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BLOCK PRECONDmONING FOR THE CONJUGATE GRADIENT METIIOD 

1. Introduction 

In this paper we study some preconditioriing techniques for the conjugate 

gradient method to solve the linear systems of equations that arise from the 

discretization of partial differential equations. We consider for example elliptic 

equations such as 

with 

u(~)=g(~) or.~~ =g(~) on ao' 

where n is the exterior normal, and ~ (~) > 0. The techniques that we describe 

are suitable for standard finite-difference discretizations of equations such as 

the above that yield certain symmetric positive definite block tridiagonal linear 

systems of the form 

Az=b, (2) 

where 

D1 Al 
A2 D2 AJ 

A= 
An-1 Dn-1 A.i 

An Dn 

Such equations can arise also from finite element discretizations with node 

groupings that form a tree [ 11] . 

. The prototype model problem in two dimensions is the Dirichlet problem, 
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a= 0, .\ = 1, g = 0, 0 the unit square, 

-l:!.u =! 

u = 0 on the boundary . 

with standard five-point differencing on a uniform mesh of width h. We focus 

attention on the matrix structure obtained for natural ordering. which yields 

(after multiplication by h 2) 

4 -1 

-1 4 -1 

A;,= -I I D;, = 
-1 4 -1 

-1 4 

In three dimensions, standard 7-point differencing with this ordering would yield 

D, that have two additional non-zero diagonals. Different orderings or higher 

order approximations would give rise to different structures, to which our tech-

niques could be applied also. 

To solve (2) we use the generalized or preconditioned conjugate gradient 

method, which may be written as follows [3]. Let x 0 be given, define p-1 arbi­

trarily, and let r 0 = b - Ax0
. Fork = 0, 1, ... perform the steps 

p~ = (z~- 1 .Mz~- 1 ) 1 k~l 

pie = z~ + P~ePJe-1 

_ (z~.Mz~) 
t:X~ - (p~ ,Api:) 

Po=O 

The matrix M is the preconditioning matrix, which should be in some sense 

an approximation of A. It is known that the preconditioned conjugate gradient 

I il 

.• 
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method converges rapidly if the condition number x;(M-1A), which is the ratio of 

the largest to the smallest eigenvalue of M- 1A, is small or if the eigenvalues are 

clustered (cf. [3]). 

The goal of this study is to devise good preconditioning matrices M. For 

this purpose we exploit the structure of A in constructing some block precondi-

tionings, one special case of which is the one introduced by R.R. Underwood [19]. 

In. Section 2 to motivate the use of our block techniques. we recall some 

results on block Cho.lesky factorization. Section 3 deals with the main 

problem --finding good approximate inverses for tridiagonal matrices that are 

diagonally dominant. New block techniques for two-dimensional problems (d = 2 

in (1)) are introduced in Section 4. Three-dimensional problems will be dis­

cussed in. detail in a subsequent study. 

In Section 5 we present numerical experiments for several test problems. 

As comparisons are made with point preconditioning techniques, some of them 

are recalled briefly there. We compare the methods on the basis of number of 

iterations and the number of floating point operations required. Also, we illus-

trate graphically the spectral properties of the matrices corresponding to the 

various preconditionings. 

2. Block Chol.esky factorization 

·Let A be the symmetric positive definite block tridiagonal matrix of (2). Let 

n 

'""' be the order of the ich square diagonal block D;. and N = 2.:'""' the order of 
i=l 

A. We denote 

·, 



D= 

Dn-l 
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L= 

0 

Az 0 

A= D +L +L1
, 

and we denote by a.;.; the elements (pointwise) of A. 

An-1 0 

An 0 

Since A is positive definite, there holds a.;,i > 0, i = 1. ... , N. We assume that 

the following holds also. 

Hypothesis (Hl). (a). Ths off-diagonal elements a;.;, i ~ j of A are non-

pomtive. 

(b). A is {weakly} diagonally d.omtnant; i.e., there holds 

!l.ti ~ ~ Ia.;.; I , i = 1, ... ,N, 
j'l"i 

and. there exists at least one k, 1 ~ k ~ N, such that 

(c). Each column of J\, i =2 . ... ,n, has at least one non-zero element, 

Hypothesis (H1)(a) implies that A is a Stieltjes matrix, i.e., a positive definite 

M-matrix. 

Let I: be the symmetric block diagonal matrix with ~ x ~ blocks I:, sa tis-

fying 

(3) 

Then the block Cholesky factorization of A can be written as 

"-

II J 



-.; 
-· I~ 

~ \ 

.. 

5 

The factor ~ + L is block lower bidiagonal. Since A is positive definite sym-

metric, the factorization can be carried out." 

The following results concerning the properties of the ~i are well known, but 

as we did not find them in the literature in a form suitable for our application, 

we give them here for completeness. These properties provide guidance in our 

selection of preconditioning matrices for the conjugate gradient method. 

:Let 

_ rB~ -c:r] 
B -l-c B2 

be a symmetrl.c positive definite M-matrix with B 1 and B2 square. This implies 

(cf. [2]) that the diagonal elements are positive, the off-diagonal elements are 

non positive, and B is generalized strictly diagonally dominant, i.e., there exists 

a diagonal positive matrix E such that E- 1 BE is strictly diagonally dominant. 

Lemma 1. B'2 = B 2 - CB! 1Cl is a symmetric positive d.efin'iJ:e M-TntJi:ri::t:. 

B'2 is called the Schur complement of B 1 in B. For other properties of the 

Schi.Jr complement see [ 4]. 

Proof. We can write 

[ 
I OJ [I B!1ct] 

= CB! 1 I B 0 I · 

Since the leading principal minors of B are unchanged by the transformation on 

the right side of the equality, the matrix on the left side is positive definite, and 

hence so is B'2 . In particular the diagonal elements of B'2 are positive and, as 

B11 >0 and C:?!O hold, it follows that the off diagonal elements are non positive . 
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Let e = (1,1, ... ,1)1 . The condition that B is generalized strictly diagonally 

dominant corresponds to the existence of a diagonal matrix E > 0 

such that E-1 BE is strictly diagonally dominant, i.e., 

But we have 

and 

= [E!
1
B1E 1 -E!

1
C!E2] 

-Ei1CE1 Ei1B2E2 

where, with a looseness of notation, we denote by e vectors of difierent length 

with all elements equal to 1. 

As CB! 1E 1 is a positive matrix, the first inequality implies 

and 

Thus there holds 

from which one obtains 

Hence B'2 is an M-matrix. 

\1 i 
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Using the same techniques we can show also that if B satisfies Hypothesis 

(Hl)(a),(b) thenB'2 does also. 

Now we apply these results to A with B 1 = D1, -cr = (A~ 0 · · · 0), and 

D2 A~ 

A3 D3 AZ 

B2= 

An-1 Dn-1 A;[ 

An Dn 

. We have 

D2-A2D! 1 A~ AJ 

As Ds Al 
B'-2-

An-1 Dn-1 A;[ 

An Dn 

There follows 

Theorem 1. Under Hypothesis {Hl} all the~ are symmetric strictly diaga-

nal.ly dominant M--matrices. 

It is of interest to note, that in the particular case of the model problem, 

the block Cholesky factorization can be shown to reduce to a Fast Poisson Solver 

[ 18]. 

3. Incomplete Block Cholesk:y Factorization 

Because of the work and storage that may be required in large problems for 

computing the I::,, carrying out the complete block Cholesky factorization is not 

of interest to us here as a general means for solving (2). For example, for the 

two-dimensional model problem, although I::1 = D1 is tridiagonal, I::11 and hence 

~, i ~ 2, are dense . 



8 

In this paper our interest focuses on approximate block Cholesky factoriza­

tions obtamed by using in (3) instead of l:i--\ a sparse approximation 11;,_1. One 

thereby obtains instead of l: the block diagonal matrix 6 with "'-i x "'-i blocks ~ 

satisfying 

Z~i~n , 

(4a) 

(4b) 

where for each i in (4b), 11;,_1 is the sparse approximation to ~-.! 1 . The incom-

plete block Cholesky preconditioning matrix for use with the conjugate gradient 

algorithm is then 

(5) 

One has 

where R is a· block diagonal matrix 

R= 

with 

The factor I::.+L in (5) is lower block bidiagonal. Using the Cholesky factors 

4. of!::.;,, 

one can express M in terms of (point) lower and upper triangular factors 

-.. -
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r L1 rL; Wl 

W2 L2 0 Ll w~ 
M= (6) 

Wn-1 Ln-1 0 LJ-1 WT n 

Wn Ln Ll 

where 

This form is generally more efficient computationally than is (5). For specific A;, 

of interest, we show in subsequent sections that all the 6.;. are positive definite, 

which implies that the above factorization can be carried out. 

Note that in the conjugate gradient algorithm M is not required explicitly, 

only the linear system Mzlc =ric need be solved for zlc. Since this can be done 

with block backward and forward substitution, the block off-diagonal elements 

Wi need not be computed explicitly. The requisite products with vectors can be 

obtained by solving linear systems with triangular coefficient matrices 4. and 

Ll, Generally, for preconditionings of interest, the 6.;_, and .correspondingly the 

4,, will be sparse. These features were first used in this context by R.R. Under­

wood in [20], where block incomplete Cholesky preconditioning for the conjugate 

gradient algorithm was introduced. 

For the standard five point discretization of ( 1) in two dimensions, D;. is tri­

diagonal, and ~ is diagonal. This is the case on which this paper focuses: of 

central interest is the choice that the A;,_1 be tridiagonal, so that all the 6.;. in 

(4b) are tridiagonal. Correspondingly, in this section we discuss techniques for 

approximating the inverse of a tridiagonal, diagonally-dominant matrix. 
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Let 

T= 

-bm-2 !Im-1 -bm-1 

-bm-1 !1m 

be a non singular tridiagonal matrix. We assume that the following holds. 

Hypothesis (H2). The elements czt and bi. of T satisfy 

Cit > 0 

b;. > 0 

1 ~i~m 

1~i~m-1, 

and Tis strictly diagonally dominant, i.e. 

a1 > b1 

f1i, > bi-1 + bi , 2~i ~m -1 

!1m > bm-1 · 

3.1 Diagonal approximation 

(7) 

The simplest approximation T 1 of r- 1 we consider is the diagonal matrix 

whose elements are 

(8) 

3.2 Banded approximation from the exact inverse 

One can do much better than the diagonal approximation T 1 by using the 

following powerful result, which characterizes the inverses of symmetric tridiag-

onal matrices, (cf. [1],[10]). 



. . 
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Theorem 2. There exist two vectors u and v E: Rm such that 

Since the inverse of T is 

r-1 = 

UtV 1 UtV2 

u1v2 u2v2 

J '<' or '1. -1 . 

UmVm 

one can compute recursively the components of u and v. Under Hypothesis 

(H2) T is positive definite, so that r-1 is also, which implies that~ ~ 0, v 1 ~ 0, for 

all i. We remark that all of Hypothesis (H2), which will be used later, is not 

required for Theorem 2. It is necessary only that T in (7) be nonsingular and 

irreducible (all of the b1 non-zero). 

Lemma 2. The components of u and v can be computed as follows: 

u 1 = 1 , 

~= 
~-1~-1- bi-21L-L-2 

b\-1 

1 
Vm = ------~~-------

-bm-1'1lm-1 + ~'Um 
(9) 
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Proof. By substitution. 

Alternative recurrences for generating u and v can be obtained by several 

means, such as by computing the first and last columns of r-1 from the Chole­

sky factors of T. For numerical computation scaling may be required in (9) to 

prevent underflow or overflow or it may be desirable to work with the ratios 

Sevaral papers have characterized the elements of inverses of diagonally 

dominant matrices. D. Kershaw [15] proved results for tridiagonal matrices and 

S. Demko [5] extended them to banded matrices. It is known that the elements 

of (T-1)-t; are bounded in an exponentially decaying manner along each row or 

column. Specifically, there exist p < 1 and a constant C0 such that 

This result does not prove that the elements actually decay along each row; it 

merely provides a bound. With Hypothesis (H2), however, one can prove the fol-

lowing: 

Lemma 3. Under Hypothesis (H2) the sequence ~U-t U~ 1 is strictly increas-

ing a.nd. the sequence ~vi U~ 1 is strictly decreasing. 

Proof. It is clear that u 2 = :: > 1 = u 1. The proof continues by induction 

using formulas of Lemma 2. Since U-t-1 >U-t-2, one has from (9) that 

( 
~-1 -bi-2) 

U-t > U-t -1 b > U-t-1 I 

i-1 

because ~- 1 -b,_1 -b,_2 > 0. To prove that the v, are decreasing we need to 

modify the formulas of Lemma 2 slightly, using the ones for u to simplify those 

for v . Note that 



-· 
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Clt+1 bi+1 
-b-.-vi+1- -b-.-vi+2 , for i~m-2, 

' ' 

- t1m Vm-1- -b--Vm. 
rn-1 

Note that we can prove the same result if we suppose only that T is diago­

nally dominant with a 1 > b 1 and f1m > bm-1· 

One can characterize the decay of the element along a row away from the 

diagonal. Let ai and Pi be such that 'ZLi = Cli-11Li-1· vi = ( ~) vi-lo i ~ 2. We 
~i-1 

have 

1n the general case we do not know the solution of the recurrences (which 

are simply the recurrences for computing the elements of 1 1
), but the-previous 

discussion gives us the bounds 

Ci;,> 
Clj, - bi-1 

> 1. 
b, 

"Pi> 
Cl-& + 1 - bi+l 

> 1. 
bi ~, 

). 
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In particular, we have, fori> j. 

·(r-1) .. = 1 (r-1)·· ~ (r-1)1.1. 
\J - - \\ lrJ ,, - b 

CXi-1· .. CX.j ll ( ~ k-1 ) 

. k~ ~ 

1 ( ak-bk-1) 
If -=min b we find, fori >j, 

p k0!:2 k 

This latter bound is not very sharp. For example, for the matrix T with 

C1.& = 4. i = 1, .... m. and b1 = 1, i = 1. ... , m-1, which will be of interest later, we get 

p = 1/ 3. But for this case 

at = 4--. a, = 4- · 
1 

. i ;';:!: 2 . 
lli-1 

The ai form a decreasing sequence that converges very quickly towards 

2 + v'3 ~ 3. 732, which corresponds to a reduction factor of 1/ (2 + v'3) R~ 0.2679, 

which is considerably less than 1/3. Of course if the f1t 's and bi 's are constant, 

we could construct the inverse in another way from the eigenvalues and eigen-

vectors ofT, which are lmown in this case. 

It is of importance to observe that if T is strictly diagonally dominant the 

elements of the inverse decrease strictly away from the diagonal - the stronger 

the diagonal dominance the faster the decay. This suggests the following means 

for approximating the inverse of T with a matrix of small bandwidth. 

· If A is any matrix, denote by B(A. q) the band matrix consisting of the 2q + 1 

main diagonals of A. For a banded approximation T 2 to the inverse of T we con-

sider 

(10) 

with q small, say 1 or 2. 

•. 

... •· 
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3.3 Approximation from Cholesky factors 

Another way of approximating r-1 is to use the Cholesky factorization of T, 

T= r.PU, 

with 

0 

-Om-2 i'm-1 

-Om-1 I'm 

a lower bidiagonal matrix. We have 

The oi's are positive and the diagonal dominance ofT implies 

oi < i'i . 1 ~ i ~ m -1 . 

The matrix u-T is lower triangular and dense. We denote 

1 

?'1 

(1 
1 

1'2 

u-1 = 171 (2 

0 

1 

?'3 

1 
17m-2 (m-1 

I'm 

It is easy to see that the elements of u-1 can be computed diagonal by diagonal, 

since 
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1~i~m-1 

1~i~m-2, 

and so on. We note also that u-T can be generated diagonal by diagonal by tak-

ing successive terms of its Neumann series in ur. 

We have the following result similar to the one for the inverse of T. 

Lemma 4. For each row, the elements of u-T decrease a.wa.y from the diag-

onal.. 

0· 1 
Proof. Since -'-< 1 we have 171.-t < <!"1. < --; the proof is the same for the 

~i ~i+l 

other elements. 

As an approximation for u-T we can, therefore, take B( u-1 ,k) with k small. 

As an approximation for r-1 we can use correspondingly 

(11) 

Note that T 3 is positive definite. If k = 1, T 3 is tridiagonal, with 

_1_+<!"~ t!"t 

~r ~2 

Ta = 
t!"t _1_+<!"1 <!"2 

~2 ~l 13 

Unless the Cholesky decomposition is needed explicitly, it is necessary to com­

pute only the square of the )';. 's to obtain T 3 , because 

Thus one obtains T 3 directly from ~, bi, and ~f. 

. ..r 
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Note that TT 3 is the five diagonal matrix 

1 -b2u 1v3 b2u 1v2 

-b 2u 1v 3 1 -b 3u 2v 4 

TT.3= b b 1 2U1V2 - 3U2V4 

b3u2v3 

-b4u3v3 b4u3v4 

Since the 'ZLiV; are expected to be small. T3 can be expected to be a good 

approximation to r-1
. 

3.4 Polynomial approximation 

A classical way to obtain an approximation of r- 1 is to use a polynomial 

expansion in powers of T. For convenience let Dr be the diagonal of T and 

denote 

Then 

Since T is strictly diagonally dominant, the corresponding Jacobi iteration is 

convergent, which implies that the eigenvalues of Di1 T (which are real) are con­

tained in (-1,+1) (see for example [12],[21]). Thus one can write 

(I+ Di1T)- 1 = ~ ( -1)A:(Di 1f)A: . 
A:=O 

the s·eries being convergent. 

Of course, the powers of Di1 T contain more and more nonzero diagonals as 

k increases. As an approximate inverse we can take simply the first few terms 

(which are the sparsest ones) 

~ n-1 n-1r-v- 1 
14,1 = T - T T 
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or 

T"' - D-1 D....: 1-T'D-1 +D_1-T'D-1 T_'D_1 
4.2 - T - T T T T T · 

It is well known, however, that if the eigenvalues ofDi1 'f. are not close enough to 

zero, the series could be a poor approximation. Better polynomial approxima-

tions can be found (cf. [14]). 

Let S = Di~'i', and suppose we want to find a polynomial P of degree less 

than or equal to v that minimizes~ U +S)-1
- P(S) ~ 2 . Since Sis similar to a sym-

metric matrix there exists a unitary matrix Q such that 

where 9 is a diagonal matrix whose elements are the eigenvalues of S. 

We have 

P(S) = QP(9)Q1
, 

so that 

where C 1 is constant and ~\, 1 ~ i ~ m., are the eigenvalues of S. To minimize the 

right-hand side (the minimum, of course, need not minimize also the left-hand 

side) we must find the polynomial approximation of 1/ (1+.x) on the set of eigen­

values 17\ of S. Instead we could solve the simpler problem of finding 

where 171 (resp. 17m) is the smallest (resp. largest) eigenvalue of S. The solution 

to this problem is given by the Chebyshev polynomials. 

In general, however, even the extremal eigenvalues 171 and ,"" are not 

known; all one knows is that -1 <~ 1 ~17"' < 1 holds. Since 1/ (1+.x) is discontinu-

ous at x = -1, we could simply compute P to yield 

.• 
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min max II -
1 

- - P(~) 11. 
P '6e:(0,1] 1 +~ 

This should give a good result for the eigenvalues between 0 and 1, but a poor 

one for the smaller eigenvalues. For a first degree polynomial we obtain 

P(e) ~ 0.9412-0.4706 e. 

As shall be seen later, one can often obtain a better approximation if addi­

tional information about the eigenvalues is available. In general, we shall be 

considering tridiagonal polynomial approximations r to r-1 of the form 

(12) 

where ex and {J are real numbers. 

3.5 Comparison of approximations for the model problem 

We now compare the above approximations for the model problem, for 

which in (7) ~ =4, i = 1, ... ,m., and bi = 1, i = 1, ... ,m.-1. The case m. = 10 is con­

sidered. The upper triangular part of the inverse r-1 as computed in double 

precision FORTRAN on an IBM 3081 by MATLAB [19] to four places is 

r o.2679 o.o718 0.o192 o.oo52 o.oo14 o.ooo4 

0.2872 0.0770 0.0206 0.0055 0.0015 

0.2886 0.0773 0.0207 0.0056 

0.2887 0.0773 0.0207 

0.2887 0.0773 

0.2887 

For the different approximations Jli to r-1 we get the following results (using 

MATLAB): 

(i) Diagonal approximation (Sec. 3.1 ). 1\ is diagonal with ( T 1)ii = iii . For this 

case 
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The eigenvalues of T 1 T are approximately 

0.5203, 0.5794, 0.6726, 0.7923, 0.9288, 1.0712, 1.2077, 1.3274, 1.4206, 1.4797. 

(ii) Banded approximation from the exact inverse (Sec. 3.2). For the tridiago­

nal case T2 = B(T-1,1) one has 

II 'T2- r-112 Rj o.0456. 

The eigenvalues_ of T 2 T are approximately 

0.8295, 0.8939, 0.9073, 0.9482, 0.9874, 1.0129, 1.0716, 1.0810, 1.1332, 1.1351. 

For the five-diagonal case T~ = B( r- 1,2) one has 

II 'T~- r-1 ~2 ~ o.o104 . 

. The eigenvalues of T~T are approximately 

0.9633, 0.9665, 0.9781. 0.9871, 0.9993, 1.0007, 1.0129. 1.0257, 1.0271, 1.0393. 

(iii) Approximation from Cholesky factors (Sec. 3.3). T3 = B(U-1.1)B(U-1,1), 

. T = rJlU. For this case 

The eigenvalues of T 3 T are approximately 

0.8804, 0.8811, 0.9321, 0.9333, 1.0033, 1.0034, 1.0742, 1.0756, 1.1283, 1.1290. 

The norms are a little greater than for (ii), but the eigenvalues are more 

clustered around 1. If we take T3 = B( u-1.2)B( u-1.2) we have 

I 'T3- r- 1lb ~ o.o134. 

and the eigenvalues of T 3 T are approximately 

.. 
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0.9695, 0.9731, 0.9731, 0.9887; 1.0002, 1.0002, 1.0118, 1.0274, 1.0275, 1.0311. 

(iv) Polynomial approXimations (Sec. 3.4). T 4 = Di1
- Di~'FDi 1 . For this case 

The eigenvalues of T 4 T are approximately 

0.7698, 0.7698, 0.8231, 0.8231, 0.8928, 0.8928, 0.9569, 0.9569, 0.9949, 0.9949. 

Note that all the eigenvalues are less than 1 and occur doubiy in pairs. That this 

should be the case is seen from the relationship 

The eigenvalues of T4 T are 1-J..I.i,2, where J..l.i. is an eigenvalue of Di~'f, which is 

the Jacobi iteration -matrix. For the T in (7), Di~'f has eigenvalues i:.J..I.i.. If we 

take·T~ = 0.9412 Di1
- 0.4706 Di~'fDi 1 , then 

II r~- r- 1 ~2 ~ 0.1888. 

The eigenvalues of T~T are approximately 

0.6071, 0.6600, 0.7367, 0.8232, 0.9053, 0.9723, 1.0186, 1.0448, 1.0559, 1.0587. 

A good result is obtained for the model problem by a Chebyshev approximation 

over [ -0.5,0.5], which gives 

T~ = 1.1429 Di1 
- 1.1429 DiFfDi1 

I r~- r- 1 1~ l:lj o.0577. 

The eigenvalues of T~ T are approximately 

0.8799, 0.8799, 0.9407, 0.9407, 1.0204, 1.0204, 1.0936, 1.0936, 1.1371, 1.1371. 

The eigenvalues for all the above cases are tabulated in Fig. 1 in a format 

that permits a rough comparison of their distributions. The eigenvalues are 
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rounded to two decimal places, and the least significant digit is entered in the 

column corresponding to the first digit(s). 

It is evident that for this model problem the banded approximations from 

the exact inverse (ii) and the approximations from Cholesky factors (iii) give 

better approximations to r-1 than the polynomial expansions (iv). It would be of 

interest to know if the same results would hold for matrices T of larger 

bandwidth. 

I .5 .a .7 .8 .e t.O 1.1 1.2 1.3 1.4 

1'1T 2,8 7 9 3 7 1 3 2,8 

?'aT 3,e 1.5.& 1,7,8 3,4 

'!''aT 8,7,8,9 0,0,1,3,3,4 

' 1'3T 8,8 3,3 0,0, 7,8 3,3 

r·3r 7,7,7,9 0,0,1,3,3,3 

'!4r ?,7 2,2,9,9 8,8,9,9 

I r·4r 1,8 4 2 1,7 2.·4,8,8 

'1'".-T 8,8 4,4 2,2,9,9 4,4 

Fig. 1. Tabular display of eigenvalue distributions. 
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4. Block preconditionings for the two-dimensional case 

Using the preceding results we now are able to define some block precondi­

tioning techniques for the two-dimensional problem. For this case the D1. are tri­

diagonal. and our goal is to keep the 6;,, i ~ 2, in ( 4b) tridiagonal, or possibly of 

slightly greater bandwidth. For the preconditionings discussed below, only the 

Cholesky factors 4. of the 6;, are actually stored for computational purposes, 

corresponding to (6). 

4.1 The block preconditi.onings 

4.1.1 BDIA 

The diagonal approximation (8) is used; 1\:-1 is diagonal with 

(1\:-1);; = (6;, 1 ) .. 
-1 JJ 

The 6;, 's are tridiagonal matrices at each stage differing from D1. only in their 

diagonal elements. 

4.1.2 INV{1) 

The banded approximation ( 10) from the exact inverse is used, 

Each of the 6;, 's are tridiagonal. At each stage we compute two vectors u and v 

and use them to obtain the three main diagonals of 6;,--\. We then compute and 

store the Cholesky factors of ll;,. 2N words of storage are needed forM, as in 

BDIA. We do not consider here keeping more diagonals in the approximation to 

6;_-.}1 for this case, as the particularly simple expression in Theorem 2 becomes 
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more complex if the ~ 's have more than 3 diagonals. 

4.1.3 CHOL(q) 

We use (11), 

where ~- 1 = Ul- 1 Ui- 1 • with Ui.- 1 an upper triangular matrix. At each stage we 

compute Ui._ 1, which is (except possibly for i = 2) a matrix with q +1 nonzero 

main diagonals. The first q + 1 diagonals of Ui.-:.11 can be computed diagonal wise 

starting from the main diagonal. Since 1\-1 is a symmetric matrix of bandwidth 

n 

2q + 1. approximately ( q + 1) 2; 'TTI.i, +2m 1 words of storage are needed for tl;.. 
i.=2 

CHOL(q) is a special case 0f the following method proposed by Underwood [20] in 

a slightly different setting. 

4.1.4 IDU)(p, q) 

For this C"-SC 

with q ~p. One computes the q main diagonals of Ui.~ 1 , but then stores only the 

2p -1 main diagonals of the product to form /~+ More information about Ui.-=!1 

is used here than in CHOL(q ). The ~torage needed is p f: ~ + 2m 1. Note that 
t=2 

UND(q ,q) = CHOL(q -1). 
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4.1.5 POL(cx,p) 

We use the polynomial approximations defined in Sec. 3.4, 

~-1 = DT.i-1 + T;,-1 

A_ - -n-1 tJD-1 ;r; D-1 
<'\-1 - ~AVT.i-1 +I" T.i-1li-1 T.i-1 

_Each ~ is tridiagonal. Different values of a and {3 are used. The storage require-

m:ents are the same as for BDIA and INV( 1). 

4.2 Properties of the ~ 

Now we study the properties of the l:l;. in prder to prove that all of the 

methods described above can be carried out (i.e., we prove that the l:l;. satisfy 

hypothesis (H2) placed on T). 

Theorem 3. Under Hypothesis (Hl) each l:l;. computed by BDIA, INV(l), 

CHOL(q), UND(p,q), and POL(a.,p) with p~O. O<a~ 1. {J+a.~O is strictly diago-

nally dominant 'I.J.JiJ:h positive diagonal elements and negative off diagonal ele-

ments. 

Proof. This can be proved by induction using the same techniques as in 

Lemma 1. As the proof is essentially the same for all cases, we carry it out only 

for CHOL(q ). 

Let 

_ [ Bt -C' l 
B- -C B2 

be a positive definite M-matrix with B 1 and B 2 square, and let B 1 = LB
1
L'b

1 
be the 

Cholesky decomposition of B 1. Denote 
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where L.B! contains the q +1 diagonals of Lff
1
1 that are kept for the approxima­

tion, and Rs
1 

contains the remaining diagonals. Under hypothesis (H1) both 'ls: 

and Rs
1 

are positive. From Lemma 1 we know that B 2 - CLa;Lff
1

1Cf is strictly 

diagonally dominant. We have 

The last matrix on the right is positive, which implies that B2 - CLB~'ls:cr is 

more strongly diagonally dominant than is B2 - CLaiLff
1
1Cl. The desired result 

for CHOL(q) then follows by induction, taking B 1 = D 1, the first diagonal block of 

A. 

4.3 Modified block preconditionings 

It is known that the incomplete Cholesky decomposition can be modified to 

yield a better approximation to A in some cases. The modified incomplete 

Cholesky decomposition is obtained by computing the remainder R at each 

stage and subtracting it from the diagonal of M, making the row sums of M equal 

to th: row sums of A. This gives an improvement of the condition number of 

M-1A for the natural ordering of the unknowns and for A diagonally dominant 

[7],[13]. 

A13 noted previously, the remainder R is a block diagonal matrix whose ele-

ments are 

Thus L\-~ 1 must be available if R, is to be computed. 
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4.3.1 MINV(l) 

For the case of INV(1), ~-:_1 1 is readily available, thus it is feasible to define 

MINV(1), the modified form of INV(l). At each stage, compute the two vectors u 

and v, from which A_-1 
""'i-1 can be obtained. Form the product 

R;, = ~[~-] 1 -B(~-] 1 ,1)]~
1 • which is a matrix with positive elements except for 

the 3 main diagonals, which are zero. Then subtract from D;. -AtB(~-:_l 1 ,1)At
1 the 

diagonal matrix made up of the row sums of R;.. Each ~, so modified, gives a 

remainder with a zero row sum. We note that from Hypothesis (H1) it follows 

that th~ remainder matrix is non-positive definite, so that the eigenvalues· of 

M-1A are greater than or equal to 1 for MINV(1). 

Theorem 4. Under Hypothesis (Hl) each~ given by MINV(l) is a strictly 

diagonally d.om1:na:nt matrix with positive d.ia.gona.l elements a.nd. negative off 

-d.ia.gona.l elements. 

Proof. Consider 

Let S 2 = C[B11 -B(B11 ,l)]CI' and let R2 be the diagonal matrix of row sums of 

S 2. Since B 11 ~ 0, the elements of S 2 and hence of Rz are positive. Note that 

B2-CB(B11 .1)CI'-Rz has the same row sums as B2-C[B(B11 .1)]CI'-S2 = 

B2- CB11CI'. This, together with the positivity of the elements, shows that 

B2- CB(B11 ;l)CI'- R2 is diagonally dominant. 
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4.3.2 :MUND(p 'q) 

For the other block precondilionings there is no simple way to know 

directly the row sums of R, without first computing b.;,--\. However, in UND(p ,q) 

with q > p a part of the remainder is available and can be subtracted from the 

diagonal. Recall that 

b.;.-1 = L.;.-1Ll-1 

R, = A.:[~--\- B(B(L.;.-:!1 ,q -1)B(L.;.-:11 ,q -1),2p -1)] . 

Denote by 'l,-.!1 = B(L.;,-:.11 ,q -1) the q diagonals of the inverse of L.;,_1 that are com­

puted, and by ~- 1 the diagonals that are not computed 

Then 

r.-1 - L""-1 + n . 
.u&-1 - \-1 "ft-1 . 

- [""-T ""-1 ""-T T ""-1 T B(""-T ""-1 )] T R;. - A.: L;.-1L;.-1 + Li-1 ~-1 + ~-1L;.-1 + Q;,-1 Q;,-1- Li-1L;.-1.2p -1 A.: . 

We can obtain 'l;.-.!1'l;.-.!1 - B('l;.-..!1'l;.-:.\,2p -1), since it is made up of the diagonals of 

the product that are not kept in the algorithm. Thus, instead of discarding 

these diagonals we could subtract their row sums from the main diagonal. This 

constitutes the algorithm MUND(p ,q ): Compute q diagonals of L.;.-=.11 • Form the 

product Use the 2p-1 main diagonals to form 

D;. -A.:B(L;.-.!1£,-]1,2p-1).4.;1 . Let S,_1 be the matrix made up of the q-p outer 

diagonals of 'l,-..!1'l,-.!1. Compute the row sums of A.:Si-1.4.:1 and subtract them 

from the diagonal of D;.- A.:B('l,-..!1L;.-:_l1,2p -1)A.:1 to obtain~. 

Theorem 5. Und.Br Hypothesis (Hl) each 6.;. given by MUND(p ,q) is a 

strictly diagonally dominant matri.x with positwe diagonal elements and. nega­

tive off-diagonal ones. 

.. -
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Proof. Along the same lines as for Theorem 4. 

4.4 Higher dimensions 

One can develop block incomplete Cholesky factorizations for three dimen-

sional problems similarly, using, for example, incomplete instead of complete 

factorizations L;, for the ~. It is planned to investigate these preconditionings in 

a subsequent study. 

5.1 Numerical experiments 

. In this section we present the results of numerical experiments comparing 

the preconditionings for two dimensions that were introduced in the previous 

sections. Comparisons are made also with point preconditionings, which for con­

venience we recall first. 

The first point preconditioning is IC(O), now termed IC(l.l), which was intro­

duced by Meijerink and Vander Vorst [16],[17]. One chooses for preconditioning 

matrix 

where D is diagonal and l is lower triangular, with the same sparsity pattern as 

A. According to the notation of [16],[17], d;. are the elements of fJ and 

Denote by ~.b;.,C;. the corresponding elements of A and by m the bandwidth of 

A. For IC(1,1) one has 
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This scheme requires the storage of only one N-vector, the di, in addition to A. 

For IC(1.2) Meijerink and Van derVorst allow one more outer diagonal 

with 

..... 
C;, : C;, . 

Here, 3 N -vectors of storage are required. 

For IC( 1.3) one more outer diagonal is kept 

r ..... ..... 
Ill b 1 

£1 = 112 b'2 

with 

. ,-

. . 
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Four N-vectors of storage are required. 

The preconditioning IC(2,4) introduce two more diagonals 

with 

- Bi-m+2di-m+Ji-m+2- ci-m+ldi-m+lei-m+l 

which requires 6 N-vectors of storage. 

We consider also the modified versions of the IC preconditionings. The sim­

plest one was introduced by Dupont, Kendall, and Rachford [7], which we denote 

by DKR. It is equivalent to MIC(l,l). This method allows the use of parameters, 
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but we choose to use it without parameters, since for practical problems it is 

almost impossible to know good parameters a priori. 

DKR is the same as IC(1,1) except that 

MIC( 1, 2) is the same as IC( 1 ,2) except that 

MIC( 1. 3) is the same as IC( 1.3) except that 

Also included in our numerical comparisons is SSOR preconditioning. If 

A = 0 + E + E'f. where 0 is diagonal and E is the (point) lower triangular part of 

A, then 

where r.> is the relaxation parameter. We shall give results also for the block ver­

sion of SSOR (which in our case is line SSOR). For some cases, results will be 

given also for a 1-line Jacobi preconditioning (LJAC). 

For a five diagonal matrix the work per iteration for each of the methods is 

given in Table 1. (For simplicity, the technique of (8] for reducing the work 

requirements of the conjugate gradient method is not incorporated here, since 

we wish only to compare the relative merits of the different preconditionings.) 
·' 
' 
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Table 1 

Work per iteration for the preconditionings 

Preconditioning M Mults. Adds. Divs. 

I 11N 10N 

DIAG llN 10N N 

IC(1,1) 15N 14N 

DKR 15N 14N 

SSOR 16N 14N 

IC( 1.2),MIC( 1.2) 19N 14N 

IC( 1,3),MIC( 1.3) 21N 18N 

IC(2,4) 25N 22N 

BSSOR.BDIA 
INV(1), MINV(1) 19N 17N 

CHOL(1). POL(cx.,s') 

CHOL(p ), UND(p + 1,q) 
MUND(p + 1, q) 

p =2 21N 23N BN 
p=3 25N 27N 12N 
p =4 29N 31N 16N 
p =5 33N 35N 20N 

Table 1 does not include the overhead operations required to construct M. 

If one carries out many iterations or solves several systems with different right-

hand sides, then this overhead can usually be neglected. Specific cases are dis­

cussed in Section 5.2 .. 

It should be noted that the quantities in Table 1 depend on the manner in 

which the program is written. For example, for /NV(1) there is no division, 

because we use Varga's implementation of Gauss elimination for tridiagonal 
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matrices, which stores the reciprocals of the diagonals [21]. In CHOL{p ), factor-

ization routines from LINPACK for banded matrices are used, for which some 

divisions are required [6]. Thus the entries in Table 1 should be considered as 

approximate, and as upper bounds in the case of the block methods. 

Our implementation of the conjugate gradient algorithm requires 4 N-

vectors of storage, plus 4 N-vectors for the matrix A and the right-hand side. If 

it is not necessary to save the right-hand side, then 1 N-vector of storage could 

be eliminated. The additional storage required for each of the different precon­

ditionings Misgiven in Table 2. 

Table 2 

Storage required by the preconditionings 

Preconditioning M N-vectors of storage 

IC(1.1),DKR 1 

IC( 1.2),MIC( 1,2) 3 

IC( 1,3),MIC( 1.3) 4 

IC(2,4) 6 

SSOR.BSSOR 0 

BDIA,INV( 1) .MINV( 1) .POL( a,p) 2 

CHOL{p ). UND{p + l.q ),MUND{p + l.q) p+l 

.. -

--' 

-. ~ 
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5.2 First test problem 

The first test problem is the model problem 

-t::.u =! in 0 the unit square (0,1)x(0,1) 

with 

We use the standard five point stencil on a square mesh with h = (n + 1)-1
, 

N =n2
, and natural ordering to obtain the corresponding linear algebraic sys­

tem (2). The experimental results are given for different values of h and 

different stopping criteria. An estimate of the condition number of M-1A is 

given for each of the preconditionings, as obtained from the conjugate gradient 

algorithm (cf. [3]), and for small dimension (n = 10) the complete spectrum of 

M-1A is visualized. 

The computations were carried out in double precision FORTRAN on an IBM 

3081. Unless otherwise noted the solution of the linear system is smooth (the 

right-hand side b in (2) corresponds to the solution ~\a-r: -1)1]; (11; -l)exp(~-r:17;) at 

a point (~i·11; )), and the starting vector has random elements in [ -1, 1]. As the 

number of additions is roughly the same as the number of multiplications, we 

indicate only the work required for the multiplications. The divisions that may 

appear to be needed by some methods are not indicated, Since they can be 

removed with alternative coding. In Table 3 are given the number of iterations 

and the corresponding total work per point required to achieve the stopping cri­

terionlr.tll..lllr0ll-~ 10-6 , for the case N=2500. The value c.>=1.7 for SSOR and 

BSSOR is the observed optimal for each case to the nearest 0.1. 

·' 
,. 
" 
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Table 3 

Number of iterations and total work per point forllr"' ll ... !llr0 ll ... ~ 10-6
. 

Test problem 1, N = 2500. 

M #its. work/N 

I 109 1199 
DIAG 109 1199 

IC(1.1) 33 495 
IC( 1.2) 21 399 

IC~1.3~ 17 357 
IC 2,4 12 300 

DKR 23 345 

Micp.2~ 17 323 
MIC 1,3 14 294 

SSOR r.>= 1 40 640 .. 
SSOR r.>= 1:7 21 336 

WAC 80 1120 
BSSOR CJ= 1 28 532 

BSSOR CJ = 1. 7 16 304 
BDIA 22 418 

POL(l.-1) 18 342 
POL(O. 9412,-0.4 706) 21 399 

POL( 1.143,-1.143) 17 323 
INV(1) 15 285 

MINV(1) 11 209 
CHOL(1) 16 304 

CHOL(2~ 12 252 
CHOL(3 9 225 
CHOL(4) 8 232 
CHOL(5) 7 231 
UND(2.3) 15 255 
UND(2,4) 15 255 

UND~3,4~ 11 231 
UND 3,5 11 231 
UND(4,5) 9 225 

UND~4,6~ 9 225 
UND 5,6 7 203 

MUND(2,3) 12 204 

MUND~2,4~ 10 170 
MUND 2,5 9 153 
MUND(3.4) 10 210 

MUND~3,5~ 8 168 
MUND 3,6 8 168 
MUND(4,5) 8 200 

MUND~4,6~ 7 175 
MUND 5,6 7 203 

. . \ 
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From Table 3, the following observations can be made. 

(i) 

(ii) 

For the patterns chosen, the larger the number of diagonals in the incom-

plete Cholesky decomposition, the fewer the number of iterations required 

for convergence, as observed in [17] for the point preconditionings. 

The modified versions of the preconditionings give better results (for this 

problem and ordering of the mesh points). 

(iii) In general, there is a trade off between storage and execution speed, but if 

a low storage point-preconditioning is desired, DKR seems a good choice. 

SSOR can give good results. but an optimal parameter has to be found. 

(iv) For methods of comparable storage the block methods give better results 

than point methods, both in terms of number of iterations and work 

requirements. 

(v) For CHOL(p) it is not effective to go to values of p larger than p = 3, and, as 

observed also in [2]. to values of q beyond q = p + 1 for UND(p ,q ). It is 

better to use the additional information given by UND(p ,q) for larger q to 

obtain a modified version of the factorization for q = p + 1. 

(vi) The best polynomial, as expected, is POL( 1.1429,-1.1429). 

(vii) For this problem the best all-around preconditioning appears to be MINV(1), 

because it has very low storage requirements and gives almost the best 

work count- approximately half of IC(1.2) and two thirds of MIC(1,2), which 

require more storage. 

It is of interest to compare the methods for solving the test problem to only 

moderate accuracy, comparable to truncation error. Comparisons for the more 

interesting methods are given in Table 4, for which the stopping criterion has 

been reduced tollr.t II.Jir0
11 .. ~ 10-4 . 
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Table 4 

Number of iterations and total work per point forllrk ll ... /llr0 ll ... ~ 10-4
. 

Test problem 1, N = 2500. 

M #its. work/N 

I 63 693 

Icp.1~ 20 300 
IC 2,4 7 175 

DKR 16 240 
SSOR CJ= 1.7 13 208 

BSSOR CJ = 1. 7 10 190 
INV(1) 9 171 

M1NV(1) •7 133 
CHOL(1) 9 171 
CHOL(5) 4 132 

The conclusions drawn from Table 3 for the smaller residuals are in general 

unaffected. 

In Table 5 are given the values of the smallest and largest eigenvalues of 

M- 1 A as estimated by the conjugate gradient algorithm, as well as the 

corresponding condition numbers. 
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Table 5 

Extremal eigenvcil.ues and condition number of M-1A. 
Test problem 1, N = 2500. 

M Xmin(M-1A) Xmax(M-1A) 1C(M-1A) 

I 0.0076 7.992 1053 

IC~1,1~ 0.0128 1.206 94.0 
IC 1.2 0.033 1.179 35.6 
IC(l.3) 0.049 1.131 23.2 
IC(2,4) 0.091 1.138 12.5 

DKR 1.003 15.36 15.3 
MIC( 1.2) 1.003 8.83 8.3 
MIC(1,3) 1.006 6.19 6.15 

SSOR c.1= 1. 0.0075 1. 132.5 
SSOR "' = 1. 7 0.040 1. 25.1 

UAC 0.0038 1.99 527. 
BSSOR "' = 1. 0.0150 1. 66.8 

BSSOR "' = 1. 7 0.074 1. 13.5 
BDIA 0.024 1.023 42.6 

POL(l,-1) 0.035 1. 28.7 
POL(0.9412,-0.4706) 0.027 1.002 37.2 

POL( 1.143,-1.143) 0.043 1.023 23.8 
INV(1) 0.059 1.073 18.2 

MINV(1) 1.006 4.261 4.24 
CHOL(1) 0.050 1.050 20.8 
CHOL(2) 0.090 1.065 11.8 

CHOL~3~ 0.142 1.076 7.56 
CHOL 4 0.204 1.078 5.29 
CHOL(5) 0.272 1.078 3.97 

UND~2,3~ 0.058 1.07 18.5 
UND 2,4 0.059 1.073 18.2 
UND(2,5) 0.059 1.073 18.2 

UND~3.4~ 0.104 1.086 10.5 
UND 3,5 0.106 1.089 10.2 
UND(4,5) 0.162 1.091 6.75 

UND~4,6~ 0.166 1.096 6.59 
UND 5,6 0.228 1.088 4.78 

MUND(2,3) 0.102 1.242 12.2 

MUND~2,41 0.202 1.564 7.74 
MUND 2,5 0.380 2.024 5.33 

_ MUND(3,4) 0.164 1.242 7.58 
. MUND(3,5~ 0.291 1.518 5.22 

MUND(3,6 0.483 1.887 3.91 

MUND(4,5l 0.234 1.221 5.21 

MUND~4,6 0.375 1.449 3.87 
MUND 5,6 0.309 1.197 3.88 
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It is seen that a considerable reduction in the condition number can be achieved 

using MINV(l) or, say, MUND(2,5), with only a low cost in storage. 

In Table 6 are given the estimated condition numbers tc(M-1A) for dilierent 

1 
values of n = h - 1. 

... - ... 
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Table 6 

Estimated condition number for different mesh sizes and exponent a 
of asymptotic dependence on h = 1/ (n + 1). Test problem 1. 

M 
!C(M-1A) 

n-10 n=20 n-25 n=50 
a 

I 48.37 178.1 273.3 1053 2.00 
IC(l. 1) 5.10 16.59 25. 94 1.97 

1cp.2~ 2.38 6.67 9.8 35.6 1.91 
IC 1,3 1.80' 4.56 6.6 23.2 1.87 
IC(2,4) 1.32 2.75 3.8 12.5 1.77 

· DKR 3.04 5.93 7.4 15.3 1.08 
MIC(1,2) 1.84 3.36 4.2 8.3 1.01 
MIC(1,3) 1.49 2.56 3.15 6.i 0.98 

SSOR c.>= 1. 6.88 23.12 35. 132 1.97 

LJAC 24.68 89.5 137. 527 2.00 
BSSORc.>= 1. 3.93 12.04 18. 66.7 1.94 

BDIA 2.76 7.9 11.7 42.5 1.91 
POL(l.-1) 2.09 5.52 8. 28.6 1.89 

?01(0.9412,-0.4706) 2.5 7. 10;3 37.1 1.90 
POL(1.143,-1.143} 1.86 4.7 6.7 23.8 1.88 

INV(1) 1.61 3.74 5.3 18.2 1.83 

MINV~1~ 1.3 1.94 2.31 4.23 0.90 
CHOL 1 1.73 4.18 6. 20.8 1.85 
CHOL(2) 1.32 2.65 3.65 11.85 1.75 

CHOL(3~ 1.14 1.93 2.53 7.54 1.62 
CHOL(4 1.06 1.55 1.95 5.28 1.48 
CHOL{5) 1.026 1.34 1.61 3.98 1.34 

UND~2,3~ 1.63 3.8 5.4 18.52 1.83 
UND 2,4 1.62 3.75 5.33 18.24 1.83 
UND(3,4) 1.26 2.42 3.3 10.47 1.71 
UND(3,5~ 1.25 2.39 3.24 10.24 1. 71 
UND(4,5 1.12 1.8 2.33 6.73 1.57 
UND(4,6) 1.11 1.77 2.28 6.54 1.56 
UND(5,6~ 1.05 1.47' 1.82 4.8 1.44 

MUND(2,3 1.39 2.76 3.79 12.95 1.82 
MUND(2,4) 1.29 2.1 2.72 7.74 1.55 
MUND(2,5~ 1.28 1.89 . 2.26 5.33 1.27 
MUND(3,4 1.18 1.97 2.58 7.55 1.59 
MUND(3,5) 1.15 1.67 2.04 5.22 1.39 

MUND~3,6~ 1.14 1.6 1.85 3.9 1.11 
MUND 4,5 1.09 1.57 1.96 5.22 1.45 
MUND(4,6) 1.07 1.43 1.68 3.8 1.21 
MUND(5,6) 1.04 1.35 1.62 3.9 1.30 

The quantity a is the estimated value, from the n = 25 and n =50 data, of the 

exponent corresponding to the assumed asymptotic relationship !C(M-1A)"" Ch-a. 
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where Cis a constant. It is lmown theoretically that for M=I and M=IC(1,1) 

there holds "(M- 1A) = O(h-2
) and that for M=DKR. "(M-1A) = O(h-1

). These 

relationships can be observed as being indicated by the numerical experiments. 

We see that all the incomplete decompositions IC(p,q) seem to be O(h-2), 

although the more diagonals that are taken the slower is the convergence to this 

asymptotic behavior. The MIC methods are O(h - 1
). 

For the block methods INV and CHOL the limiting value of a seems to be 

two, and for MINV one. The observed values of a for the range of h considered 

are smaller for the block methods than for the point methods with the same 

storage. It is difficult to assess from the results the order of the MUND methods: 

we believe that they are somewhere between 1 and 2, closer to 1 if more diago-

nals are used to form M. Finally, Table 6 shows that even for smaller values of n 

block methods give better reduction of the condition number than point 

methods. 

It is well known that the rate of convergence of the conjugate gradient 

method depends not only on the condition number but on the distribution of the 

interior eigenvalues as well. It is therefore of interest to compare the eigen­

value spectra for the different methods. These are compared for n = 10 in Figs. 

2-7. Each eigenvalue is designated by a vertical bar drawn at the appropriate 

abscissa value. This representation depicts in an easily observable manner the 

separation and clustering of the eigenvalues. 
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Fig. 2. Spectra of M- 1A for dil.ferent precoiul.itioni:ngs M. 
Test problem 1. N::: 100. 
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Fig. 2. (cont.) 
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Fig. 2. (cont.) 
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Fig. 2. (cont.) 
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Fig. 2. (cont.) 
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Fig. 3. Spectra of M-1 A for modified preconditionings. 
Test problem 1. N = 100. 
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Fig. 4. Spectra of M- 1A for four preconditionings 
with comparable, minimal storage. Test problem 1. N = 100. 
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Fig. 5. Spectra of M~ 1 A for block SSOR precond:itionings. 
for different values of e>. Test problem 1. N = 100. 
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II SSORw=l 

1.5 

BSSOR w=l 

1.5 

XBL 832-8301 

Fig. 6. Spectra of M- 1A for poi:nt and. block SSOR precond.itionings. 
Test problem 1. N = 100. 

The spectra for all ~f .the methods shown in Fig. 2 are on the same scale for easy 

comparison. From the figure it is seen that for the block methods the eigen­

values are more clustered than for the point ones having the same storage 

requirements. The point modified methods are shown separately in Fig. 3, 

' because the eigenvalue range for them is different than for the other methods. 

Fig.· 4 shows on the same scale four methods with comparable storage: IC(l. 1) 

and DKR, with one vector of storage, and INV(1) and MINV(1) with two. In Fig. 5 

are given the spectra for block SSOR preconditioning for several values of CJ • .. 

The smallest condition number occurs for CJ = 1.5. Figure 6 shows the well-known 

(cf. [9]) property that the eigenvalues are more clustered for block SSOR than 

for point SSOR preconditioning. Finally, Fig. 7, which is contained in the Appen­

dix available separately from the authors, depicts enlargements showing the fine 

structure of the spectra of Figs. 2-6. 
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Table 7 gives the number of iterations required to solve the test problem 

for different convergence criteria. For these cases the initial approximation was 

x 0 = 0, and the solution was the same smooth vector as for Tables 3 and 4 with 

N=2500. 

. ... 
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Table 7 

Number of iterations for different convergence criteria. ' 
Test problem 1. .x0 = 0. 

M Number of iterations 

lrkl~ 10-6 

lrol~ 
l.z-.z~=l~.olo- 6 l.z-.zA:I

2
,; 10-6 l.z-.zA:IA .o 10-6 

I 117 99 114 110 

IC~1,1~ 38 31 36 35 
IC 1,2 26 22 26 24 
IC(1,3) 21 19 22 20 
IC(2,4) 16 14 16 15 

DKR 25 18 22 21 
MIC(1.2) 18 14 17 16 
MIC(1,3) 18 16 18 17 

SSOR c.>= 1. 44 37 43 41 
SSOR r.>= L7 22 17 20 19 

BSSOR r.> = 1. 36 28 34 32 
BSSOR c.>= 1.7 18 15 18 16 

BDIA 27 24 28 26 
POL(1,-1) 23 20 24 22 

INV(1) 19 16 19 18 
MINV(1) 13 9 11 11 
CHOL(1) 20 18 21 19 
CHOL(2) 15 13 16 14 

CHOL~3~ 12 11 13 12 
CHOL 4 10 9 10 10 
CHOL(5) 9 8 9 8 

UND~2,3~ 19 16 19 18 
UND 3,4 14 13 15 14 
UND(4,5) 12 10 12 11 
UND(5,6) 9 8 10 9 

MUND(2,3) · 15 14 16 15 
MUND(2,4) 13 11 13 12 

MUND~2,5~ 12 .9 11 10 
MUND 3,4 12 11 13 12 
MUND(3,5) 11 9 11 10 

MUND~4,5~ 10 9 10 10 
MUND 4,6 9 8 9 9 
MUND(5,6) 9 8 9 8 

From these results, it appears that, at least for the test problem with a 

smooth solution, the relative norm of the residual gives a good stopping 
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criterion. 

In Table 8 we give results for N = 2500 for the same smooth solution as for 

previous tables, with two different choices of the starting vector, x 0 = 0 and x 0 

consisting of . random numbers in [ -1, 1]. The stopping criterion is 

llr"' 11 ... 1 llr0 ll ... ~ 10-a. 
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Table 8 

Number of iterations forllrk ll .. !llr0 ll .. ~ 10-6 for different starting vectors. 
Test problerp. 1. 

M 
H of its. 

x 0 = 0 x 0 random 

I 117 109 
IC(l,l) 38 33 
IC(1,2) 26 21 

IC~1,3~ 21 17 
IC 2,4 16 12 

DKR 25 23 

MIC~1,2~ 18 17 
MIC 1,3 18 14 

SSOR c.>= 1. 44 40 
SSOR c.>= 1.7 22 21 

BSSOR c.>= 1. 36 28 
BSSOR c.>= 1. 7 18 16 

BDIA 27 22 
POL(l,-1) 23 18 

INV(1) 19 15 
MINV 13 11 

CHOL(1) 20 16 

CHOL~2~ 15 12 
CHOL 3 12 9 
CHOL(4) 10 8 
CHOL(5) 9 7 
UND(2,3) 19 15 
UND(3,4) 14 11 

UND~4,5~ 12 9 
UND 5,6 9 7 

MUND(2,3) 15 12 

MUND~2,4~ 13 10 
MUND 2,5 12 9 
MUND(3,4) 12 10 

MUND~3,5~ 11 8 
MUND 4,5 10 8 
MUND(4,6) 9 7 
MUND(5,6) 9 7 

The initial approximation x 0 random appears to give better results. This 

feature will be developed in a subsequent study. 

From the tables one can conclude that for this test problem block methods 

give better results than point ones. _The most promising block method is 

MINV(1). Since the setup time for constructing M was not included in the tables, 
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it is of interest to consider it, as it can be of importance if only one problem is 

to be solved or only a few iterations taken. Table 9 gives the effect of including 

the setup time for three of the preconditionings for the N = 2500 test problem. 

Times are in CPU seconds for an IBM 3081 computer. 

Table9 

Setup time and total time in CPU seconds forllrk ll ... !llr0 ll ... ~ 10-6
. 

M 

IC(1.1) 
INV(1) 

MINV(1) 

Test problem 1. 

setup time 

0.163 
0.178 
0.415 

total time 

1.37 
0.963 

. 0.723 

Even if the setup times are included, MINV(1) still gives considerable improve­

ment for this problem. 

5.3 Second test problem 

We solve the linear system obtained by the standard five point discretiza-

tion of the problem 

in the unit square (0,1)x(0,1) 

u =0 on an 1 

for the discontinuous A. depicted in Fig. 8. 

The solution is the same smooth one used for the first tt:;st problem, the starting 

/ 

.\· . ·, .... 

.• 
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(I, I) 
r-----------------

.0,2 . (3i4,3/4) 

( 1/4, 1/4) 

.<o,o> ~·e~ 

Fig. 8. Test problem 2 

vector is random, and the stopping criterion isllrk ll .• .!llr0
11 .. ~ 10-6

. 

Table 10 gives the results for the number of iterations, the work required, 

and an estimate of the condition number as obtained from the conjugate gra-

dient parameters. The values c.>= 1.6 for SSOR and c.>= 1.5 for BSSOR are the 

observed optimal ones to the nearest 0.1. 
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Table 10 

Number of iterations, total work per point, 
and estimated condition number of M-1A. 

Test problem 2, N = 2500,IIrk ll .. !llr0 ll .. ~ 10-6
. 

M #its. work/N tC(M-1A) 

DIAG 137 .1507 
IC(1,1) 47 705 46770 

' 

IC(1.2) 30 570 17062 

IC~1,3~ 25 525 11102 
IC 2,4 18 450 5668 

DKR 32 480 40 

MIC~1,2~ 23 437 26 
MIC 1,3 20 420 24 

SSOR c.>= 1. 55 880 66162 
SSOR c.>= 1.6 36 576 16620 

BSSOR c.>= 1. 41 779 33929 
BSSOR c.>= 1. 5 23 437 14777 

BDIA 34 646 21489 
POL(l.-1) 28 532 14182 

INV(1) 22 418 8790 
MINV(l) 17 323 20 
CHOL(1) 24 456 10288 

CHOL~2~ 18 378 5531 
CHOL 3 14 350 3307 
CHOL(4) 12 348 2154 
CHOL(5) 10 330 1490 

'UND(2,3) 22 418 8946 
UND(3,4) 17 357 4762 

UND~4,5~ 14 350 2876 
UND 5,6 12 348 1899 

MUND(2,3) 19 361 5825 

MUND~2,4~ 17 323 3472 
MUND 2,5 16 304 2135 
MUND(3,4) 15 315 3355 

MUND(3,5~ 14 294 2135 
MUND(3,6 14 294 1379 
MUND(4,5) 12 300 2136 

MUND~4,6~ 12 300 1416 
MUND 5,6 11 319 1451 

LJAC 111 1554 

The very large condition numbers for most Of the entries result from the 

small first eigenvalue, which is isolated from the others. Thus the number of 

..,._. 
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iterations does not change much, for example, from IC(1,1), which has a small 

isolated eigenvalue, to DKR, which has all eigenvalues greater than one. It is the 

distribution of the other eigenvalues that is important. In terms of work per 

point, block methods give better results than point ones. Again MINV(1) seems a 

good compromise between efficiency and storage. This example shows that 

block methods can be effective for problems with coefficients having large jump 

discontinuities. 

5.4 Third test problem 

We consider 

-!J.u +au= 1 in 0 the unit square 

au 1 -ao=O an 

to examine the eft'ect of Neumann boundary conditions. We take a= 1 with 1 

smooth, x 0 random, h = 1/49, andllrkll ... !llr0 ll ... ~ 10-6
. The obtained results are 

given in Table 11. The value "'= 1. 7 for SSOR and BSSOR is the observed optimal 

one for each case to the nearest 0.1. The relative merits of the different precon­

ditionings are almost the same for this case as for the Dirichlet boundary condi-

tions. 

'-, 
' 
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Table 11 

Number of iterations and total work per point for II rk 11 ... 111 r 0 11 ... ~ 1 o-6
. 

Test problem 3, N = 2500. 

~. - ' . 
M #its. work/N 

I 195 2145 
DIAG 189 2079 

IC(l.1) 58 870 
IC(1.2) 35 665 

IC~1,3~ 29 609 
IC 2,4 22 550 

DKR 35 525 
MIC(1,2) 24 456 

MIC(1,31) 21 441 
SSOR c.>= 1. 68 1088 

SSOR c.> = 1. 7 42 672 

BSSOR c.>= 1. 49 931 
BSSOR c.>= 1. 7 39 741 

BDIA 41 779 
POL( 1,-1) 32 608 

INV(1) 26 494 
MINV(1) 19 361 
CHOL(1) 29 551 

CHOL~2~ 21 441 
CHOL 3 19 475 
CHOL(4) 15 435 
CHOL(5) 12 396 
UND(2,3) 26 494 
UND(3,4) 20 420 

UND~4,5~ 16 400 
UND 5,6 14 406 

MUND(2,3) 23 437 

MUND~2,4~ 21 399 
MUND 2,5 18 342 
MUND(3,4) 19 399 

MUND~3,5~ 16 336 
MUND 3,6 14 294 
MUND(4,5) 15 375 

MUND~4,6~ 14 350 
MUND 5,6 13 377 

1-

lJAC 135 1890 

' ·" 
,.;, ,., 

•' 
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5.5 Fourth test problem 

in 0 the unit square 

We solve this problem for a= 0.01, .A1 = 100, .A2 = 1, and h = 1/49. The right-hand 

side is zero except for 

/(4,4)=1.' /(4,28)=-0.3' /(15,16)=-2. 

f (24,5) = 0.5 ' f (40,10) = 1.5 ' f (45,2) = -1. . 

This problem, which is of practical interest in multiphase displacement in . 

porous media, was suggested to us by M. Karakas and T. Lasseter. It is particu-

larly favorable for block preconditioning, because line ordering of the mesh 

points in the ~ 1 direction can be used to capture the strongly one-dimensional 
_/ ' 

nature of the problem. The results for x 0 random and llr"' ll .. !llr0 11 .. ~ 10-6 are 

given in Table 12. The values CJ = 1.7 for SSOR and CJ = 1.0 for BSSOR are the 

observed optimal ones to the nearest 0.1. 
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Table 12 

Number of iterations and total work per point forllrk ll .. /llr 0 ll~ ~ 10-6
. 

Test problem 4, N = 2500. 

M #its. work/N 

IC( 1, 1) 28 420 

IC~1,2~ 25 475 
IC 1,3 26 546 
IC(2.4) 24 600 

DKR 42 630 
MIC(1.2) 30 570 
MIC(1.3) 24 504 

· SSOR r.> = 1. 115 1840 
SSOR r.> = 1. 7 80 1280 

BSSOR r.> = 1. 12 228 
BDIA 12 228 

POL(l.-1) 12 228 
INV(1) 11 209 

MINV(1) 9 171 
CHOL(1) 15 285 

CHOL~2~ 12 252 
CHOL 3 11 275 
CHOL(4) 10 290 
CHOL(5) 10 330 
UND(2,3) 12 228 
UND(3,5) 11 231 

-uND~4,5~ 11 275 
UND 5,6 10 290 

MUND(2,3) 13 247 

MUND~2,4~ 11 209 
MUND 2,5 10 190 
MUND(3,4) 11 231 

MUND~3,5~ 10 210 
MUND 3,6 11 231 
MUND(4,5) 10 250 

MUND~4,6~ 10 250 
MUND 5,6 10 290 

LJAC 31 434 

From the tables we see that 

(i) As expected, the block methods give significantly better results than the 

point ones. 

~ . •. 

.() 
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(ii) It does not pay to increase the number of diagonals retained in the approxi­

mations to the f:l;,-:- 1
. This observation corresponds to the property for this 

problem that the inverse of the matrix A and its Cholesky factors contain 

almost all their larger elements clustered around the three main diagonals. 

Fig. 9 depicts the spectra for some block methods and one point method for 

this problem for N = 100. The block methods show relatively few distinct eigen-

values, the remainder being clustered in a small interval near 1. 

5.6 Fifth test problem 

This example, which is frequently used in the literature, was presented in 

[21]. The problem is to solve 

a ( au). a ( au) 
- a{

1 
At a{

1 
- a{

2 
A.2 o{

2 
+ au = 0 in 0 = (0,2.1)x(0,2.1) 

au 1 an ao = 0. 

The domain is shown in Fig. 10 and depicts the values of the coefficients, which 

are discontinuous. The solution is u = 0. 

We take h = 1/42, x 0 a vector with random elements in [-1,1], and stopping 

criterion II xk 11 ... ~ 10-'6. The results are given in Table 13. The values c.>= 1. 7 for 

SSOR and c.>= 1.5 for BSSOR are the observed optimal ones to the nearest 0.1. 
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Fig. 9. Spectra of M- 1A for some block precond:itioni:ngs. 
Test problem 4. N = 100. 
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Fig. 10. Test problem 5 

Table 13 indicates that for this problem the larger the number of diagonals 

retained. the lower the work required for convergence. This holds both for point 

and block methods. Generally, the block methods are slightly better. 
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Table 13 

Number of iterations and total work per point forllxk 11 .. ~ 10-6
. 

Test problem 5, N = 1849. 

M #its. work/N 

IC( 1. 1) 74 1110 

IC~1,2~ 47 893 
IC 1,3 38 798 
IC(2,4) 29 725 

DKR 53 795 
MIC(1.2) 36 684 
MIC(1.3) 29 609 

SSOR r.> = 1. 88 1408 
SSOR r.> = 1. 7 52 832 

BSSOR r.> = 1. 65 1235 
BSSOR r.> = 1.5 46 874 

BDIA 52 988 
POL(l.-1) 43 817 

INV(1) 34 646 
MINV(1) 25 475 

CHOL~1~ 36 684 
CHOL 2 28 588 
CHOL(3) 22 550 

CHOL~4~ 19 551 
CHOL 5 16 528 
UND(2,3) 34 646 

UND~3,4~ 26 546 
UND 4,5 21 525 
UND(5,6) 18 522 

MUND~2,3~ 28 532 
MUND 2,4 25 475 
MUND(2,5) 23 437 

MUND(3,4~. 23 483 
MUND(3,5 21 441 
MUND(4,5) 19 475 

MUND~4,6~ 18 450 
MUND 5,6 17 493 

In order to compare our methods with those presented by Meijerink and 

Vander Vorst [17] for this problem, we give the results in Table 14 for conver­

gence criterion ~rk ~ 2 ~ 10-6
. For the IC methods, we obtain about the same 

results as in [17], within a few iterations. (The starting vectors are different -­

our random numbers are between -1 and 1, while theirs are between 0 and 1.) 

\ 
'!;Ill .• •, 
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Table 14 

Number of iterations and total work per point forllr.c 112 ~ 10-6
. 

Test problem 5, N = 1849. 

M #its. work/N 

,. 

IC(1,1) 79 1185 

IC~1,2~ 49 931 
IC 1,3 39 819 
IC(2,4) 30 750 

DKR 66 990 
MIC(1,2) 43 817 
MIC(1.3) 35 735 

SSOR c.>= 1. 94 1504 
SSOR c.>apt 56 896 -

BSSOR c.>= 1. 68 1292 
BSSOR r.>apt 48 912 

BDIA 55 1045 
POL( 1.-1) 45 855 

INV(1) 36 684 
MINV(1) 29 551 

. CHOL~1~ 38 '722 
CHOL 2 29 609 
CHOL(3) . 23 575 

CHOL~4~ 20 580 
CHOL 5 17 561 
UND(2,3) _36 684 

UND~3,4~ 28 588 
UND 4,5 22 550 
UND(5,6) 19 551 

MUND~2,3~ 30 570 
MUND 2,4 26 494 
MUND(2,5) 24 456 

MUND~3,4~ 24 504 
MUND 3,5 22 462 
MUND(4,5) 20 500 

MUND~4,6~ 19 475 
MUND 5,6 17 493 

To compare point and block .methods with the same storage, one can take, 

for example, IC(1,2) or MIC(1,2) and CHOL(2). It is clear that the block method 

is better. The situation is the same if more diagonals are taken. To get down to 

16 iterations with point preconditioning Meijerink and Van der Yorst [17] use 

,_ 
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IC(5,7), but approximately the same goal can be achieved with only six instead of 

12 vectors of storage using the block preconditioning CHOL(5). 

6. Concluding remarks 

The above examples show that, for linear problems coming for finite-

difference approximations of elliptic partial differential equations, the block 

preconditionings we have introduced can give better results for two dimensional 

problems than the corresponding point ones currently in use. The results are 

better also than for block SSOR preconditioning. Generally, for natural ordering 

of the unknowns, the modified methods give better results for our test problems 

than unmodified ones. Particularly attractive is the preconditioning INV(l) -­

and its modified form MINV(l) -- because of the low storage.requirements and 

rapid convergence. The results for three dimensional problems await further 

study. It would be of interest to explore the behavior of our block precondition­

ing methods on more general problems such as the ones arising from finite ele­

ment approximation with node orderings leading to a block tridiagonal matrix. 
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