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Abstract Several problems in operations research, such as the assembly line crew
scheduling problem and the k-partitioning problem can be cast as the problem of
finding the intra-column rearrangement (permutation) of a matrix such that the row
sums showminimumvariability.Anecessary condition for optimality of the rearranged
matrix is that for every block containing one or more columns it must hold that its row
sums are oppositely ordered to the row sums of the remaining columns. We propose
the block rearrangement algorithm with variance equalization (BRAVE) as a suitable
method to achieve this situation. It uses a carefully motivated heuristic—based on an
idea of variance equalization—to find optimal blocks of columns and rearranges them.
When applied to the number partitioning problem, we show that BRAVE outperforms
the well-known greedy algorithm and the Karmarkar–Karp differencing algorithm.
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1 Introduction

In this paper, we study the rearrangement problem of finding an intra-column rear-
rangement of an n×d matrix, such that the row sums showminimum variability. This
problem is observationally equivalent to the problem of optimal assembly line crew
scheduling (ALCS); see Hsu (1984). The most obvious way of solving the problem
would be by brute force enumeration. However, as there are (n!)d−1 rearranged matri-
ces to consider, doing so is not feasible unless n and d are small. In fact, whenever
d > 2, the problem is NP-hard (Coffman and Yannakakis 1984), explaining why it
is typically dealt with using heuristic approaches. In this regard, a recent algorithm
applicable to this purpose is the so-called rearrangement algorithm (RA) of Puccetti
and Rüschendorf (2012). The RA aims at solving the rearrangement problem by rear-
ranging1 the elements within the columns of the matrix so that each column becomes
oppositely ordered to the sum of all other columns. This heuristic has a strong theo-
retical support by the fact that a necessary condition for row sums to have minimum
variance is that the elements in each column are oppositely ordered to the row sums
of the other columns. A related, but less performant algorithm can be found in Coff-
man and Yannakakis (1984). These authors order the elements of the columns in the
opposite order to the row sums of all preceding columns, an approach2 that is also
inherent in Graham’s seminal list scheduling heuristic;3 see Graham (1966).

The quality of the approximation obtained by the RA can be further improved
by rearranging blocks of columns. Indeed, if any block of two or more columns in
the output matrix of the RA can be further rearranged so that its row sums become
oppositely ordered to the row sums of the remaining columns, then doing so improves
the solution. This basic insight reveals that the RA can be improved by considering
block rearrangements. The idea of using block rearrangements is not entirely new.
It was first mentioned in Bernard et al. (2015) (see their Remark 4.1) and further
used4 in Bernard et al. (2017) under the name block RA (Remark 3.3). However, a
precise description of the approach as well as a study of its properties and its potential
use in solving problems in operations research is missing in the literature. Our main
contributions can be summarized as follows:

First, we propose a carefully motivated heuristic to find an approximately optimal
block in each iteration and label this approach as the block rearrangement algorithm
with variance equalization (BRAVE). We show that BRAVE can be seen as an exten-
sion to higher dimensions of the seminalKarmarkar–Karp (KK)differencing algorithm
thatwas introduced to dealwith the so-called number partitioning problem (Karmarkar

1 Rearranging refers to the act of permuting (swapping) elements.
2 InBernard et al. (2017) it is shown that for some particular type ofmatrices this approachmakes it possible
to obtain after d−1 steps (rearrangements) the situation in which all columns are oppositely ordered to the
sum of all others. This development allows to obtain approximations for the minimum variance of a sum
of (scaled) Bernoulli distributions in a fast way.
3 In Graham (1966), the so-called parallel machine scheduling problem is solved by iteratively assigning
subsequent jobs to the machine whose current completion time is minimum.
4 The use of block rearrangements is consistent with the notion of Σ-countermonotonic matrices, as
developed in Section 3.4 of Puccetti and Wang (2015); see in particular Definition 3.8 and Theorem 3.8
herein.
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and Karp 1982). When applied to number partitioning, we show that BRAVE outper-
forms the KK differencing algorithm.

Second, we compare the performance of the different rearrangement algorithms
for various set-ups of matrices, i.e., for various levels of dimensionality of the rows
and columns as well as for different levels of heterogeneity among the matrix ele-
ments. We show that BRAVE greatly reduces the variability during the first series
of iterations. Specifically, using BRAVE as a presolver (i.e., using it for the first
series of iterations) and then proceeding further with classical RA yields overall good
results.

The rest of this paper is organized as follows. In the remainder of this section,
we describe the rearrangement problem and discuss variability measures (objective
functions) that are compatible with the idea of block rearrangements. In Sect. 2, we
provide a necessary condition for optimal solutions of the rearrangement problem.
In Sect. 3, we recall the existing rearrangement algorithms and propose BRAVE as a
suitable algorithm to deal with the rearrangement problem. In Sect. 4, we describe its
connectionwith theKKdifferencing algorithmand show thatBRAVEoutperformsKK
for the number partitioningproblem.Theperformance of the rearrangement algorithms
is assessed in Sect. 5. Concluding remarks are given in Sect. 6.

1.1 The problem setup

The input for the rearrangement problem consists of d n-dimensional column vectors
X1, X2, . . . , Xd ∈ R

n×1 that are combined into a matrix X := (X1, X2, . . . , Xd) ∈
R
n×d . Denote by Xπ := (Xπ

1 , Xπ
2 , . . . , Xπ

d ) ∈ R
n×d the resulting matrix after rear-

ranging the n elements of the j th column ( j = 1, 2, . . . , d) by a permutation π j :
{1, 2, . . . , n} → {1, 2, . . . , n}, i.e., (Xπ )i j = (X)π j (i) j , whereπ := (π1, π2, . . . , πd)

denotes the vector of the d permutations. Throughout, we will call the vector of per-
mutations π a rearrangement and Xπ a rearranged matrix. Denote the vector of the
corresponding row sums by Sπ := ∑d

j=1 X
π
j . This paper makes use of a particular

kind of rearrangements, called block rearrangements. A block rearrangement consists
in swapping entire rowswithin a block of columns (and not just elementswithin a given
column). Specifically, let δ ∈ {0, 1}d indicate by δ j = 1 the columns j to be rearranged,
j = 1, . . . , d. A rearrangement π ′ of a matrix Xπ into Xπ ′

is called a block rearrange-
ment if there exists a δ ∈ {0, 1}d and a permutation πδ : {1, 2, . . . , n} → {1, 2, . . . , n}
such that π ′

j (·) = π j (π
δ(·)) for δ j = 1 and π ′

j = π j for δ j = 0.
We formally state the rearrangement problem as

min
π

V
(
Sπ

)
, (1)

where V (·) is a scalar-valued function that measures the variability of the vector Sπ .
In what follows we will sometimes call V (·) a variability measure.

The algorithms that we propose to deal with the rearrangement problem (1) are well
motivated under a certain assumption on the variability measure V (·). To this end, we
first recall the notion of majorization order. Hence, let W , Z ∈ R

n , then we say that
W is smaller than Z in the sense of the majorization order, denoted as W �m Z , if
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34 K. Boudt et al.

n∑

i=1

w(i) =
n∑

i=1

z(i)

and for k = 1, 2, . . . , n − 1,
k∑

i=1

w(i) ≤
k∑

i=1

z(i)

where the subscript (i) is used to denote the i th largest element of a vector (decreasing
order statistics). In words, W is majorized by Z if its components are more evenly
spread out than the components of Z . Our basic assumption is that V respectsmajoriza-
tion order; any such V is called Schur-convex.

Assumption 1 The function V (·) is Schur-convex, i.e., it holds that for any W , Z
∈ R

n ,
W �m Z implies V (W ) ≤ V (Z).

Important examples of Schur-convex functions arise when V is of the form
V (Sπ ) = ∑n

i=1 f (Sπ
i ), where f (·) is a convex function; in particular, the variance

is Schur-convex (rearrangements do not change the mean value of the row sums).
Other examples are given by L-statistics (linear combinations of order statistics) with
decreasing coefficients, thus also the maximum and (minus) the minimum are Schur-
convex.5 We refer toMarshall et al. (2011), Rüschendorf (2013), Boland and Proschan
(1988) and Jakobsons andWang (2016) for further details on the compatibility of rear-
rangement methods with Schur-convex objective functions.

Remark 1 It is possible to study rearrangement problems in a probabilistic setting. In
this case, one interprets thematrix X = (X1, X2, . . . , Xd) ∈ R

n×d as a randomvector;
each columncorresponds to a randomvariable and each row is a possible joint outcome.
Furthermore, all outcomes occurwith probability 1/n. A rearrangementπ thus yields a
rearranged matrix Xπ in which the variables Xπ

j have the same (marginal) distribution
function as the X j ( j = 1, 2, . . . , d), but their interdependence has changed, i.e., the
joint distributions of (X1, X2, . . . , Xd) and (Xπ

1 , Xπ
2 , . . . , Xπ

d ) are different. In this
paper, however, we stick to the matrix formulation. Nevertheless, we sometimes use
terminology (such as the mean, variance and distribution) that strictly speaking is
better adapted to the probabilistic formulation.

2 Characterization of optimal rearrangements

Let X := (X1, X2, . . . , Xd) ∈ R
n×d be a given matrix for which the vector S of the

n row sums has variability V (S). Under Assumption 1, it holds that, if there exists
a rearrangement π of the X j such that Sπ becomes constant and thus equal to the
mean, then it is the solution to the rearrangement problem (1).6 In general, one cannot

5 See also Section 2.3 in Bernard et al. (2015).
6 In probabilistic terms, this specific situation corresponds to mixability of random variables, a concept
that has recently been studied in Wang and Wang (2011, 2016).
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Block rearranging elements within matrix columns to minimize. . . 35

expect to obtain a constant Sπ and finding the optimal rearrangement π remains a
challenging task.

However, it is clear that a candidate solution (i.e., a rearrangement π ) can be
improved, if one can find another rearrangementπ ′ that yields a sum Sπ ′

that is smaller
in majorization order than the sum Sπ . At this point, we recall the well-known fact
that forW ∈ R

n and Z ∈ R
n the minimizing rearrangement for their sumW + Z with

respect to the majorization order �m occurs when W and Z are oppositely ordered7

(Day 1972). Hence, if the row sums of a block of columns are not oppositely ordered
with the row sums of the remaining columns (complementary block), rearranging that
block so that its row sums become oppositely ordered to those of the complementary
block, will reduce the variability of the vector that contains the row sums of the matrix.
The following proposition is thus proven.

Proposition 1 (Improvement of a solution by block rearrangement) Let V be a vari-
ability measure satisfying Assumption 1. Suppose that for Xπ ∈ R

n×d , there exists
δ ∈ {0, 1}d such that

∑d
j=1 δ j Xπ

j and
∑d

j=1(1 − δ j )Xπ
j are not oppositely ordered.

Let π ′ = (π ′
1, . . . , π

′
d) be a block rearrangement of π such that

∑d
j=1 δ j Xπ ′

j and
∑d

j=1(1 − δ j )Xπ ′
j are oppositely ordered. Then,

V

⎛

⎝
d∑

j=1

δ j X
π ′
j +

d∑

j=1

(1 − δ j )X
π ′
j

⎞

⎠ ≤ V

⎛

⎝
d∑

j=1

δ j X
π
j +

d∑

j=1

(1 − δ j )X
π
j

⎞

⎠ .

Proposition 1 thus means that, each time a block is rearranged so that its row
sums become oppositely ordered with the row sums of the complementary block, the
variability of the vector containing all row sums decreases. It further follows that,
if the objective V is of the form V (S) = ∑n

i=1 f (si ), where f is a strictly convex
function, then the “≤ ” in Proposition 1 can be replaced by a “<”.8 A minimum can
then only be attained when all partitions into two blocks have the property that the
partial rows sums corresponding to these blocks are oppositely ordered. Such a matrix
is calledΣ-countermonotonic; see also Section 3.4 in Puccetti andWang (2015). The
block rearrangement algorithms that we propose as heuristics for the rearrangement
problem are in fact designed to find Σ-countermonotonic matrices. These algorithms
are discussed further in the next section.

3 Rearrangement algorithms

Let X be a given matrix with a corresponding row-sum vector S. In order to find the
optimal rearranged matrix Xπ , we first consider the RA of Puccetti and Rüschendorf
(2012), which rearranges single columns one-by-one, and then we discuss block rear-

7 Vectors W, Z ∈ R
n are said to be oppositely ordered if (w j − wi )(z j − zi ) ≤ 0 for all 1 ≤ i < j ≤ n.

8 It is a direct consequence of the fact that unless W and Z have the same distribution, W �cx Z implies
E[ f (W )] < E[ f (Z)] for any strictly convex function f ; See Theorem 3.A43 of Shaked and Shanthikumar
(2007).
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36 K. Boudt et al.

rangements. Similarly to Embrechts et al. (2013), all algorithms will start by applying
a random permutation of the elements within each column.9 Throughout the paper,
we assume the convention that the columns of X are sorted in terms of decreasing
variability, i.e., V (Xi ) ≥ V (X j ), for all column numbers 1 ≤ i ≤ j ≤ d.10

3.1 Existing algorithms and some extensions

3.1.1 The rearrangement algorithm (RA)

The RA is a heuristic that aims at solving the rearrangement problem by iteratively
rearranging the columns of the matrix one-by-one, so that each column becomes
oppositely ordered to the sum of the other columns. In other words, the RA is not
designed to achieve the necessary condition of optimality, i.e., aΣ-countermonotonic
matrix (see also Proposition 1 and its discussion), but only a weaker condition that is
obtained by restricting to vectors δ ∈ {0, 1}d for which

∑d
j=1 δ j = 1.

Hence, the solution provided by the RA can be readily improved whenever there
is a partition into two blocks with the property that the row sums of the first block
of columns is not oppositely ordered to the row sums of the remaining columns (see
Proposition 1). In order to address this concern, we consider algorithms that rearrange
blocks of columns. In this regard, we use a d-dimensional binary vector δ ∈ {0, 1}d
to indicate which columns belong to the first block (δ j = 1), and which ones to the
complementary block (δ j = 0). Each δ thus corresponds to a partition of the matrix
Xπ into two submatrices (blocks), denoted Xπ

δ and Xπ
1−δ . Their corresponding row

sums are denoted Sπ
δ := ∑d

j=1 δ j Xπ
j and Sπ

1−δ := ∑d
j=1(1 − δ j )Xπ

j .

3.1.2 Brute force Block RA

In the so-called brute forceBlockRA,we require that for all possible partitions into two
blocks, the corresponding row sums of the two blocks are oppositely ordered (i.e., Xπ

is Σ-countermonotonic).11 This implementation ensures that a further improvement
of the objective using block rearrangements is not possible (see Proposition 1).

9 Note that this shuffling step already leads to a substantial reduction in the variability among the row
sums, compared to a sorted (co-monotonic) arrangement.
10 Sorting of the columns is done to render our paper more transparent with respect to reproducibility of
the numerical results and also to enable a more fair comparison between block rearrangement algorithms
and the RA of Puccetti and Rüschendorf (2012) in the case of heterogeneous columns. In fact, the RA
goes through the columns sequentially (starting with the first column and so on). If the first few columns
show little variability, rearranging them would not have much effect on the variability of row sums. For the
block rearrangement algorithms, this issue does not exist, as they do not apply rearrangements sequentially
starting with the first column.
11 To verify this condition, one needs to consider (2d −2)/2 = 2d−1 −1 different partitions of the matrix
into two blocks. The division by two is because for each partition δ, the corresponding 1− δ does not need
to be considered. Furthermore, the cases in which all elements of δ are zero (resp. one), do not require
consideration.
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3.1.3 Random block RA (BRA)

In the brute force Block RA above, evaluating all possible vectors δ to verify the
condition of Σ-countermonotonicity corresponds to considering 2d−1 − 1 partitions
of the matrix (see Footnote 11). Doing so becomes infeasible for even moderate values
of d (i.e. for d > 15). One solution, proposed in Bernard and McLeish (2016), is
to consider a smaller (randomly generated) subset K of the set of all partitions. In
Algorithm 1, we implement a related idea, in each iteration considering one random
partition obtained by Bernoulli sampling, in which the probability for a matrix column
to belong to either of the blocks is always 50% (uniform sampling over all partitions).
We call this algorithm the (random) Block RA (BRA) in the following.

Algorithm 1: Pseudo-code of the procedure random BRA to minimize the vari-
ability V of the vector containing all row sums of a matrix X . Blocks are chosen
randomly
1. Set target value a∗, and maximum number of iterations M ;
2. Set π to a randomly chosen intra-column arrangement of the elements;

3. Set a := V (Sπ ) with Sπ := ∑d
ji
Xπ
j and let m = 0;

4. while a > a∗ and m < M do
5. Generate a random vector δ ∈ {0, 1}d by Bernoulli sampling with equal probability for each
column to be assigned to either block;
6. Rearrange the rows of the submatrix Xπ

δ so that the row sums Sπ
δ become oppositely ordered

to Sπ
1−δ , and compute a := V (Sπ

δ + Sπ
1−δ);

7. Set m = m + 1.
end

Note that the choice of the target value a∗ in Algorithm 1 is somewhat arbitrary.
Nevertheless, once a candidate solution to the rearrangement problem is obtained,
one can always lower the target value based on the value a of the output matrix, and
then use this matrix (and its corresponding rearrangement) further. A variation of this
algorithm would correspond to a non-uniform sampling: using different probabilities
for each column to be included in the first block, δ j ∼ Bernoulli(p j ), j = 1, . . . , d.
Another variation would be sampling the size N of the first block P(N = i) = qi , i =
1, . . . , d−1, and then selecting the first block uniformly over all blocks of size N (for
example, q1 = 1 and qi = 0, i ≥ 2, would lead to RAwith a random column selection
instead of sequential). However, these alternatives pose the practical problemof having
to calibrate the block-selection probabilities ex ante; we do not investigate them further.

3.2 Block RA with variance equalization (BRAVE)

In the previous section, we pointed out that the number of possible partitions of the
matrix columns is prohibitively large even for moderate values of d. Therefore, a
method for choosing those partitionswhichyield the greatest improvement is desirable.
Bernard andMcLeish (2016) (see their block RA1) propose selecting the partition δ̃ by
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38 K. Boudt et al.

δ̃ = argmax
δ∈P

φ
(
Sπ
δ , Sπ

1−δ

)
, (2)

where φ is Spearman’s rank correlation andP ⊂ {0, 1}d is a randomly selected subset
of all partitions, consisting of |P| = min(2d−1 − 1, 512) partitions to keep the above
problem tractable. This approach draws it inspiration from the fact that Spearman’s
correlation is equal to −1 for oppositely ordered vectors, so the rearranged matrix is
Σ-countermonotonic if and only if Spearman’s correlation is −1 for all partitions.

The above approach has two drawbacks. First, since the method needs to compute
the rank correlation (requires sorting) for each considered partition, in practice, it
cannot consider all possible partitions; and finding δ̃ is rather time-consuming even
with |P| = 512. Second, using correlations ignores the scales of the partial row sums,
so this method may choose a partition where the two partial row sums are of very
different scales, resulting in little improvement in V (Sπ ).

We propose a new block selection rule, which is based on variance equalization.
In particular, consider an initial matrix Xπ . An optimal choice for the two blocks Xπ

δ

and Xπ
1−δ would clearly occur when, after rearranging Sπ

δ in an opposite order to

Sπ
1−δ , it holds that S

π ′
δ + Sπ ′

1−δ = E[S], where π ′ denotes the new rearrangement.12

A necessary condition to fulfill this condition is that, before rearranging, Sπ
δ − E[Sπ

δ ]
is a rearrangement of E[Sπ

1−δ] − Sπ
1−δ . In particular, they need to have the same

mean and variance. Since by construction their mean values are already matched, this
motivates selecting an optimized partitioning vector δ∗ so that the second moments of
the distributions are matched as closely as possible. Under this approach of selecting
blocks with almost equal variance, we thus choose the partition δ∗ for which the
difference in the variances of the two distributions is minimized, i.e.

δ∗ = argmin
δ∈{0,1}d

∣
∣Var

(
Sπ
δ

) − Var
(
Sπ
1−δ

)∣
∣ .

Equivalently,
δ∗ = argmin

δ∈{0,1}d
∣
∣Cov

(
Sπ
δ , Sπ

) − Cov
(
Sπ
1−δ, S

π
)∣
∣ ,

since Var(Sπ
δ ) − Var(Sπ

1−δ) = Cov(Sπ
δ , Sπ

δ + Sπ
1−δ) −Cov(Sπ

1−δ, S
π
δ + Sπ

1−δ). The
latter formulation of the block selection problem is relatively easy to solve. In fact,
denoting βπ

j = Cov(Xπ
j , S

π ), we can express Cov(Sπ
δ , Sπ ) = ∑d

j=1 δ jβ
π
j . Finding

two blocks with row sums that have equal variance is thus an example of the num-
ber partitioning problem, where the set {βπ

1 , βπ
2 , . . . , βπ

d } needs to be partitioned so

that
∑d

j=1 δ jβ
π
j = ∑d

j=1(1 − δ j )β
π
j for the corresponding δ. A simple and intu-

itive heuristic for this number partitioning problem is the so-called greedy algorithm,
which iterates through the numbers and places the largest remaining number (in abso-
lute value) into the subset that yields the smallest difference between the respective

12 Recall that E[S] = 1
n

∑n
j=1 s j is invariant under intra-column rearrangements.
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sums.13 Another possibility is to use the KK differencing algorithm (Karmarkar and
Karp 1982), which is known to be very effective in finding optimal partitions, but is
slower.

It is unlikely that the above block selection rule yields an optimal rearrangement
after one iteration, and thus, in the following iterations one needs to ensure that the
chosen blocks are sufficiently different from the blocks in the previous iteration.
We achieve this in two ways. Firstly, starting from the second iteration, we apply
the number partitioning algorithm to find the blocks with equal variance sequen-
tially on the previously obtained blocks. More precisely, starting from the second
iteration, we adjust the block selection rule by first partitioning {βπ

j : δ j = 1}
(where δ is the previous partition), obtaining a difference β̃ in variances. We then
partition {β̃} ∪ {βπ

j : δ j = 0}. Doing so induces a partitioning of the entire set
{βπ

1 , βπ
2 . . . , βπ

d }, which is typically different from the partition in the previous iter-
ation. Secondly, in order to avoid that the algorithm gets stuck in a partition for
which the blocks are already oppositely ordered (and the rearrangement does not
reduce the variability measure), it is specified that when this happens, a randomly
chosen block selection is used instead of the one based on variance equalization.
The pseudo-code describing the sequence of steps for the Block RA with blocks
selected to have similar variances is shown in Algorithm 2. Similarly to Algorithm 1,
it requires setting a target value for the objective function a∗ and themaximum number
of iterations M .

Algorithm 2: Pseudo-code of the BRAVE algorithm to minimize the variability
V of vector containing all row sums of a matrix X . Blocks are selected to have
similar variances. If no improvement is observed, a random block is chosen
1. Set target value a∗ and maximum number of iterations M ;
2. Set π to a randomly chosen intra-column arrangement of the elements;

3. Set a := V (Sπ ) with Sπ := ∑d
j=1 X

π
j and let m = 0;

4. while a > a∗ and m < M do
5. Block selection: Find δ∗ = argminδ |Cov(Sπ

δ , Sπ ) − Cov(Sπ
1−δ, S

π )|;
6. Rearrange the rows of the submatrix Xπ

δ∗ so that the row sums Sπ
δ∗ become oppositely ordered

to Sπ
1−δ∗ , and compute aδ∗ := V (Sπ

δ∗ + Sπ
1−δ∗ );

7. Set m = m + 1;
8. if aδ∗ is equal to a then

9. Set δ to a randomly chosen partition;
10. Rearrange the rows of the submatrix Xπ

δ so that the row sums Sπ
δ become oppositely

ordered to Sπ
1−δ , and compute a := V (Sπ

δ + Sπ
1−δ);

11. Set m = m + 1;
else

12. Set a = aδ∗ ;
end

end

13 The greedy algorithm has a running time of O(d log d) and is flexible enough to deal with real numbers.
Most partitioning algorithms are designed to work with integer numbers or positive real numbers. See Korf
(1998) for a review of alternative solutions.
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We also consider a modification of BRAVE, which consists in permanently switch-
ing from BRAVE to the standard RA after a series of initial iterations. We label this
hybrid approach as BRAVE+RA and will further investigate it in Sect. 5.

4 BRAVE as generalization and improvement of number partitioning
algorithms

In this section, we explore the connection between BRAVE and number partitioning
algorithms. We first explain that any rearrangement algorithm (and thus also BRAVE)
can be used to deal with the number partitioning problem. Next we show that BRAVE
can actually be seen as a generalization and improvement of number partitioning
algorithms.

Assume that a set of d real numbers with the total sum s is given, and that we would
like to partition the set into two subsets with sums that are as similar as possible. This
problem can be cast as a matrix rearrangement problem. Indeed, by adding d zeros
to this set, we can represent the numbers as a matrix X ∈ R

2×d , in which the second
row contains only zeros. Let S denote the corresponding vector of row sums. Clearly,
number partitioning the set amounts to finding a rearranged matrix Xπ∗

such that Sπ∗

is as constant as possible (and in the ideal situation, only assumes the value s/2). It thus
follows that rearrangement algorithms can be used to solve the number partitioning
problem. Among these rearrangement algorithms, BRAVE has the particular feature
that it uses a number partitioning algorithm in its set-up.

4.1 Generalization of number partitioning algorithms

Applying BRAVE to the matrix X ∈ R
2×d that we just described indeed requires

solving a number partitioning problem in each iteration, namely when finding the
partition of the column covariances (see Sect. 3.2). In fact, in the first iteration, parti-
tioning the covariances between the columns of X and the row sums of X is equivalent
to partitioning the numbers in the first rows of X . Indeed, since the first row contains d
numbers (denote them by a1, . . . , ad ) and the second row only zeros, it follows that in
the first iteration of BRAVE the covariance of the j th column with the row sum vector
(s, 0)� is equal to s ·a j/2−s/2 ·a j/2 = s ·a j/4.Hence, the covariances that we need
to be partition are proportional to the given numbers. Therefore, after one iteration, the
non-zero elements of block 1 and block 2 yield the same subsets as one would have
obtained by applying the number partitioning algorithm to the given set of d numbers.
In other words, when applied to the given X ∈ R

2×d , BRAVE yields the same solution
as the one provided by the number partitioning algorithm. However, BRAVE can be
applied to general n×d matrices and thus generalizes number partitioning algorithms
in this regard.

4.2 Improvement of number partitioning algorithms

Whilst application of BRAVE to the number partitioning problem yields after one
iteration the same partition as given by the same partitioning algorithm, BRAVE
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continues to iteratively select new blocks and to rearrange them, which can only bring
the solution closer to optimality. In other words, since the matrix corresponding to
the solution after one iteration may not be Σ-countermonotonic, BRAVE can never
perform worse than the algorithm used to partition the covariances and may strictly
outperform it.

In what follows, we focus on the KK differencing algorithm and the greedy
algorithm. When BRAVE is implemented with the KK or greedy algorithm to find
blocks with equal variance, we henceforth denote this by the BRAVE(KK) and
BRAVE(greedy) algorithm, respectively.

Example 1 [Comparing KK with BRAVE(KK)] Hayes (2002) provides two rele-
vant test cases for the analysis of the performance of a partitioning algorithm. The
first test case is shown in Figure 1 of Hayes (2002), in which he illustrates the case
of partitioning the set T = {484, 114, 205, 288, 506, 503, 201, 127, 410} into two
subsets T1 and T2 such that their total sums t1, respectively, t2 are as close as pos-
sible. Both the greedy and the differencing algorithm of KK do not succeed and
yield that |t1 − t2| is equal to 52 and 28, respectively. By contrast, the BRAVE(KK)
needs on average around 17 iterations to find the (unique) perfect partition of dividing
the numbers into T1 = {484, 114, 205, 288, 201, 127} and T2 = {506, 503, 410}.
The second test case studied by Hayes (2002) is the problem of partitioning the
set T = {771, 121, 281, 854, 885, 734, 486, 1003, 83, 62} with total sum s = 5280.
Applying the differencing algorithm of KK yields |t1 − t2| = 26. However, apply-
ing the BRAVE(KK) reveals that a perfect partition can be found using only two
variance equalization steps. First, the set is split into {121, 281, 854, 885, 486} and
{771, 734, 1003, 83, 62} with total sums 2627 and 2653. Then, the two sets are rear-
ranged into T1 = {771, 281, 854, 734} and T2 = {121, 885, 486, 1003, 83, 62}, with
t1 = t2 = 2640. Note also that applying the greedy algorithm would yield a discrep-
ancy of 32 between the two subset sums, and also that application of the classic RA
yields the same solution as the Greedy algorithm (this also holds for the first test-
case).14 The second test-case of Hayes (2002) is the result of drawing d = 10 integer
numbers between 1 and 2d . Hereafter, we consider number partitioning when larger
values of d are used.

In order to compare the performance of the various algorithms that are applicable
to the number partitioning problem, we take into account the observations in Gent
and Walsh (1998) and Mertens (1998); namely, that the size d of the set to be parti-
tioned, and the possible range of the numbers, affect the difficulty of the optimization
problem in a specific way. In particular, instances with d integers drawn uniformly
from {1, . . . , 2d} are typically difficult to solve, and only one partition, on average,
is perfect (with the difference in sums � := |t1 − t2| ≤ 1). We therefore generate
N = 1000 random instances as described above, for each d = 10, 11, . . . , 20. We
choose these relatively low values for d, as this allows solving the problem exactly,
using a dynamic programming formulation of this problem; see e.g. Gent and Walsh

14 In fact, from Proposition A.1 in Bernard et al. (2017) it follows that the greedy algorithm yields an
arrangement in which each column is oppositely ordered to the sum of the other columns and is thus—in
the particular context of the partition problem—as good as the RA.
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Fig. 1 Left panel suboptimality of the greedy andKKsolutions, aswell as the solutions of the rearrangement
algorithms after 200 iterations. By BRAVE(greedy) and BRAVE(KK) we refer to the two versions of the
BRAVE algorithm, which use the greedy, respectively, the KK algorithm to partition the column covariances
(see Sect. 3.2).Right panel the development of average suboptimality of BRAVE(KK) solution, as a function
of the number of iterations (rearrangements). The lines correspond to selected values of d ∈ {10, . . . , 20}

(1998). Note, however, that the heuristic algorithms can also be applied to much larger
problem instances. The corresponding average (log-)suboptimality is computed as

1

N

N∑

i=1

log
(
1 + �Heur

i − �
Opt
i

)
,

where �Heur
i and �

Opt
i are the differences given by the heuristic, respectively, by the

optimal solution, for the i th problem instance. The adjustment by 1 inside the logarithm
is to count as log(1) = 0 the cases when a heuristic attains the optimal solution.

In Fig. 1, left panel, the average suboptimality is plotted for the various heuristics,
depending on d. For the rearrangement algorithms, 200 iterations are used. The poorest
performer is the RA, followed by the greedy algorithm and the (random) BRA. The
best results are given by the twoversions of theBlockRA that use variance equalization
when selecting the blocks; they have a lower suboptimality than KK. BRAVE(KK) is
clearly the best performer.Note that the partition obtained after one iteration is the same
as obtainedwhen applyingKKapplied to the original set of numbers. Further iterations
look for a partition of the matrix into two blocks with row sums that are not oppositely
ordered and will bring the solution closer to optimality. To illustrate this convergence,
the right panel of Fig. 1 shows the suboptimality of BRAVE(KK) for different sizes
d of the set to be partitioned, as a function of the applied rearrangements (iterations).

Block rearrangement algorithms are useful heuristics to solve not only the number
partition problem, but also for solving the n-partitioning problem, as we explain in
Remark 2 below.

Remark 2 (The n-partitioning problem) The so-called n-partitioning problem is the
problem of partitioning a given set of numbers into n sets with sums that are as equal as
possible (Chopra and Rao 1993). Clearly, block rearrangement algorithms can be used
as heuristics to solve the n-partitioning problem. Indeed, assume that a set of d real
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numbers with the total sum s is given.We add (n−1)d zeros to this set, so that the total
cardinality is nd, and we can represent the numbers as a matrix X ∈ R

n×d , where the
last n−1 rows contain only zeros. Let S denote the corresponding vector or row sums.
Partitioning the set into n subsets with sums that are as similar as possible, amounts
to finding a rearranged matrix Xπ∗

such that Sπ∗
is as constant as possible (and in the

ideal situation, only assumes the value s/n). The n-partitioning problem is also closely
related to the parallelmachine scheduling problem.Given d jobswith processing times
p1, . . . , pd and n parallel identical machines which can execute at most one job at
a time, one aims at assigning each job to exactly one machine, so as to minimize
the latest completion time of all jobs. This problem can be cast as a n-partitioning
problem and rearrangement algorithms can be applied to this problem as competitors
to other known heuristics proposed in Frangioni et al. (2004) and Alvim and Ribeiro
(2004). Exact algorithms are presented in Dell’Amico and Martello (1995) (branch-
and-bound algorithm), Mokotoff (2004) (cutting-plane algorithm) and Dell’Amico
et al. (2008) (algorithm based on a specialized binary search and a branch-and-price
scheme). Dell’Amico and Martello (2005) show that, on the same types of instances,
the algorithm of Dell’Amico and Martello (1995) is faster than the one of Mokotoff
(2004) by some orders of magnitude.

5 Performance evaluation of the block rearrangement algorithms

All rearrangement algorithms described in the previous sections are designed to
improve the objective function (satisfying Assumption 1) at each iteration. They differ
in terms of the selected (block of) column(s) that is rearranged at each iteration and
thus in terms of the magnitude of the improvement. In this section, we compare the
effectiveness of the RA and various versions of the Block RA for minimizing the
variance of the row sums, by rearranging matrices that have n = 100 or n = 1000
rows and d = 100, 1000, or 10,000 columns. Specifically, we compare RA, BRA and
BRAVE and also consider the BRAVE+RA procedure, which aims at combining the
best of the two worlds by using BRAVE for the initial rearrangements and then per-
manently switching to RA. Ideally, the BRAVE+RA procedure switches whenever
the future rearrangements using BRAVE are less effective than when RA is used. In
practice, there is no simple method available to predict the difference in performance
using BRAVE and RA in the subsequent iterations. Based on a comparison of several
plausible approaches on different data sets, we recommend to use BRAVE for the
first 30 iterations or until no improvement is observed, and then proceed further with
RA. Doing so, BRAVE is used as a pre-solver for RA. The upper bound of 30 on the
number of BRAVE iterations is to be considered as a rule-of-thumb, which, in some
applications may be too low, in others too high, but, from our experience, a reasonable
general-purpose value to limit the number of BRAVE iterations.15

15 The results for the BRAVE algorithms are based on the greedy algorithm for finding the blocks. Using
the KK algorithm, we obtained sightly better results, but the computation times were longer. We also tested
the Block RA1 algorithm of Bernard and McLeish (2016) with block selection as in (2). These simulations
showed that block selection based on maximal Spearman correlation of the row sums in a few iterations
leads to a rearranged matrix with maximal Spearman correlation that is close to −1, but the improvement
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We expect that the first few iterations in the block rearrangement algorithms will
have the largest (absolute) impact on the objective functions and that afterwards
the improvements will become relatively small. We further expect that these algo-
rithms (in particular, BRAVE) will yield greater initial improvements than the RA
and that the gains will tend to be more pronounced when the number of columns d
is large and the matrix columns are dissimilar. We verify this intuition by sampling
and rearranging N = 100 matrices for 12 possible configurations. Besides varying
n ∈ {100, 1000} and d ∈ {102, 103, 104}, we also vary the choice of the distri-
bution used to generate the matrices. The matrix elements are random draws from
either the uniform distribution on [0, 1], the Pareto distribution with shape param-
eter equal to 2 and a unit scale parameter, or a random variable generated as the
product between a Beta random variable with shape and scale equal to 0.5 and a
Bernoulli random variable that takes the value of one with probability 1/n, and is
zero otherwise. These three distributional choices represent different scenarios. In the
case of the uniform distribution, all columns are similar. By contrast, in the Pareto
case, even though all columns are generated using draws from the same distribution,
the columns can be very dissimilar due to the fat tail of this distribution. Finally,
the matrices obtained using the Bernoulli–Beta set-up are similar to those used in
the case of n-partitioning, since on average there are n − 1 zeros per column. We
have tested several other distributional choices (such as the exponential distribution
and the Beta distribution), but our findings can be summarized using these three
cases.

In Figs. 2, 3 and 4, we plot the progress of each algorithm in terms of reducing
the variance of the row sums. In particular, we sampled N = 100 different matrices
with entries from the uniform, Pareto or Bernoulli–Beta distribution, respectively,
and plotted the average value of the natural logarithm of the variance of Sπ after
i = 1, . . . , 500 iterations. Namely, the plots show

1

N

N∑

j=1

log
(
Var

((
Sπ

)
i, j

))
,

where (Sπ )i, j is the vector of row sums after the i th iteration of the j th experi-
ment run. The solid gray line corresponds to the trajectory of the RA, the black
dotted line is the average evolution of the objective when random BRA is used,
and the gray and black dashed lines correspond to rearrangement using BRAVE and
BRAVE+RA.

Consider first the trajectories in Fig. 2, which shows the results from rearranging
matrices with entries sampled from the standard uniform distribution. As expected, we
observe that for the initial rearrangements, in all cases considered, larger improvements
in the objective function are obtained by rearranging blocks rather than single columns.
However, the RA eventually catches up in each setup and eventually dominates BRA

Footnote 15 continued
in the objective function V is relatively low compared to the RA, BRAVE and BRAVE+RA algorithms.
Moreover, the Spearman correlation approach requires sorting the partial row sums for all considered
partitions at every iteration, and is time-consuming. For the sake of brevity, we do not report these results.
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Fig. 2 The effect of the rearrangement algorithms on the trajectory of the natural logarithmof the variance of
the row sums as a function of the number of iterations (rearrangements), when thematrix entries are sampled
independently from a standard uniform distribution. The lines show the averages over 100 replications for
matrices with the given number or rows n and number of columns d

and BRAVE, which have similar performance.16 The best results are obtained by
BRAVE+RA (black dashed line) which outperforms all other algorithms with RA a
close second best. Overall, it appears that in the case of matrices with similar columns,
the classical RA catches up quicklywith the block rearrangement algorithms, provided
a moderately high number of iterations is used. Using BRAVE+RA provides a further
modes improvement and indicates that BRAVE is a valuable pre-solver to deal with
rearrangement problems.

Figure 3 shows the results when the entries of the matrix are sampled from the
fat-tailed Pareto distribution. Because of the heavy tails, some columns contain out-

16 This is to be expected. The columns in this experiment are similar and on average BRA chooses blocks
of equal size so that the variances of their row are typically close to each other.
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Fig. 3 The effect of the rearrangement algorithms on the trajectory of the natural logarithm of the variance
of the row sums as a function of the number of iterations (rearrangements), when the matrix entries are
sampled independently from a Pareto distribution with shape parameter 2 and unit scale. The lines show
the averages over 100 replications for matrices with the given number or rows n and number of columns d

lying values and one can expect that the selection method for the block of columns
to be rearranged matters. Indeed, the proposed BRAVE heuristic, where blocks are
selected based on variance equalization, clearly dominates the random block selec-
tion approach. Furthermore, BRAVE+RA significantly outperforms the RA (solid
gray line) in terms of finding a lower objective function within a given number of
iterations, for d ≥ 1000.

Another extreme case of heterogeneity is presented in Fig. 4. Here, each element is
either zero, or, with a probability of 1/n equal to a draw from a Beta distribution with
shape and scale parameters equal to 0.5. In this case, thematrix consists predominantly
of zeros and the RA loses a lot of its effectiveness, since only the non-zero elements in
the column are rearranged per iteration. When n is larger than d, the optimal configu-
ration is on average equal to the matrix with one non-zero element per row. It follows
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Fig. 4 The effect of the rearrangement algorithms on the trajectory of the natural logarithm of the variance
of the row sums as a function of the number of iterations (rearrangements), when the matrix entries are
independent realizations of the product between a Beta distribution with shape and scale equal to 0.5, and
a Bernoulli random variable that is one with a probability of 1/n, and zero otherwise. The lines show the
averages over 100 replications for matrices with the given number or rows n and number of columns d

that in the cases n = 100, d = 100, n = 1000, d = 100 and n = 1000, d = 1000,
typically only one block rearrangement is needed to rearrange in such a way that each
row has one non-zero element. The RA needs several iterations to converge to that
situation. The more interesting cases are when d is large compared to n. In these
instances, we observe that the RA algorithm is unable to reach the same low variance
as BRA, BRAVE and BRAVE+RA within 500 iterations.

The different numerical experiments confirm the intuition that the block rearrange-
ment algorithms achieve larger initial improvements in the objective function than the
classical RA. When the columns are similar (homogeneous), the classical RA catches
up with block rearrangement algorithms and even outperforms them. BRAVE+RA
outperforms RA, but the improvement is small. When the matrix has columns that
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Table 1 The average running times in seconds (across 100 replications) for the rearrangement algorithms
used to minimize the variance of the row sums of n × d matrices, filled with random draws from a uniform
distribution

Iter n = 10 n = 100 n = 1000

d = 100 d = 1000 d = 10,000 d = 100 d = 1000 d = 10,000 d = 100 d = 1000 d = 10,000

RA

50 0.01 0.02 0.11 0.01 0.11 1.11 0.10 1.39 13.30

100 0.02 0.03 0.21 0.03 0.20 2.22 0.20 2.80 26.85

300 0.05 0.09 0.61 0.09 0.57 6.67 0.58 8.42 81.07

500 0.09 0.15 1.02 0.16 0.93 11.12 0.97 14.04 135.28

BRA

50 0.01 0.02 0.17 0.02 0.15 1.92 0.12 2.28 20.43

100 0.02 0.05 0.35 0.04 0.31 3.90 0.25 4.59 40.74

300 0.07 0.14 1.04 0.13 0.94 11.84 0.76 13.91 121.67

500 0.12 0.23 1.74 0.21 1.56 19.81 1.26 23.23 202.48

BRAVE

50 0.03 0.15 1.45 0.05 0.41 4.52 0.22 3.17 28.92

100 0.06 0.28 2.66 0.10 0.79 8.88 0.44 6.41 57.97

300 0.17 0.78 7.33 0.28 2.08 24.17 1.32 19.36 173.84

500 0.28 1.27 11.91 0.45 3.29 38.40 2.19 32.19 288.71

BRAVE+RA

50 0.01 0.05 0.41 0.04 0.29 3.23 0.17 2.51 23.02

100 0.02 0.06 0.51 0.05 0.38 4.58 0.27 4.14 37.10

300 0.06 0.12 0.93 0.12 0.77 9.98 0.66 10.66 93.11

500 0.09 0.18 1.34 0.18 1.16 15.39 1.04 17.18 149.11

The reported times are obtained using R-3.3.1 on a 3.2GHz Intel Xeon processor and 6GB of RAM, running
on Windows 7

are highly heterogeneous, the method of choosing the blocks matters. The BRAVE
approach consistently outperforms the BRA, and BRAVE+RA improves significantly
on the classical RA. As a consequence, BRAVE appears to be a useful pre-solver for
the RA. An important caveat is that when the matrix is predominantly filled with
zero elements, rearrangement of blocks of columns should always be preferred over
the traditional RA; see also the study of the number partitioning problem in Sect. 4.
The gains in performance of block rearrangements come at the price of higher running
times.We show this in Table 1 for the case of rearranging matrices with elements from
the standard uniform distribution.17 The complexity of each iteration of the RA and
the BRA is O(nd + n log(n)), where the nd term is due to computing row-sums, and
n log(n) is due to sorting the obtained column vectors. For BRAVE, the complexity is

17 To save space we do not report the running times for the Pareto and the Bernoulli–Beta set-ups, since
the obtained results for the running times are qualitatively similar. This is expected, since the nature of
the randomized matrix entries has little impact on the computer time spent on the sorting and summation
operations done in the rearrangement algorithms.
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O(nd + n log(n) + d log(d)), where the additional last term is due to variance equal-
ization by the greedy algorithm, which sorts the d covariances between each column
and the total row-sum vector. Note that computing these covariances is also included
in the nd term. From Table 1 we can observe that the increase in computation time
for all algorithms is approximately proportional to both n and d, and the logarithmic
terms contribute little. We further see that, in all cases, the RA is the fastest, but the
BRAVE+RA is a close second best. Comparing random block selection (BRA) with
the block selection using variance equalization, we find that the additional cost in
relative terms becomes smaller as the number of columns increases.

6 Conclusion

In this paper, we discussed the problem of finding the intra-column rearrangement of a
matrix thatminimizes the variability among its row sums.We discuss characteristics of
the optimal solution to this challenging combinatorial problem andwe presentmethod-
ological innovations relative to the current literature. In particular, as an alternative
to rearranging single columns (RA) or randomly chosen blocks of columns (BRA),
we propose the BRAVE algorithm, which rearranges blocks that are as similar as pos-
sible (in terms of the variance of their row sums). For the problem of 2-partitioning
(number partitioning), the BRAVE algorithm appears superior to well-known existing
number partitioning algorithms such as the KK differencing algorithm. When large
dense (homogenous) matrices need to be rearranged, we provide numerical evidence
that while block rearrangement algorithms (in particular BRAVE) yield a sharp initial
improvement in the objective function, the RA catches up quickly and the improve-
ment of using BRAVE as a pre-solver for RA (BRAVE+RA approach) is modest.
For large heterogeneous matrices, however, the RA is outperformed by BRAVE and
BRAVE+RA.
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