf‘; 1 = -+ =2 nel is assumed to be quasi-static Rayleigh fading and the

Meq _r41- Hence, the decoding complexity of an STC witlthannel state information is perfectly known at the reaeive
block -orthogonal structure &f > 2 under proposed simplified Experiment I: Assume that each real information symbol
QRDM is lower than that under traditional QRDM. in the D-STTD code is drawn from 8-PAM, the equivalent
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x10°

8f - -0 : D-STTD Code 1

Traditional 4
- D / 0.9F 1
©— Ogimpiiea D-STTD Code j=l [0000—o—0o0—0—0—0—0
L . D ’ ]
7| = & = Oryaiionar DIABBA Code | 0.8 1
—&— Oginpifieq DIABBA Code |f
6 . 1
g — © = Ofaitionar Perfect Code _ 0.7r ]
. ]
;ID)_ —— OS\mphﬁed' Perfect Code P 5
£ 5r 7 4 06} g
S P pa &
© @ . Qo
2. o 2 S0 ]
S £
3 / £ 04
@ @ B
a3 o
(e] 0.3F
02t
0.1r —6— D-STTD Code
. 0.1| —&— DjABBA Code
——6— Perfect Code
. . . . 0 n n . .
0 . . . . . . . . . 0 500 1000 1500 2000 500 1000 1500 2000
80 100 120 140 160 180 200 220 240 Mc: Number of Surviving Paths M:: Number of Surviving Paths

MC: Number of Surviving Paths (D-STTD, 4-PAM, p=4)

) eq . Fig. 6. (a) Traditional and proposed simplified decoding ptaxity and (b)
Fig. 4. M_5 /M (i=1,---,k—1, p=4, k=4) forthe D-STTD  patis petween traditional and proposed simplified decodimgplexity.
code where each real information symbol is drawn from 4-PAM.

05 ‘ ‘ : : : : : PAM, respectively. We emphasize that all codes will have ex-
actly the same BER performance under both QRDM schemes
because the proposed Simplified QRDM only reduces the
number of Euclidean metric calculations but not the sungyvi
path number (as explained earlier in Section 1V-B). From Fig
[6, we can see that the decoding complexity under proposed
simplified QRDM can be reduced drastically. In particulbg t
complexity reduction for the D-STTD code is nearly 50%.
Moreover, the simulation also shows that: 1) the D-STTD
code achieves more decoding complexity reduction than the
DJABBA code. That is because compared to the DJABBA
code withk = 2, the D-STTD code has largdr = 4 (both
000 o0 2000 =0 3050 w0 w030 have the sam@/ = 16); 2) the DJABBA code achieves more
My: Number of Surviving Paths (D-STTD, 8-PAM, p=4) decoding complexity reduction than Perfect code because th
DJjABBA code has a large = 42 = 16 than the Perfect
Fig. 5. MZ|_;/Mc (i=1,---,k—1, p=4, k=4) for the D-STTD code which has\/ = 4! = 4 (both have the samé = 2).
code where each real information symbol is drawn from 8-PAM. Both the observations concur with Reméaik 2.
Note that although the proposed Simplified QRDM achieves
lower decoding complexity, its BER performance remains
e same as the traditional QRDM because the surviving path
number of both schemes remain the same (recall explanation
b in Section IV-B). Hence, BER comparisons under traditional

1, p=4, k =4) are much smaller thai/.. S ) .
Experiment Il: Assuming that each real information symb(,?}ndOI proposed simplified QRDM's are unnecessary and omit-

in the D-STTD code is drawn from 4-PAM and 8-PAM in 2'€
simulations, respectively. The complexity reduction tessaf

0.08113

surviving path numbers under different SNR values 4d%
14dB, 24dB are shown in Fig.] 3. We can see that all th
equivalent surviving path numbed&’? . (i = 1,--- ,k —

M¢g4 /M, are shown in Figld4 and Fi§ll 5, where we can see V. NEwBOSTC (NSTRUCTION
that Mc5, ;/M. is far smaller than 1, and it _decreises With Although we have shown that many existing high-rate STCs
increasingi (¢ =0,---,k—1, k=4) andM (i.e., M?). have some block-orthogonal structure, there are new open

Remark 2. In the proposed simplified QRDM, the decodingroblems: _ _ _
complexity [I0) decreases with increasingnd )/, and the ~ 1) The conventional approaches to high-rate code design

maximum complexity reduction order concurs with Renfdrk 1end to focus on the error rate performance criteria andyaswa
ignore decoding complexity, hence they may not achieve the

i ) i best performance-complexity trade off. We can see that for

C. Decoding Complexity Comparisons most existing codes in Tab[@ k is 2 hence the decoding

Under traditional and proposed simplified QRDM'’s, theomplexity reduction under proposed simplified QRDM is
decoding complexities of the D-STTD code [17], the DjABBAlimited. Furthermore, the Perfect code with 3 and 6 transmit
code [18] and the Perfect code [20] with block-orthogonalintennas can not benefit from simplified QRDM decoding due
structures %, 4,1), (4,2,2) and (16,2,1) respectively in a to k =1,
4x4 MIMO system are compared in Figl 6, where each real 2) Many existing BOSTC have low scalability. For example,
information symbol is drawn from 16-PAM, 4-PAM and 4-the maximum code rate of DJABBA code is 2.
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Therefore in this section, we will construct new BOSTC's C,, U Copm |11 Cspm L1 | Capn |11
which better exploit the block-orthogonal property and are o | m m‘
more scalable. ' -

. Crzm | ¥y | Cozm | ¥ | Cozm | ¥y | Cozm
A. Construction Lam| | =2am | oy | Radm |y | s

To reduce the decoding complexity, the BOSTC should be —
designed for largé:. Two such systematic construction rules Ciim| 1 —Cz"'j'm 1 Caam |41 | Cagm |11
are presented here. _ T "

1) Construction | with Rate-1 Seed Cod8elect a rate-1 - ,
space-time cod&, r«n, With high k£ to be the seed code, C C C C )
and a full-rank matrixM y,xy, = [M; My --- my,] to be B 7 I 7 I 7 | A
the extension matrix, then a rabé- (full-rate) BOSTC can be
constructed as

N
Xin, =Y X, - diagm,) (11)
=t (:1,2””1 m CZ,Z’H,m 32" m C4,2m_l,m

where X, ; is the X, with different sets of information
symbols. It is easy to prove that the decodingXafy, is

Fig. 7. Order of picking dispersion matrices & 2™~ ", n € [1, m],

not rank deficient if there is at most a complex informatiom > 1) in Example 2. Herey = 2 for illustration purpose.

symbol at each space-time position of the seed ¢age, v, .
2) Construction Il with Rate-1/2 Seed Cod8elect a rate-
1/2 space-time cod¥, 7 n, With high & to be the seed code,
and a matrixM y, xon, = [M1 My -+ May,| with full-rank
[’,\\"ﬁ] be the extension matrix, then a rate-BOSTC can be
constructed as
2N,
Xin, = Xo - diagm;) (12)
1=1
where X, ; is the X, with different sets of information
symbols. It is easy to prove that the decodingkaf v, is not

rank deficient if there is at most a real information symbol at

each space-time position of the seed céder« n,.

B. Examples

BOSTC examples withk = 4 and £ = 8 are presented
in the following. To our knowledge, thé = 8 code has the
largestk value ever reported.

First we review Hadamard matrix. A complete set25f
Walsh functions of ordern gives a Hadamard matrid 5

[32] as follows:
1
-1 :| ) M4 = |:

1
M, = [ :
My =
DenoteM y as a square sub-matrix 8 . in (I3) formed
by the first N columns and the firsiV rows. For example,

M2
M2

M2

_MQ],...7 .

1 1 1
Mag=1]11 -1 1
1 1 -1

Example 1 (fixed dimension){(8, 4,1)-BOSTC for 4 transmit
antennas
Let the seed code be the rate-1 JABBA code:

s1+Js2  S3+Js4 JSs—Sg ST — Ss
X, = | 79 +.j84 51— 3:82 —Jjs7 — 58 Jss + 6
S5+ 79S¢ St+J)ss S1+Js2  S3+7S4
—87+JSs S5 —JS¢ —S3+jSa 81— Jso

(14)

Then a rate-4 STCX, 4 for 4 transmit antennas can be
constructed as

4
X|74 = ZXM- . dlanz)
=1
whereX, ; is theX, with different sets of information symbols
{s1,i, - ,ss,:} andm; is theith column of Hadamard matrix
M, as shown in[{16).

(15)

1
-1

1
1

1
-1
1 -1 -1
-1 -1 1

Following TheorenTR2X, 4 can be verified[[33] to have
block-orthogonal structurgs, 4, 1), where{sy ;,--- , s4,} and
{s5,i,-++ ,8s,} are in the(2: — 1)th and (2¢)th sub-blocks,
respectively. Moreover, the block-orthogonal structsmnain-
tained even if any of these sub-blocks are removed, and
henceX, 4 can be aT',4,1)-BOSTC of code ratd"/2 (I" =
1,2,---,8) with (8 — I') sub-blocks removed.

Example Xscalable dimension)2™+n~1 4 2m=")-BOSTC
for 2™ transmit antennaén > 1 integer n € [1, m])

Let C;11(I = 1,2,3 and4) be the dispersion matrices of
Alamouti code [[1] with;2 = —1:

10 i 0 0 1 0 j
bl S A ] e

Then the dispersion matrices of a rate-1 STC 28Y(m >
1 intege) transmit antennas can be presented as:

1

1
My=| (16)
1

| Clikm—1 0
Cl,2kfl,m - |: 0 Cl,k,m—l :| ) (18)
C _ 0 Cikym—1
B2km = Cy pome1 0

wherek =1,---,2m 2,1 =1,2,3 and4.
The rate-1 STC with dispersion matrices [n](17) lor] (18)
with the picking order shown in Figl7 is denoted As.
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Let the seed code b¥, and the extension matrikl be the C. Optimization
Hadamard matrix of size™ x 2™, a rate2™ STCX,»» can T compare with DJABBA code (rate 2) and DSTTD code

be constructed following Construction I: (rate 2), we will show a rate-2 BOSTC with optimization in
gm the following.
X, gm :Zxo.i'diaqmi) (19) Denoting X, in (@4) as X, = X.ol(31,32,53,34) +
' = Xo, (85, S6, S7,558), a rate-2 full-diversity (4,4,1)-BOSTC

) ) ) Xirate2 With optimized design coefficients can be presented
where X, ; is the rate-1 STCX, with different sets of ¢

information symbols andn; is theith column of Hadamard 1 9
matrix Mom. X, raten = Xo, i+1 - diag(p,; di )
: . rate2 = i1 Paitn) - diagMziy1) (23)
Following Theorem[R2,X, o~ can be verified [[33] to e ZZ ° e
have block-orthogonal structu@™ =1 4 2m=") with n €
[1,m], where {s; (x—1)y+1,m,i>* " » Sl,kvy,m,i} COrresponds to

=0 n=1
where X, ;41 iS the X, with different sets of information
symbols, m; is the ith column vector of Hadamard matrix

— i — n—1
Upa =1, 2,3 and 4)71'E‘1th.epth sub-blockk =1,---,2"7%, '\ and the design coefficient matriX can be obtained from
t=1,---,2™ p=2""1(i — 1) + k). Moreover, the block- computer search as

orthogonal structure is maintained even if some sub-blocks

are removed, henc¥, o~ can be a(I’,4,2™ ")-BOSTC of Py L1 1 1

code rate2! T (I' = 1,---,2m+"=1) with (2m+n—1 _T) po| P L L L

sub-blocks removed. Ps er e el e
Using the ratet/2 real orthogonal STC in_[2] as the seed P4 1 & a @

codes, BOSTC can be obtained following Construction |l agheree; = ¢79-3218,

follows.

Example 3 (10,8,1)-BOSTC for 5 transmit antennas VI SIMULATIONS AND DISCUSSIONS

Let the seed code be In th_is .section, we compare the BI.ER. performances of
~ _ the optimizedX rae2 in (23) with the existing rate-2 codes
81 82 83 84 S5 such as D-STTD code [17] and DjABBA code [18] inx2
—S52 51 54  —S3  Se MIMO systems. We consider the DJABBA code optimized in
—53 —S4 51 s2 87 Chapter 9 of([18], which is the best known rate-2 code to our
X,= | ~% s 7o s s (20) knowledge.
—S85 —S¢ —S7T —Sg 1 In the following simulations, the proposed simplified
—S¢ S5 —S8 ST —S2 QRDM as described in Sectign TVB is applied as described,
—87 58 85  —Se¢ —S3 and all the rate-2 codes are modulated by 16-QAM (hence 8
| =S8 —S7  Sg S5 TS84 | bits/channel use). We assume that the channel is quaisi-stat

Rayleigh fading, and the channel state information (CSI) is

and the extension matrix be .
known at the receiver perfectly.

-1 1 1 1 1 45 1 1 11

1 -1 1 1 1 1 4 111 A. BER Performance against SNR with Given Decoding Com-
M= 1 1 -1 1 111 45 1 11, plexities

1 1 L -1 1 111731 From Remar R, we can see that with a given surviving

1 1 1 1 -1 1111 j

path number in QRDM, The D-STTD code and the proposed
(1) X rae2 in @3) with k = 4 can bring more decoding com-
a rate-5 STCX,, 5 can be constructed following ConstructiorP!eXity reducho_n thar_1 the DJAB_BA code W!ﬂk = 2. In
- ’ other words, with a given decoding complexity, the D-STTD
10 code and the proposeX rae2 Support larger surviving path
Xis = ZXW - diagm;) (22) numbers than the DJABBA code. As shown in Table IlI, we
i=1 simulate 2 cases in Talilellll where Case | considers a degodin
complexity O of around 180, while Case Il allows a higher
decoding complexityO of around 620, for all the D-STTD,
DJABBA and proposedX| rae2 codes. The complexity order
is computed usind (10) .

where X, ; is X, in (20) with different sets of information
symbols andm; is theith column ofM in @21)).
Following Theoreni X, 5 can be verified to have block-

orthogonal structuré10,8,1), where{sy;,---,ss;} are in

the ¢th (¢ = 1,---,10) sub-block. Note that the block- TABLE Il

orthogonal structure is maintained even if some sub-blac&s QRDM PARAMETERS FORRATE-2 CODES. DECODING

removed, henc& 5 can be aT,8,1)-BOSTC of code rate COMPLEXITY O AND SURVIVING PATH NUMBER M.

r/2(r=1,2,---,10) with (10 — I') sub-blocks removed. Case | Case |I
The newly constructed BOSTC are summarized in Table I1. M. | © M. | O

Interestingly, theX;, 5 code found using Construction Il has D-STTD code 20 189 102 622

a higherk value (=8) than those found using Construction |I. DjABBA code 7 208 28 627

X 5 is also the first evek = 8 code. Xirate2 in (23) 16 183 64 614
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COMPARISON OFBOSTCFOR N} TRAN-LAMI?'II:E\ILITENNAS OVERT SYMBOL DURATIONS?.
BOSTC ‘ Ny T Rate r ‘ k ‘ k
X4 in (I5) 4 4 4 8 4 1
Xi2m in @Y om om om gmin—1 4 gm—n
Xii,5 in (22) 5 8 5 10 8 1

“ Assume that each complex information symbol is drawn frongaase QAM without constellation
rotation, or each real information symbol is drawn from ame-dimension constellation equivalently;

b . . . .
m IS an integer> 1, andn is an integer no larger tham.

BER

BER

— + —Case 1:
—+— Case 2:
— © —Case 1:
—©— Case 2:
— B —Case 1:
—8— Case 2:

D-STTD
D-STTD
DjABBA
DjABBA
Proposed BOSTC

Proposed BOSTC

16

18

20

22

SNR

Fig. 8. BER against SNR with comparable decoding compkesith 4x 2
MIMO systems with 8 bits/channel use.

The BER curves against SNR are plotted in Fif. 8. W
can see that with similar or slightly lower decoding comple»
ity(Table[Il), X rate2 proposed in[{Z3) outperforms both the
D-STTD code and the DJABBA code. This is becad&gaie2
has higher diversity than the D-STTD code, and suppol
larger surviving path number than the DJABBA code(see Tab

).

B. BER Performance against Decoding Complexity wi
Given SNR Value

From Fig[8, we can see that the BER performance of S1
decoded using QRDM decoder is a function of the decodil
complexity. Interestingly, this function is non-linearorFin-
stance, with similar decoding complexities, the D-STTD &oc
performs better than the DJABBA code in Case |, but wors

than the DJABBA code in Case Il. Hence in this subsection

we will study the relationship between BER performance arfidh- 10. BER curves against decoding complexity with a gig&tR = 22dB
in 4x2 MIMO systems with 8 bits/channel use.

decoding complexity under a given SNR value.

The BER curves against decoding complexity with SNR =
22 dB are plotted in Fid.]9. We can see that 1) at different
decoding complexity level, the best performance is achievéiat, the QRDM performance approaches the ML decoding
by different codesX| ae2 performs the best for most partsperformance, although the practical decoding complexsty i
of the decoding complexity range, and specifically whefar lower than the ML decoding complexity. We call such
the decoding complexity order is lower thafn®. Therefore, minimum practical decoding complexity for ML decoding
the proposed BOSTC is a better choice for systems wigterformance the&eomplexity saturation point and denote it

BER

10°

10}

10

-4

T
—+—D-STTD

—O— DjABBA

—&— Proposed BOSTC

A Complexity saturation points

10

E‘\E\B_\_‘—E_E—(
—+— SNR=20dB

Decoding Complexity

Fig. 9. BER curves against decoding complexity with a givétRS= 22dB
in 4x2 MIMO systems with 8 bits/channel use.

—————a

M

—6— SNR=22dB
—8— SNR=24dB
A satration points

10°
M, in QRDV

limited computational power; 2) when the BER curves beconas “A”in Fig. @ and Fig[10.
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C. Complexity Saturation Point where
From Fig[9, we can see that the codes can achieve near ML [ ﬁf 1
decoding performances with a much lower practical decoding ! Ai 0 0
complexity (i.e., complexity saturation point) than fullLM _ ! 0 A 0
decoding complexity. When the practical decoding compyexi h= : , i = : : ’
exceeds the complexity saturation point, the improvemaent o ﬁf{ O 0 A
BER performance is trivial. This is a desirable property in ﬁIT ! 4 NpxNy
high-rate MIMO communication systems. L N
In Fig.[g, the complexity saturation points are obtainedhwit B 0 0
a given SNR = 22 dB. To verify the stability of a code’s B — 0 B 0
complexity saturation point, the BER curves of the proposed ’ : : o
BOSTCX| rae2 With different SNR are plotted in Fig. 0. We 0O 0 --- B
. . . © I N.XN,
can see that the complexity saturation points are almost the
same, at aboud/. = 128. This is clearly desirable too. Due to [8b), we haver o7, = |, BT B; =1 (i=1,--- k),
and[hy| = [Naf = -+ = |hox| = [h];
Due to [8t), an STC with dispersion matricas, - - - , Ak
VII. CONCLUSIONS are orthogonal and hence its equivalent channel madrix
satisfiesHTH; = |h|?I (a detailed proof can be found
In this paper, we introduce a new code property, calldd [I3]). Similarly, due to [8H), we havéi;H, = |h[?I.
block-orthogonal property, for space-time codes (STC)H at/nder QR decompositiond = QR with Q £ [Q; Q]
propose a new Simplified QRDM decoder to achieve si§; 2 0q, -+ q) = ﬁHl and Q, £ Aei1 - Ooxls
nificant decoding complexity reduction over the traditbna. , [ R, E 1| . ) -
breadth-first-search QRDM decoder for many well known — 01 R, ] is full-rank due to Ba)R: = [A[lxxk

high-rate STCs such as the D-STTD, DJABBA and Perfegfue to [Bt);E = QlTHz-

codes. We prove that the proposed Simplified QRDM hasn the following, we will prove thatR, is diagonal and

absolutely no performance loss over the traditional QRDMence this STC has block-orthogonal struct(@ek, 1). We
because the Simplified QRDM reduces only the number of Egn see that

clidean metric calculations but not the surviving path nemb

We also derive the maximum achievable complexity reduction Hy = Q,E+ Q,R;
in terms of the block-orthogonal parameters. To furthet@kp _
. H2 - QlE - Q2R2
the block-orthogonal property, we construct new BOSTC with T T
better complexity reduction advantage, and we show how to (H2 —Q,E)" (H2 — Q,E) = R; Q2 Q2R;
optimize them for full diversity and maximum coding gain (whereQzTQ2 =1)

without affecting the block _orthogonal code structure. The 2l + ETE — HTQ,E — ETQTH, = RYR,
proposed BOSTC construction rules are scalable, and they T
support arbitrary number of transmit antennas. Simulation (whereQ; Hz = E)
of BER against SNR and against decoding complexity show lhj2l —ETE=RIR;
that the proposed BOSTC outperforms the best known rate-2
STC under almost all scenarios (except at full ML decoding In other words,EE is diagonal< R2TR2 is diagonal.
complexity level), and it requires a QRDM complexity leveBince Ry is upper triangularRQTRQ is diagonal< R is
much lower than the full ML decoding complexity level todiagonal. Hence, in the following, we will prove thif E is
achieve near-ML decoding performance. diagonal under the conditiofi](8).

Finally, we remark that the decoding complexity reduction SinceE = QlTHg, we have
principle of block-orthogonal code structure presenteddth

[34] and this paper is applicable to both breadth-first dearc E= insz
and depth-first search decoders. Hence, many benefits seen in Ih
this paper can also be expected for sphere decodirg [26]. ETE — #HngH?HQ
_ 1 T T .
APPENDIX A ~ |hp? [thHlthHJ}
: : . - = [HT%THMT%F‘}
Following the signal model[{3), the equivalent channel |h|2

matrix in anN; x N, MIMO system with the channel matrix
Hy,xn, =[N hy -+ Ay ]is To ensure thaE” E = e {ﬁTﬂleHf%jﬁ} is diagonal,
we need
Horn.xz = [Hi Ha] =[hy -+ hg hggq -+ hgyl

=[@h - ah #h - Zh] R BTHHT Bh =0, i, j=1,-- Kk, i#j. (25)
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Let <7 £ [a;1 2y - aiQTNT]T 2 laiuv]2rN, 2N, N, and  where each element (tuple) of Sﬁ@ includes 4 uniquely-
Bi & [bi1 biz -+ bian,n,] £ [biws]2TN, x2N, N, We have  permuted scaldisdrawn from {1,--- ,2N;N,.} and corre-
. . sponds to a term, h,hsh; With coeff|C|entZ(p7q7s)t)eSO dpgst-
% HiH, %J' [Wpql2 NtN X2NN Since @7, (%;) is block-diagonal with the same main diag-
= B! [ dkh] onal sub-matrixA4, (B;, x,i = 1,--- k), there must be at
[ AR e o h} least one O value betweér,, and s ie., biupaws_z 0,_
! k whenp and s correspond to two diagonal sub-matrices, i.e.,
with %] # [5-] with the floor function|-|. Hence,p ands
r _ _ _ o can be considered to be corresponding to the same sub-matrix
Wy = by, (oA - ah] [enh - aih]" by, A, (B;). Hence [[2V) is equivalent tG (28):
2T N, 2T N,
= [Z bzupalu : Z biup@cu 1 Z dpqSt =0 (28)
(p,q,s,t)ES
2I'Ny 2I'Ny r where each element (tuple) of sBtincludes 4 uniquely-
[Z bivga1h - Z bjug@ky ] permuted scalars drawn fr0|{r1 2N}
Hence, with [8),E7E = -1 [h BTHHT 2 hJ is di-
k 2TN, 2TNT . o ‘h‘
_ Z Z rupieah Z bjvqinoh agonal, |.e.,R? is diagonal. SincR; and R, are diagonal,
= = Theorem|(ll) is proved.

2T N, 2TN
(Z bwpanu Z b]vqafw> _- APPENDIXB
Since{By, - -, B} satisfy the QOCH2TH2 is diagonal.

For a clear presentation, we define Under QR decomposition,

. . B _ Ri Eio
zk: <2TN 2TN, ) H = [H; Hz] = QR = [Q; Q] [ R, } (29)

T
E biup@ey, * E bjug@rv
v=1

w=1 \ u= where E;5 is the projection coefficient matrix of vectors
£ Dy = [dpgst]2n, N, x2N, N, Niy1,---,hiy, onto vector spacghy,--- ,hy}. Following
the QR decomposition algorithm, we see tEat = Q7 H..
where In (29), we have
k 2T N, 2T N,
dpqst = Z < Z biupal-cus' Z ijq"t/-cvt) . H2 N Q1E12 + Q2R2
k=1 u=1 v=1 H2 - Q1E12 = Q2R2

T _ T
With i,j = 1,--- ,k,i # j andh = [hy -~ hon,,]7, (H2 = QiEv) éHQ ~QFw) = (%RQ) (Q:R)
foTr condition [25) to be valid, we first simplified the term HiHs —E[,E12 =RjRs (Q1Q, =1)
mT 2T uT 2k .
h™ % H1H, %;h as follows: Hence, with diagonaHZH,, we have:E”E is diagonal
& R2TR2 is diagonak= R; is diagonal, wherdk, has been

h" #THHT 2;h .
. L - known to be upper triangular.
=h" [wpqlon, N, x2n,N,.h Hence Theorerl2 is proved.
2NN, 2NN,
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