9B-2

Block Remap with Turnoff: A Variation-Tolerant Cache Design Technique *

Mohammed Abid Hussain

Center for VLSI and Embedded System Technologies

International Institute of Information Technology - Hyderabad

Hyderabad - 500032, India
abid @research.iiit.ac.in

Abstract— With reducing feature size, the effects of process

variations are becoming more and more predominant. Mem-
ory components such as on-chip caches are more susceptible to
such variations because of high density and small sized transis-
tors present in them. Process variations can result in high ac-
cess latency and leakage energy dissipation. This may lead to a
functionally correct chip being rejected, resulting in reduced chip
yield.
In this paper, by considering a process variation affected on-chip
data cache, we first analyze performance loss due to worst-case de-
sign techniques such as accessing the entire cache with the worst-
case access latency or turning off the process variation affected
cache blocks, and show that the worst-case design techniques re-
sult in significant performance loss and/or high leakage energy.
Then by exploiting the fact that not all applications require full
associativity at set-level, we propose a variation-tolerant design
technique, namely, block remap with turnoff (BRT), to minimize
performance loss and leakage energy consumption. In BRT tech-
nique we selectively turnoff few blocks after rearranging them in
such a way that all sets get almost equal number of process vari-
ation affected blocks. By turning off process variation affected
blocks of a set, leakage energy can be minimized and the set can
be accessed with low latency at the cost of reduced set associa-
tivity. We validate our technique by running SPEC2000 CPU
benchmark-suite on Simplescalar simulator and show that our
technique significantly reduces the performance loss and leakage
energy consumption due to process variations.

I. INTRODUCTION

In the never ending pursuit of making a circuit faster and
denser, more and more transistors are being placed on a sin-
gle chip by reducing the feature size to as small as possible.
With reduction in feature size, the control on the quality of
the transistor being manufactured becomes difficult [7, 14, 19].
This results in variation of device parameters such as channel
length, oxide thickness, threshold voltage, etc. Process varia-
tions are due to manufacturing phenomena and manifest them-
selves as die-to-die (DTD) and with-in-die (WID) variations.
WID variation can be further divided into random and sys-
tematic variations, where random variations are small changes
from transistor to transistor and systematic variations exhibit
spatial correlations. These variations result in varying power
and performance of circuits. For instance, process variations in

*This work was supported in part by grant from Department of Science and
Technology (DST), India, Project No. SR/S3/EECE/80/2006.

978-1-4244-1922-7/08/$25.00 ©2008 IEEE

Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology Madras
Chennai - 600036, India
madhu@cse.iitm.ac.in

130nm technology cause a 30% variation in the maximum al-
lowable frequency of operation and a fivefold increase in leak-
age power [12].

Process variations are severe in memory components as min-
imum sized transistors are used for density reasons [11]. In
memory components, the critical path delay is mainly dictated
by the memory sensing operations and the variable sense cur-
rent produced by the minimum sized transistors causes a large
timing variations of output data arrival [4]. Earlier the pro-
cess variation affected circuits were dealt by assuming worst-
case design scenario, but in the advanced process technologies
as the degree of variability in the critical parameters has in-
creased, worst-case design methodologies have become a non-
viable option [6].

In this paper, by considering set-level granularity for load
latency prediction, we propose an adaptive design technique,
namely, block remap with turnoff (BRT), to minimize perfor-
mance loss and leakage energy consumption due to process
variations. Our technique exploits the fact that not all appli-
cations require full associativity at set-level [2]. By exploiting
this fact an energy efficient cache design is proposed in [2],
where an application specific associativity is determined so that
some of the ways of a n-way set-associative cache are turned
off. In our technique, we first spread the process variation af-
fected blocks across the entire cache by applying a remap tech-
nique and then selectively turnoff the process variation affected
blocks in such a way that at least one block per set is active.
Note that we do not turnoff blocks of a set if all the blocks of
the set are affected by process variations. We spread process
variation affected blocks in such a way that all sets get almost
equal number of process variation affected blocks. By turning
off process variation affected blocks of a set, leakage energy
can be minimized and the set can be accessed with low latency
at the cost of reduced set associativity. We validate our tech-
nique by running SPEC2000 CPU benchmark-suite on Sim-
plescalar simulator and show that, for a cache with 50% sets
affected, our technique significantly reduces the performance
loss to less than 1% of the base case and leakage energy con-
sumption by about 20% of the worst case.

The rest of the paper is organized as follows. Section II
presents related work. Section III describes how to work with
process variation affected data caches. We present our tech-
nique in Section IV and validate it in Section V. Finally, we
conclude the paper in Section VI.

783

9B-2
II. RELATED WORK

As process variations significantly affect performance
and leakage power consumption, several circuit-level and
architectural-level techniques have been proposed in literature
to mitigate the effects of process variations. We now briefly
discuss some of the existing techniques.

It is shown that WID [25] and DTD [26] variations have sig-
nificant impact on performance and power consumption of a
chip [6, 7, 35]. SRAM cell failures under process variations
are analyzed in [1, 10] and a technique to adaptively re-size
the cache to eliminate faulty cells and hence to improve chip
yield is proposed in [1]. In [34], adaptive body biasing is used
to minimize the effects of process variations on maximum op-
erating frequency and leakage energy dissipated. Parameter
variations effect on system performance is discussed in [6] and
body bias control techniques are proposed to reduce the effect
of variations on circuits and improve chip yield. A gate sizing
algorithm is developed to improve yield and also an algorithm
for determining the optimal bin boundaries to obtain maximum
benefit of using frequency binning is proposed in [12]. Limit
on using forward body biasing to make the circuit more robust
against variations in the threshold voltage is studied in [22]. By
considering a chip with random and spatial variations, leakage
energy dissipated in the chip is analyzed in [9] and a technique
is proposed to predict the probability distribution function of
the leakage energy dissipated in the chip.

In order to improve yield of a process variation affected
cache, yield-aware cache architecture techniques are proposed
in [27], which consist of turning off of cache ways, cache
sets, or exploiting variable access latency by providing spe-
cial buffers with functional units to deal with load instructions
stored in process variation affected blocks. In [19], WID and
DTD variations for on-chip caches are modeled and a technique
called way prioritization is proposed to minimize cache leak-
age energy.

Several techniques have been proposed to predict load laten-
cies, which include value prediction [16, 29], transient value
cache [20], and load reuse [32]. All these techniques aim at
minimizing the effects of unpredictable load latencies and im-
prove system performance.

Some of the mechanisms related to our techniques are pro-
posed in literature for different purposes. A scheme called
block permutation [15] is proposed for power density mini-
mization by permuting cache blocks to maximize the distance
between blocks with consecutive addresses, which in turn max-
imizes the area of a working set, so that power density mini-
mizes. In [18] the cache is downsized from its maximum ca-
pacity to counter the effects of process variation. To achieve
this, on every cache access the effective address is boolean
ANDed with the set-mask to produce the correct set index.
A technique called padded cache [30] is proposed for provid-
ing fault-tolerance to cache memories. In padded cache tech-
nique, a special programmable address decoder is used to dis-
able faulty blocks and remap their references to good blocks.
In [21], using programmable address decoder, blocks of two
different sets are rearranged in order to minimize the number
of sets having process variation affected blocks. In [21], in a
pair of sets all the process variation affected blocks are moved

to one set, leaving the other set with clean (i.e., no process
variation) blocks. Our technique is different from these tech-
niques in the following ways: 1) unlike the static rearrangement
of cache blocks as suggested in [15], our technique rearranges
cache blocks based on whether or not the blocks are affected by
process variation; 2) unlike disabling cache blocks as suggested
in [30], the mapping scheme in our technique swaps different
blocks; 3) unlike moving all process variation affected blocks
to one set, of a pair of sets, as in [21], our mapping scheme
spreads process variation affected blocks across all sets, in such
a way that, all the sets get almost equal number of process vari-
ation affected blocks.

III. WORKING WITH PROCESS VARIATION AFFECTED
DATA CACHES

In this paper we consider a process variation affected L1
data cache and assume the cache access to be pipelined in two
stages. For a cache without process variations, each pipeline
stage takes 1 cycle latency, hence the access latency becomes
2 cycles. Due to process variations, the delay of either pipeline
stage can exceed that of the nominal cycle time. As clock pe-
riod for a stage is determined by the worst-case pipeline stage,
hence even if the latency of one of the cache pipeline stages is
increased to 2 cycles due to process variations, the access la-
tency becomes 4 cycles for a 2-stage pipelined cache. Thus,
due to process variations, different blocks of a cache can be ac-
cessed with different latencies, which in turn make the cache
as a non-uniform access latency cache. In order to work with
non-uniform access latency caches, one can use worst-case de-
sign techniques such as accessing the cache with the worst-case
access latency (i.e., high latency) or turning off the process
variation affected blocks and accessing the remaining cache
blocks with the nominal latency (i.e., low latency). Access-
ing the entire cache with high latency incurs significant perfor-
mance penalty when only few blocks of the cache are affected
by process variations, whereas turning off the process variation
affected cache blocks results in significant performance loss
when most of the blocks of the cache are affected by process
variations due to reduced size of the cache.

In order to work with non-uniform access latency data
caches, one can use adaptive design methodology (as described
in [21]) in place of worst-case design techniques to minimize
performance loss. Under the adaptive design methodology, the
access latency of a load instruction is predicted using a predic-
tion technique [5, 13] so that based on the predicted latency
all dependent instructions of the load instruction are issued. If
the prediction is correct, performance improvement is achieved
due to early issue of dependent instructions, whereas all the de-
pendent instructions are replayed if the prediction is wrong to
ensure correct execution. Note that the granularity of the la-
tency prediction in non-uniform access latency cache is critical
in influencing the performance benefits. One can work at set-
level granularity by assuming that all blocks in a set of an asso-
ciative cache take same latency (determined by the worst-case
of all blocks in the set) or at way-level granularity by consid-
ering latency based on specific block corresponding to a par-
ticular way of a set in an associative cache. Though latency
prediction at way-level granularity has more potential to deal
with non-uniform access latency caches, without being con-

784

Block Mapping

Index 001 \ 010 \ 100
000 001 010 100
001 000 011 101
010 011 000 110
011 010 001 111
100 101 110 000
101 100 111 001
110 111 100 010
111 110 101 011

TABLE I

ILLUSTRATION OF MAPPING MECHANISM USED IN BRT TECHNIQUE.

strained by the worst-case of blocks in other ways of a cache,
current way-prediction techniques for data caches are not ac-
curate enough as in instruction caches [28]. In this paper, we
work at set-level granularity.

IV. BLOCK REMAP WITH TURNOFF TECHNIQUE

In order to minimize the impact of process variations in
terms of performance and leakage power, we try to distribute
the process variation affected blocks uniformly among all the
sets and then turnoff the affected blocks so that the cache will
have almost uniform associativity across the sets. To achieve
this objective, we propose a technique called block remap with
turnoff (BRT). We explain our technique in two stages, i.e.,
Block remap and Block turnoff.

A. Block Remap

To get an optimal mapping which spreads process varia-
tion affected blocks almost uniformly across all sets, we have
to consider possible (m!)” mappings for a m-set n-way set-
associative cache. Though the search for optimal mapping can
take place before the operational phase of a microprocessor,
in order to reduce the preprocessing time, by trading accuracy
for time, we consider a simple complexity-effective mapping
for the BRT technique. In order to remap blocks in a way, we
consider logam + 1 remap codes, which consists of [ogam one-
hot codes and a null code (i.e., 00...0). When no remapping is
required, we consider the null code. For each mapping, we
perform bit-wise exclusive-or operation of block index with a
remap code. As there are logam + 1 remap codes and n ways,
we generate a maximum of (logam + 1)™ mappings. We se-
lect the best mapping (indicated by n remap codes for n ways)
among all possible mappings, which yields the most uniform
distribution of process variation affected blocks across the sets.

We consider a logom-bit remap register for each way in a
n-way set associative cache. After selecting the best mapping,
we initialize the remap registers of all the ways with the cor-
responding remap codes. Note that the selection of a remap
code and initialization of the remap register is done once in
a while and that too before the operational phase of a micro-
processor, so that the whole process does not affect the sys-
tem performance. In order to remap a block to another block,
we perform bit-wise exclusive-or operation of block index with
the contents of the remap register. In other words, if remapy

SetO| 0 0 0 0 0 2 4 2
Set 1 1 1 1 1 1 3 5 3
Set2| 2 2 2 2 2 0 6 0
Set3| 3 3 3 3 B 1 7 1
Set4| 4 1 4 1 4 6 0 6
Set5| 5 5] 3 3 5 7 1 7
Set6| 6 6 6 6 6 2
Set 7 7 7 7 7 7 3

Way 0 Wayl Way2 Way 3 Way 0 Way Jay

Optimuin register remap = 000 010 100 010

(a) CAS (b) BRT

Fig. 1. Illustration of cache block organization in CAS and BRT. Shaded
portions indicate the blocks which are affected by process variation.
CAS=Conventional Addressing Scheme, BRT=Block Remap with Turnoff

and block], are a remap register and index of an it" block of
way k, block}, can be remapped to a block blocki such that
blocki = block}, & remapy,. The mapping mechanism used in
BRT technique is illustrated by considering 3-bit remap codes
as shown in Table I.

Note that, for remapping cache blocks as we consider xor-
ing of set index with the selected remap code, we incur a slight
time overhead of one xor-gate delay. This is similar to the
boolean ANDing used in [18].

Note that our remap technique is different from the one given
in [21], where same mapping is used for all ways of the cache
and the remap code used is 001, i.e., two adjacent blocks are re-
arranged. Also, the objective of our remap technique is differ-
ent from the that of the technique given in [21], where remap-
ping is used to minimize the number of sets having both process
variation affected and non-process variation affected blocks.
Note that applying the same mapping to all cache ways can
limit the possibility of turning off process variation affected
blocks, which in turn minimizes performance gains and leak-
age power savings.

B. Block Turnoff

After rearranging blocks using the BRT technique, if a set
contains all clean (i.e., non process variation affected) blocks,
then all the blocks are kept on and the set is accessed with
low latency. If the set contains both clean and dirty (i.e., pro-
cess variation affected) blocks, then we turnoff all the affected
blocks and access the set with low latency. If all the blocks
in the set are dirty, then all blocks are kept on and the set is
accessed with high latency.

We illustrate BRT technique by considering a 4-way set-
associative cache with 8 sets as shown in Figure 1. The light
shaded blocks represent the process variation affected blocks
which are kept on and the dark shaded blocks represent the
turned off process variation affected blocks. Blocks in Figure
1 are arranged by considering the optimal mapping (000, 010,
100, 010). After remapping using our technique, two sets get
one process variation affected block each and six sets get two
process variation affected blocks each. From the figure, it is
clear that our remap technique distributes process variation af-
fected blocks almost uniformly across all sets. As no set has
all four blocks affected by process variations, we can turn off
all the process variation affected blocks so that the cache can

785

9B-2

E T6
T3 [T4]
[m] [m]

Fig. 2. 2D layout of a 6-T SRAM cell

be accessed with low latency and leakage energy can be mini-
mized.

Note that, as shown in Figure 1 (a), in a CAS (Conventional
Addressing Scheme), all the blocks of a set lie in the same row,
where as shown in Figure 1 (b), in the BRT technique, blocks
of the same set can lie in different rows.

V. EXPERIMENTAL VALIDATIONS

A. Modeling process variation

In this work we consider WID variations. To model WID
variations we first consider the 2D layout of 6-T SRAM cell
[3] as shown in Figure 2. T1 and T2 are the pull down tran-
sistors, T3 and T4 are the access transistors and TS5 and T6 are
the pull up transistors. Process variations change the width,
length, oxide thickness, etc of a transistor. All these changes
can be modeled in terms of variations in the threshold voltage
of the transistor. So instead of considering all the parameters
seperately for each transistor, we consider only width, oxide
thickness, and threshold voltage of each transistor. To model
variations we consider random and systematic correlations. To
model the random component, we use the statistical computing
R-tool [24].

We model the systematic component as shown in Figure 3.
In Figure 3, the 2D layout of four 6-T SRAM cells and the ef-
fect of transistor TS on its neighbouring transistors is shown.
The correlation component of the transistors which lie in the
dark shaded area is incremented by (L1*random component of
T5), the correlation component of the transistors which lie in
the light shaded area is incremented by (L2*random compo-
nent of TS) and the correlation component of the transistors
which lie in the unshaded area remains unchanged. We can in-
crease or decrease the number of levels where the effect of a
affected transistor can be felt . We choose L1 > L2, because
the variation effect on a transistor is inversely proportional to
its distance from the affected transistor.

The final values of parameters for each transistor are ob-
tained by adding their random and systematic variation com-
ponents to their respective mean values.

Access latency of a SRAM cell is directly proportional to
the threshold voltage of the transistors present in it. So the
transistor with the highest threshold voltage in a SRAM cell
decides its access time. Similarly the SRAM cell with the high-
est threshold voltage requirement decides the access time of the
block.

To determine the leakage power dissipated in the cache, we
consider two components, sub-threshold leakage (/) and
gate tunneling leakage (I,,). These two components are cal-
culated by using the following formulae [23].

[m] [n] | [m] [m

Fig. 3. 2D layout of four 6-T SRAM cells

Toup = K1We_v”‘/nve(l _ e—V/Ve) 1)

Iy = KoW (V/Tpy)2eToc/V)

K, n, Ky and « are experimentally derived parameters, V'
is the supply voltage, Vy is 25mV at room temperature, W is
width, T, is oxide thickness and V;, is threshold voltage of
the transistor. Total leakage current is calculated by summing
up the sub-threshold and gate tunneling components. Leakage
power dissipated by a block is calculated by summing up the
leakage power dissipated by all the transistors present in the
block.

This whole process will give rise to four types of blocks in
the cache. 1) Defect free blocks, 2) Blocks termed defective
because of high access latency, 3) Blocks termed defective be-
cause of high leakage, and 4) Blocks termed defective because
of high access latency and high leakage.

B. Experimental setup

To validate our technique we run 21 SPEC2000 CPU bench-
marks [33] on the SimpleScalar 3.0 [31] simulator. For each
benchmark we fast-forward 1 billion instructions and then run
next 500 million instructions. The configuration of the proces-
sor which we simulate is given in Table II. We assume that
the blocks in L1 data cache have a latency of either 4 cycles
(if they contain transistors with threshold voltage above a cut
off value), or 2 cycles (if they contain transistor with threshold
voltage below the cut off value).

We compare BRT technique with base case, i.e., cache with
no process variation so that access latency of the cache be-
comes 2 cycles, and worst case, i.e., cache with process vari-
ation affected blocks so that accessing the cache takes 4 cycle
latency. Note that in the BRT technique, we consider either 2
cycle latency (for sets having no high accesss latency blocks)
or 4 cycle latency (if a set has all four blocks having high ac-
cess latency). For sensitivity analysis, we consider cache with
25%, 50%, and 75% sets being affected by process variation.

786

Parameter Value
Issue width 8 instructions/cycle (out of order)
RUU size 128 instructions
LSQ size 64 instructions
Branch prediction | Bimodal with 2K entries
BTB 1K-entries, 4-way
Misprediction 18 cycles
penalty
of ALUs 8 integer + 8 floating point

of Mul/Div units | 4 integer + 4 floating point
32KB, 4-way (LRU), 64B blocks,
2 cycle latency (no process variation),

L1 D-cache 4 cycle latency (with process variation),
50% of the sets have 4 cycle latency
and the remaining have 2 cycle latency.

L1 I-cache 64KB, 4-way (LRU)
32B blocks, 1 cycle latency

L2 cache Unified, 512KB, 8-way (LRU)
64B blocks, 12-cycle latency

Memory 160 cycles

ITLB 16-entry, 4KB block, 4-way,
30-cycle miss penalty

DTLB 32-entry, 4KB block, 4-way,

30-cycle miss penalty

TABLE I
OUR DEFAULT PARAMETERS.

C. Experimental Mechanism

We use a latency table to indicate the status of blocks in the
cache. This table is initialized using the March test [8], which
is performed before the operational phase of a microproces-
sor. Corresponding to each block in the cache, there is one
bit in the latency table, which is set if the block is affected by
process variation and reset otherwise. We use a 2-delta stride
based address predictor [13] with 16K entries to predict the ac-
cess latency of a set. In the case of misprediction, we replay
all dependent instructions using the instruction-based selective
replay technique [17].

D. Experimental results

Figure 4 shows benchmark-wise IPC values for different
techniques. In BRT technique we turnoff few blocks after
remapping them between sets, resulting in majority of the sets
having low latency and low associativity. Except for “apsi”,
“art”, “galgel”, and “lucas”, our technique achieves perfor-
mance close to the base case. This is due to the fact that these
benchmarks does not require the full space of the cache and ac-
cess only part of the cache. The performance penalty in bench-
marks “apsi”, “art”, “galgel”, and “lucas”, is because of fre-
quent accesses to the sets with low associativity, resulting in
increased miss rate.

Figure 5 shows percentage of average performance degra-
dation with respect to the base case. Accessing all the sets
with 4 cycle latency (irrespective of percentage of sets being af-
fected by process variation) results in nearly 5.8% performance
penalty. When the percentage of sets affected by process vari-
ation is very low, our technique incurs negligible performance

9B-2

IS

O Base case
1— B Worst case u
OBRT

P & R RS
\OOQ()(‘) & be QG Q\ @Q{b@

hed
5

[

Ind
o
[

n

IPC values for different benchmarks
~
[

o
o

& TSR (\\@QQQAQ»

N S =N ST RN <SR SN St S R
06‘ @\0A OQ@ K & roQ,y— K \)be & %g\ \Y\{a @Q
Q @ <

Fig. 4. Benchmark-wise IPC for different techniques w.r.t. the base case.
Note that here we assumed 50% of cache sets are being affected by process
variation.

6%

@ Worst case
mBRT

5% +—

4% 1—

3% —

2%

1% +—

o I

25% case

50% case

Worst case 75% case

Percentage of average performance degradation w.rt. the base case

Fig. 5. IPC degradation w.r.t. the base case.

penalty. Even for the 50% case, the performance penalty of our
technique is less than 1% of the base case. On the other hand,
as the variation percentage increases beyond 50%, because of
many blocks being turned off, not much space is available in
the cache, increasing the peformance penalty of our technique.
For the 75% case, our technique incurs a penalty of less than
3%.

Figure 6 shows relative leakage energy savings due to turn-
ing off process variation affected blocks w.r.t. the worst case
(where process variation affected blocks are kept on). As ex-
pected, with increase in variation percentage, the relative leak-
age energy savings are increased. For 50% case, we achieve
leakage energy savings of about 20%.

From the above results, it is clear that BRT technique sig-
nificantly minimizes performance penalty and leakage power
consumption due to process variations.

VI. CONCLUSION

Process variation is a serious problem in deep submicron cir-
cuits, which if not taken care of, can result in a functionally
correct chip getting rejected. In this paper, we proposed a tech-
nique to uniformly distribute process variation affected blocks
among sets and turn them off. Though turning off process vari-

787

O
O
N

@ 35%

©

; O BRT

@

5 30%

@

E=]

S 25%

@

E

g

=

5 20%

2

=

o

o 159,

o

P

=2

£

Z 10%

@

>

<

s 5%

@

2

kd

2 0% T T |
25% case 50% case 75% case

Fig. 6. Relative leakage energy savings of BRT technique w.r.t. the worst
case.

ation affected blocks results in a cache with reduced associativ-
ity per set, our technique significantly minimizes performance
penalty and leakage energy consumption due to process varia-
tion. Experimental results demonstrate that for a 50% affected
cache, our technique incurs a performance penalty of less than
1% with respect to the base case and saves about 20% leakage
energy as compared to the worst case.

REFERENCES

[1] A. Agarwal, et. al., “Process variation in embedded memories: failure
analysis and variation aware architecture”, I[EEE JSSC, Vol. 40, pp. 1804-
1814, 2005.

[2] D.H. Albonesi, “Selective cache ways: on-demand cache resource alloca-
tion”, IEEE Micro, pp. 248-259, 1999.

[3] David A. Hodges, Horace G. Jackson, Resve A. Saleh, Analysis and de-
sign of Digital Integrated Circuits in deep sub micron technologies, Mc-
Graw Hill, 2004.

[4] 1. Arsovski and R. Wistort, “Self-referenced sense amplifier for across-
chip-variation immune sensing in high-performance content-addressable
memories”, IEEE CICC, pp. 453-456, 2006.

[5] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev, and R. Ronen,
“Early load address resolution via register tracking”, ISCA, pp. 306-315,
2000.

[6] S. Borkar, et. al., “Parameter Variations and Impact on Circuits and Mi-
croarchitecture”, DAC, pp. 338-342, 2003.

[71 K.A. Bowman, et. al., “Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale
integration”, IEEE JSSC, Vol. 37(2), pp. 183-190, 2002.

[8] M.L. Bushnell and V.D. Agarwal, Essentials of electronic testing for dig-
ital memory, and mixed-signal VLSI circuits, Kluwer, 2000.

[9] H. Chang and S. Sapatnekar, “Full-chip analysis of leakage power un-
der process variations, including spatial correlations”, DAC, pp. 523-528,
2005.

[10] Q. Chen, et. al., “Modeling and testing of SRAM for new failure mecha-
nisms due to process variations in nanoscale CMOS”, VTS, pp. 292-297,
2005.

[11] J.A. Croon, et. al., “Physical modeling and prediction of the matching
properties of MOSFETSs”, ESSDERC, pp. 193-196, 2004.

[12] A. Datta, et. al., “Speed binning aware design methodology to improve
profit under process variations”, ASP-DAC, pp. 712-717, 2006.

[13] R.J. Eickemeyer and S. Vassiliadis, “A load instruction unit for pipelined
processors”, IBM J. of Research and Development, Vol. 37, pp. 547-564,
1993.

[14] R. Heald and P.Wang, “Variability in sub-100nm SRAM design”, IC-
CAD, pp. 347-352, 2004.

[15] J.C. Ku et. al., “Thermal management of on-chip caches through power
density minimization”, MICRO, 2005.

[16] M.H. Lipasti et. al., “Value locality and load value prediction”, ASPLOS,
Vol. 30(5), pp. 138-147, 1996.

[17] G.Memik et. al., “Precise instruction scheduling”, J. of Instruction-Level
Parallelism, pp. 1-29, 2005.

[18] K. Meng et. al.,“Physical resource matching under power asymmetry”,
P=ac2 Conference, IBM TJ Watson Research Center, Yorktown, NY, pp.
1-10, October 2006.

[19] K. Meng and R. Joseph, “Process variation aware cache leakage manage-
ment”, ISLPED, pp. 262-267, 2006.

[20] A.Moshovos and G.S. Sohi, “Streamlining inter-operation memory com-
munication via data dependence prediction”, MICRO, pp. 235-245, 1997.

[21] M. Mutyam and V. Narayanan, “Working with process variation aware
caches”, DATE, pp. 1152-1157, 2007.

[22] S. Narendra, et. al., “Forward body bias for microprocessors in 130-
nm technology generation and beyond”, IEEE JSSC, 38(5), pp. 696-701,
2003.

[23] Nam Sung Kim, et. al., “Leakage Current: Moore’s Law Meets Static
Power”, IEEE Computer Society, pp. 68-75, 2003.

[24] The R project for Statistical computing, http://www.r-project.org./

[25] S. Nassif, “Within chip variability analysis”, IEEE IEDMC, pp. 283-286,
1998.

[26] S. Nassif, “Modeling and analysis of manufacturing variations”, CICC,
pp. 223-228, 2001.

[27] S. Ozdemir, et. al., “Yield-aware cache architectures”, IEEE Micro, pp.
15-25, 2006.

[28] M.D. Powell et. al., “Reducing set-associative cache energy via way-
prediction and selective direct-mapping”, MICRO, pp. 54-65, 2001.

[29] Y. Sazeides and J.E. Smith, “The predictability of data values”, ISCA, pp.
248-258, 1997.

[30] P.P. Shirvani and E.J. McClusky. “PADded cache: a new fault-tolerant
technique for cache memories”, VTS, pp. 440-445, 1999.

[31] SimpleScalar toolset, http://simplescalar.com/

[32] A. Sodani and G. Sohi, “Dynamic instruction reuse”, ISCA, pp. 194-205,
1997.

[33] SPEC 2000 benchmarks, http://www.spec.org/cpu/

[34] J. Tschanz et.al., “Adaptive body bias for reducing impacts of die-to-
die and within-die parameter variations on microprocessor frequency and
leakage”, IEEE JSSC, Vol. 37(11), pp. 1396-1402, 2002.

[35] P. Zuchowski et. al., ”Process and environmental variation impacts on
ASIC timing”, ICCAD, pp. 336-342, 2004.

788

