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Direction-of-arrival (DOA) estimation refers to the localization of sound sources on an angular

grid from noisy measurements of the associated wavefield with an array of sensors. For accurate

localization, the number of angular look-directions is much larger than the number of sensors,

hence, the problem is underdetermined and requires regularization. Traditional methods use an

‘2-norm regularizer, which promotes minimum-power (smooth) solutions, while regularizing with

‘1-norm promotes sparsity. Sparse signal reconstruction improves the resolution in DOA estimation

in the presence of a few point sources, but cannot capture spatially extended sources. The DOA

estimation problem is formulated in a Bayesian framework where regularization is imposed through

prior information on the source spatial distribution which is then reconstructed as the maximum a

posteriori estimate. A composite prior is introduced, which simultaneously promotes a piecewise

constant profile and sparsity in the solution. Simulations and experimental measurements show that

this choice of regularization provides high-resolution DOA estimation in a general framework, i.e.,

in the presence of spatially extended sources.VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4962325]

[ZHM] Pages: 1828–1838

I. INTRODUCTION

The problem of direction-of-arrival (DOA) estimation in

acoustic imaging refers to localizing sound sources from

noisy measurements of the wavefield with an array of sen-

sors. Since the spatial distribution of sources is unknown, the

number of steering directions is typically much greater than

the number of sensors on the array. Hence, DOA estimation

is an ill-posed (underdetermined) inverse problem and regu-

larization is essential to find a stable solution.

Optimization methods solve the DOA estimation prob-

lem as a least-squares parameter estimation problem and use

constraints to regularize it. Traditional methods for DOA

estimation1 use an ‘2-norm constraint on the model parame-

ters to achieve smooth solutions at the expense of low

resolution. Regularization with the ‘2-norm is also typical in

near-field acoustical holography (NAH) methods for sound

field reconstruction.2,3 Since there are usually only a few

sources, regularization with the ‘1-norm
4,5 attracts increasing

attention6–16 as it provides high-resolution DOA reconstruc-

tion due to its sparsity promoting characteristics. In under-

water acoustics, using multiple constraints to account for

simultaneous characteristics of the solution as sparsity and

smoothness (i.e., ‘1-norm and ‘2-norm) is shown to improve

the resolution of shallow-water source localization with

matched-field processing.17 The inclusion of an ‘2-norm
regularizer allows spatially extended sources to appear in the

DOA map, that otherwise would be ignored by the ‘1-norm
penalty alone.18

In a probabilistic formulation, regularization is imposed

in the form of prior information on the model parameters.

Bayesian estimation theory provides a systematic way to

include prior constraints to the data fitting term. In fact,

under the assumption of additive Gaussian noise, the maxi-

mum a posteriori (MAP) estimate is the optimal solution of

a regularized least-squares problem. In statistics, the best

known example for sparse signal reconstruction is the least

absolute shrinkage and selection operator19,20 (LASSO),

which is the application of an ‘1-norm constraint to least-

squares. In acoustic source localization, LASSO has superior

performance compared to traditional methods, providing

high-resolution DOA maps even in the presence of coherent

sources or single-snapshot data.21,22

The LASSO in its standard form does not promote block

sparsity (i.e., grouping of correlated locations), hence, it is not

suitable for recovering multipole or spatially extended sources

(e.g., edge-noise in aeroacoustic applications23 or submerged

objects in sonar imaging24). For such problems, which involve

certain structural constraints rather than pure sparsity, a

weighed LASSO25,26 (WL) formulation is introduced. WL

applies the ‘1-norm constraint on the model parameters

weighed by a structured matrix D, which reflects some

assumed structure or geometry in the model. WL has a wide

range of applications dictated by the choice of D. Particularly,
when D is a discrete differential operator, the corresponding

WL problem is equivalent to a total variation (TV)a)Electronic mail: anxe@dtu.dk
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regularization problem.27 TV-norm regularization promotes

piecewise constant solutions and is extensively used in image

processing for denoising since it preserves the sharp edges of

large features in the image while suppressing the smaller-

scale noisy components.28 To the best of our knowledge, TV-

norm regularization has not been introduced in acoustics even

though it is a common technique in ultrasound imaging.29,30

We derive the optimization problem for regularized

DOA estimation in a statistical framework and describe the

reconstructed DOA map as the MAP estimate in Bayesian

inference. We give an overview of the qualitative character-

istics of the MAP estimates for different regularizing prior

distributions. We show that the fused LASSO31 (FL), which

is a special form of WL combining an ‘1-norm and a TV-

norm constraint, outperforms established methods for DOA

estimation in a generalized framework comprising spatially

extended sources. This is verified both with simulations and

experimental measurements.

In this paper, vectors are represented by bold lowercase

letters and matrices by bold uppercase letters. The super-

scripts “T” and “H” denote the transpose and the Hermitian

(i.e., conjugate transpose) operators, respectively, on vectors

and matrices. The superscript “þ” denotes the generalized

inverse operator on a matrix A 2 C
R�Q

. The ‘p-norm of a

vector x 2 C
Q

is defined as kxkp ¼ ðPQ
q¼1 jxqjpÞ1=p. By

extension, the ‘0-norm is defined as kxk0 ¼
PQ

q¼1 1xq 6¼0. The

infinity norm is defined as the maximum vector element in

absolute value, kxk1 ¼ maxfjx1j;…; jxQjg. We use the

CVX toolbox for disciplined convex optimization which

uses interior point solvers to obtain the global solution of a

well-defined optimization problem and is available in the

MATLAB environment.32

II. SINGLE SNAPSHOT DOA ESTIMATION

We consider the simple one-dimensional (1D) problem

with a uniform linear array (ULA) of sensors and the sour-

ces residing in the plane of the array. We assume that the

sources are in the far-field of the array, i.e., plane wave

propagation, and narrowband processing with a known

sound speed. In this case, the location of a source is charac-

terized by the direction of arrival of the associated plane

wave, h 2 ½�90�; 90�� with respect to the array axis (broad-

side angle).

The propagation delay from the ith potential source to

each of the M array sensors is described by the forward (or

replica) vector aðhiÞ ¼ ejk sin hirs , where k ¼ 2p=k is the

wavenumber of the associated plane wave with wavelength

k and rs ¼ ½0; 1;…;M � 1�Td is the vector with the sensors’

positions in a uniform configuration with intersensor dis-

tance d. The time convention ejxt is implied and neglected

for simplicity. Hence, the forward vector is related to the

DOA of the ith source as

a hið Þ ¼ 1
ffiffiffiffiffi

M
p 1; ej

2pd=k1 sin hi ;…; ej
2pd=k M�1ð Þsin hi

h iT

: (1)

The normalization 1=
ffiffiffiffiffi

M
p

, such that kak2 ¼ 1, is to simplify

the analysis.

Discretizing the half-space of interest, h 2 ½�90�; 90��,
into N angular directions the DOA estimation problem can

be expressed with the linear model,

y ¼ Axþ n; (2)

where y 2 C
M

is the complex-valued data vector from the

measurements at the M sensors, x 2 C
N
is the unknown vec-

tor of the complex plane wave amplitudes at all N directions

on the angular grid of interest and n 2 C
M

is the additive

noise vector. The sensing matrix,

A ¼ ½aðh1Þ;…; aðhNÞ�; (3)

maps the signal x to the observations y and has as columns

the vectors [Eq. (1)] at all steering directions.

In the following, the complex wave amplitudes in x are

modeled with deterministic amplitude and random phase

uniformly distributed in [0,2p) (alternatively they can be

modeled as random variables following a complex Gaussian

distribution x � CNð0; r2xIÞ). The noise is generated as inde-

pendent and identically distributed (iid) complex Gaussian.

The array signal-to-noise ratio (SNR) is used, defined as

SNR ¼ 10 log10

E kAxk22
n o

E knk22
n o dBð Þ: (4)

The problem of DOA estimation is to recover the source

vector x 2 C
N
, given the sensing matrix AM�N and an obser-

vation vector y 2 C
M
. Usually, we are interested in a fine

resolution on the angular grid to achieve precise localization

(even if there are only a few sources K<M generating the

acoustic field) such that M�N and the problem in Eq. (2) is

underdetermined, i.e., has infinitely many solutions. A way

to regularize this ill-posed inverse problem is constraining

the possible solutions with prior information.

III. DOA ESTIMATION VIA BAYESIAN INFERENCE

DOA estimation as a regularized parameter estimation

problem1 can be interpreted in a statistical Bayesian setting

by treating both the unknowns x and the observations y as

stochastic (random) processes, and selecting a prior distribu-

tion on the vector x to impose the desired regularization.

Concisely, Bayes theorem connects the posterior distri-

bution pðxjyÞ of the model parameters x conditioned on the

data y with the data likelihood pðyjxÞ, the prior distribution

of the model parameters pðxÞ, and the marginal distribution

of the data pðyÞ,

p xjyð Þ ¼ p yjxð Þp xð Þ
p yð Þ

: (5)

The MAP estimate, omitting pðyÞ as it is independent of the
model x, is

x̂MAP ¼ argmax
x

ln pðxjyÞ

¼ argmin
x

½�ln pðyjxÞ � ln pðxÞ�: (6)
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The MAP estimate [Eq. (6)] can be used for DOA

reconstruction combining information both from the

observed data through the likelihood distribution and from

prior knowledge on the joint distribution of the model

parameters (i.e., the complex wave amplitudes), which is by

definition independent from the observations.

The data likelihood is based on the noise model, which is

assumed complex Gaussian with iid real and imaginary parts

n � CN ð0; r2IÞ [see Eq. (2)]. Hence, the data likelihood is

also complex Gaussian distributed pðyjxÞ � CN ðAx; r2IÞ,

p yjxð Þ / e� ky�Axk22ð Þ=r2 : (7)

The assumption of a Gaussian likelihood [Eq. (7)]

results in a least-squares estimation problem,

x̂MAP ¼ argmin
x

ky� Axk22 � r2 ln pðxÞ; (8)

where the prior distribution p(x) functions as a regularization

term, which conditions the inverse problem [Eq. (8)]. We

can introduce a composite prior (comprising Q priors) to

improve the estimation accuracy

pðxÞ /
Y

Q

i¼1

piðxÞ: (9)

For now, we employ a general expression for the priors

piðxÞ through the weighed multivariate generalized complex

Gaussian distribution,33

pi xð Þ / e
� kDixkpi=�ið Þpi ; (10)

where Di 2 R
P�N is a weighting matrix that can be used to

enforce structural or geometric constraints on the solution,

�i 2 Rþ is the scaling parameter and pi 2 Rþ is the shape

parameter.

Inserting Eqs. (9) and (10), the regularized least-squares

problem (8) is expressed as

x̂GGðl1;…; lQÞ ¼ argmin
x

ky� Axk22 þ
X

Q

i¼1

likDixkpipi ;

(11)

where li ¼ r2=�pii � 0 is the regularization parameter of the

ith prior, which controls the relative importance between the

data fit and the ith regularization term. The characteristics of

the MAP estimate depend on the choice of the number of

regularization terms Q, the shape parameters pi, the weight-

ing matrices Di, and the regularization paremeters li.

A. Maximum likelihood

The MAP estimate in its simplest form corresponds to

the maximum likelihood (ML) estimate, i.e., the vector x

that best fits the data,1

x̂ML ¼ argmin
x

ky� Axk22
¼ Aþyþ xnull; (12)

where xnull 2 NðAÞ is a null solution, i.e., Axnull ¼ 0.

The ML estimate [Eq. (12)] neglects prior information,

i.e., considering Eq. (11) with li¼ 0 for all i 2 [1,…,Q]. The

resulting optimization problem (12) corresponds to an

unregularized least-squares problem, which is convex with

analytic solution, hence, simple to solve. However, the cor-

responding MAP estimate x̂ML depends solely on optimizing

the data fit, assuming no specific prior knowledge on the

model x. Thus, it tends to be unstable,34 especially for under-
determined problems M<N that A has a non-trivial null

space, i.e., xnull 6¼ 0.

B. CBF

Traditional methods in DOA estimation assume an iid

multivariate complex Gaussian prior distribution x
� CNð0; �2IÞ for the model parameters, which promotes

smooth solutions35 [i.e., Eq. (11) with Q¼ 1, D ¼ IN , and
p¼ 2],

x̂‘2ðlÞ ¼ argmin
x

ky� Axk22 þ lkxk22

¼ AHðAAH þ lIMÞ�1y: (13)

Problem (13) is an ‘2-norm regularized least-squares prob-

lem, which is convex and has an analytic solution, thus, it is

simple to solve. The estimate [Eq. (13)] has improved

robustness to noise compared to Eq. (12) as the ‘2-norm
constraint penalizes the energy in the solution (forcing

xnull ¼ 0).

Conventional beamforming (CBF)1 is related to the

‘2-norm estimate for large l,22

x̂CBF ¼ lim
l!1

ðlx̂‘2ðlÞÞ ¼ AHy: (14)

In principle, CBF combines the sensor outputs coherently to

enhance the signal at a specific look direction from the ubiq-

uitous noise. CBF is robust to noise but suffers from low res-

olution and the presence of sidelobes.

C. LASSO

Many DOA estimation scenarios involve few spatially

localized sources (there are only K�N sources). In such

cases, the solution vector x is inherently sparse, i.e., com-

prises only a few non-zero components, and an appropriate

regularizer is the ‘0-norm, which counts the number of non-

zero entries in the vector, to find a sparse solution. However,

the resulting ‘0-norm minimization problem is a non-convex

combinatorial problem, which becomes computationally

intractable even for moderate dimensions. Compressive

sensing (CS)4,5 offers a remedy by proving that for suffi-

ciently sparse signals, K�N, and sensing matrices A with

sufficiently incoherent columns, the ‘0-norm minimization

problem is equivalent (at least in the noiseless case) to its

convex relaxation, the ‘1-norm minimization problem.36,37
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By replacing the ‘0-norm with the convex ‘1-norm, the prob-

lem can be solved efficiently with convex optimization even

for large dimensions.32,38

The ‘1-norm minimization problem can be formulated

in the Bayesian framework19,20,39 assuming that the coeffi-

cients of the solution x are iid and follow a Laplacian-like

distribution (for complex random variables),40

p xð Þ /
Y

N

i¼1

e�½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRefxigÞ2þðImfxigÞ2
p

�=� ¼ e�kxk1=�: (15)

Assuming a Laplacian prior [Eq. (15)], the MAP estimate is

the solution to an ‘1-norm regularized least-squares problem

[i.e., Eq. (11) with Q¼ 1, D¼ IN, and p¼ 1), and is known

as the least absolute shrinkage and selection operator19

(LASSO),

x̂LASSOðlÞ ¼ argmin
x

ky� Axk22 þ lkxk1; (16)

since the ‘1 regularizer shrinks the coefficients of x toward

zero as the regularization parameter l¼ r2/� increases; see

Fig. 1.

Opposed to a Gaussian prior, which promotes smooth

solutions with minimum energy, the Laplacian-like prior dis-

tribution encourages sparse solutions since it concentrates

more mass near 0 and in the tails. Thus, the parsimonious

LASSO estimate improves significantly the resolution in

DOA estimation in the presence of only a few sources as

shown in Ref. 22.

D. WL

The LASSO optimization problem, Eq. (16), encourages

sparse solutions with few non-zero coefficients through the

‘1-norm regularization term. By extension, the ‘1-norm can

be used to enforce more general structural or geometric con-

straints on the solution by replacing the sparsity constraint

kxk1 with kDxk1 for a structured matrix D. The resulting

optimization problem is known as the WL problem25

x̂WLðlÞ ¼ argmin
x

ky� Axk22 þ lkDxk1: (17)

The generalized formulation performs well in applica-

tions where the solution exhibits spatial correlation, e.g.,

DOA tracking for moving sources by an adaptive update of a

diagonal weighting matrix D, which reflects the evolution of

the source probability distribution21 and recovery of continu-

ous sources by promoting block sparsity.31

E. TV-norm regularization

A particular formulation of WL [Eq. (17)], which is of

interest in applications concerned with DOA estimation of

extended sources,23,24 uses the band matrix D ¼ DTV

2 R
ðN�1Þ�N defined as

DTV ¼

�1 1 0 	 	 	 0 0

0 �1 1 	 	 	 0 0

..

. ..
. ..

. . .
. ..

.

0 0 0 	 	 	 �1 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(18)

to promote block sparsity, i.e., sparsity not directly on the

coefficients of the solution but rather on their successive dif-

ferences (few kinks in the solution vector). From a Bayesian

perspective, this formulation [Eq. (11) with Q¼ 1, D¼DTV,

and p¼ 1] assumes a Laplacian-like prior distribution on

the coefficients differences of the model [compare with Eq.

(15)],

p xð Þ /
Y

N�1

i¼1

e�½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRefxiþ1�xigÞ2þðImfxiþ1�xigÞ2
p

�=�

¼ e�kDTVxk1=� : (19)

The resulting MAP estimate is

x̂TVðlÞ ¼ argmin
x

ky� Axk22 þ l
X

N�1

i¼1

jxiþ1 � xij

¼ argmin
x

ky� Axk22 þ lkDTVxk1: (20)

Note that the regularization term on the coefficient

differences is a 1D discrete TV norm.27 TV-norms are essen-

tially ‘1-norms of derivatives, krxk1, and are used to pro-

mote piecewise constant solutions.41 We use the subscript

“TV” to indicate this correspondence.

We demonstrate the block-sparsity characteristics of Eq.

(20) as a function of the regularization parameter l with a

simulation example. We consider a ULA with M¼ 20 sen-

sors and spacing d ¼ k=2. The source distribution consists of

two extended sources covering the DOA intervals ([�30,

�20]�,[0, 20]�) with amplitudes [�6,0] dB re max. Each

continuous source is modeled as a series of monopoles with

equal complex amplitude (deterministic amplitude and uni-

formly distributed phase). The noise variance is chosen such

FIG. 1. (Color online) Three sources (*) at DOAs [�5,0,20]� with ampli-

tudes [1,0.6,0.2] (or [0,�4,�14] dB), respectively, reconstructed on an angu-

lar grid [�90:5:90]� with a ULA of M¼ 20 sensors separated by d¼ k/2 at

SNR¼ 20 dB (as in Ref. 22). (a) The amplitude of each component of the

LASSO estimate (16) versus l. The ‘1-norm regularizer shrinks the coeffi-

cients of x toward zero as the regularization parameter l increases. The solu-

tion vector x̂LASSO for (b) l¼ 0, (c) l¼ 0.38, (d) l¼ 1.14, (e) l¼ 1.76,

denoted in (a) with dashed vertical lines.
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that SNR¼ 20 dB. To facilitate the demonstration, the sens-

ing matrix A is defined on a coarse angular grid [–90:5:90]�,
i.e., N¼ 37.

Figure 2 depicts the solution path (20), i.e., the course of

each of the 37 source coefficients as a function of l, along

with DOA maps for selected values of l. Since we are inter-

ested in block sparsity, it is natural to inspect the solution

path from right to left, i.e., for decreasing values of l. For

large values of l (e.g., l¼ 9), the TV problem [Eq. (20)] is

over-regularized and all the coefficients are fused into one

group [Fig. 2(e)]. For smaller l, the grouped coefficients

gradually unfuse into more groups [two groups for l¼ 5,

Fig. 2(d) and three groups for l¼ 1, Fig. 2(c)]. Finally, for

l¼ 0, i.e., the unregularized solution [Eq. (12)], all solution

coefficients are ungrouped into their individual amplitudes.

The solution path in Fig. 2 follows the edge-preserving

and scale-dependent properties of TV;28 the edge location of

the solution-features is generally preserved for appropriate

values of the regularization parameter but the dynamic range

is reduced according to the size of the features [see Fig.

2(c)]. Hence, TV regularization promotes a piecewise con-

stant solution such that the solution coefficients are closely

related to their neighbors, while single noisy peaks are sup-

pressed. Note that all components of the solution are active

along the full path (compare with Fig. 1), i.e., TV-norm

regularization does not promote sparsity on individual coeffi-

cients of the solution. To achieve pure sparsity apart from

structural sparsity an additional ‘1-norm constraint is required.

TV-norm regularization promotes piecewise constant sol-

utions by penalizing the first derivative through the band

matrix [Eq. (18)]. Even though we limit this study to recover-

ing spatial source distributions characterized by block-sparsity

through such piecewise constant fit, the WL framework

accommodates to solutions fitting a more general polynomial

trend, e.g., smooth spatial source distributions without discon-

tinuities at the boundaries. For example, defining the weighing

matrix D in Eq. (17) as a discrete nth-order derivative

operator25 promotes solutions with (n – 1)-degree polynomial

trend (e.g., linear,42 quadratic, cubic).

F. FL

The FL31 combines a LASSO prior [Eq. (15)] with a

TV-norm prior [Eq. (19)] to promote simultaneously sparsity

in the coefficients (i.e., few active coefficients in the solu-

tion) and sparsity in the difference of successive coefficients

(i.e., flatness in the coefficient profile)

x̂FLðlTV;l1Þ¼ argmin
x

½ky�Axk22þlTVkDTVxk1

þl1kxk1�: (21)

The combination of an ‘1-norm and a TV-norm regularizer

makes FL suitable for applications that involve block spar-

sity or mixtures of spikes and flat plateaus, e.g., promoting

coefficient sparsity (point sources) along with block sparsity

(extended sources).

The FL optimization problem, Eq. (21), can be cast into

a WL formulation, Eq. (17), by defining l ¼ lTV and D
2 R

P�N as

D ¼
DTV

ðl1=lTVÞIN

2

4

3

5; (22)

where DTV is the band matrix in Eq. (18), hence, P

¼ ðN � 1Þ þ N ¼ 2N � 1.

1. FL solution path

We demonstrate the behavior of the FL estimate [Eq.

(21)], as a function of the regularization parameters lTV and

l1 when both point and continuous sources are present (Fig.

3). For that, we employ the setup of Sec. III E on a refined 1�

angular grid and we replace the continuous source covering

the DOA interval [�30,�20]� with two point sources at

DOAs [�30,�20]� with amplitudes [�3,�6] dB re max,

respectively, and random uniformly distributed phase.

Figure 3 depicts the FL estimate on a grid of values

[0,0.1,1] for the regularization parameters ½lTV; l1�. For

lTV ¼ l1 ¼ 0, we obtain the least-squares solution [Eq.

(12), Fig. 3(a)], which is characterized by low resolution

while it fails to reconstruct both point sources as they are

buried under the maximum sidelobe level. The LASSO esti-

mates [Eq. (16), Figs. 3(d) and 3(g)] are sparse, allowing

only few peaks in the DOA map. Even though point sources

are favored and reconstructed more accurately with the stan-

dard LASSO, the continuous source is estimated as a collec-

tion of much fewer monopoles than the actual distribution

(only 6 point sources reconstructed out of 21 within the

range of the continuous source). Contrarily, the TV-norm

estimates [Eq. (20), Figs. 3(b) and 3(c)] promote a piecewise

constant profile. In this case, the continuous source is recon-

structed rather accurately, but the point sources are fused

into groups with neighboring DOAs. When lTV > 0 and

l1> 0 simultaneously, the resulting FL solution [Eq. (21),

Figs. 3(e), 3(f), 3(h), and 3(i)] combines the characteristics

FIG. 2. (Color online) (a) The amplitude of each component of the TV-

norm regularized least-squares solution for varying values of the regulariza-

tion parameter l. The TV-norm regularizer fuses the coefficients of x into

groups of equal amplitude as the regularization parameter l increases. The

solution vector x̂TV for (b) l¼ 0, (c) l¼ 1, (d) l¼ 5, (e) l¼ 9, denoted in

(a) with dashed vertical lines.
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of the LASSO and TV priors, each to an extent determined

by the corresponding regularization parameter. For example,

for lTV > l1 group-sparsity outbalances coefficient-sparsity

in the FL estimate (few groups, no spikes), Fig. 3(f), and

vice versa for l1 > lTV (many groups, few spikes), Fig.

3(h). For the considered setup, choosing l1¼ 1 and lTV
¼ 0.1 gives the best reconstruction, Fig. 3(h).

The solution path in Fig. 3 shows the qualitative charac-

teristics of the FL solution as a function of lTV and l1. It

does not intend to provide an exhaustive search over a wide

range of values for the regularization parameters. Depending

on the relative importance between block and coefficient

sparsity for a specific application, the regularization parame-

ters can be tuned accordingly through the solution path,

following a similar procedure to the one described in Fig. 3.

After a range of relevant values for the regularization param-

eters is determined through this procedure, a refined search

on the regularization parameters may improve the recon-

struction accuracy.

2. Dual path

The dual equivalent of an optimization problem38 is

often solved instead of the primal optimization problem

either to facilitate the practical implementation due to

reduced computational complexity15 or to offer a more intui-

tive insight in the optimization process, e.g., for regulariza-

tion parameter selection.22

In Ref. 22, the LASSO problem [Eq. (16)] is solved in

the dual domain, which yields k2AHðy� Ax̂Þk1 
 l. This

primal-dual correspondence dictates that for every active

element x̂i 6¼ 0 of the primal solution x̂, the corresponding

element 2aHi ðy� Ax̂Þ of the dual vector 2AHðy� Ax̂Þ has

amplitude equal to l. Thus, gradually reducing l from an

initial value of l ¼ 2kAHyk1, the number of elements in the

dual vector with amplitude equal to l increases. For a given

sparsity level, this procedure finds the locations (indexes) of

the active components through the dual path (i.e., the

evolution of the coefficients of the dual vector for several

values of the regularization parameter l).

When DP�N has rankðDÞ ¼ P (hence, P
N), the WL

problem can be reduced to the standard LASSO problem

through a transformation of variables and solved through the

dual path. However, when rank(D)<P such a transforma-

tion is not possible.25 Hence, for the FL formulation the cor-

responding dual problem43 (see the Appendix) offers no

advantage. The FL dual is an underdetermined problem

without analytic solution, which can be solved with convex

optimization over P ¼ 2N � 1 dual optimization variables,

i.e., it has greater computational complexity than the primal

(N primal optimization variables).

Due to the large number of dual variables, it is not

straightforward to select the appropriate regularization

parameter from the FL dual path. Hence, we focus on the

properties of the primal path (i.e., the evolution of the coeffi-

cients of the primal vector for several values of the regulari-

zation parameter l); see Sec. III F 1.

3. Maximum number of resolvable DOAs

The maximum number of resolvable DOAs through the

standard LASSO problem [Eq. (16)], cannot exceed the rank

of the sensing matrix, rankðAÞ ¼ minfM;Ng ¼ M, Ref. 25,

KLASSO ¼ kx̂LASSOk0 
 M; (23)

while KLASSO is even lower for exact reconstruction.15 The

limit imposed on the maximum number of resolvable DOAs

by the number of sensors on the array makes standard

LASSO impractical for applications involving continuous

sources due to misleading source representation.

For FL theM limit refers to the number of non-zero coeffi-

cient blocks rather than the number of non-zero coefficients,31

KFL ¼ kDx̂FLk0 
 M; (24)

increasing the total number of resolvable DOAs. Hence, FL

offers the capacity to reconstruct a larger number of DOAs

than the standard LASSO problem (as long as at least some

of them are grouped in blocks).

4. Spatial coherence of extended sources

The effect of source spatial coherence to the FL recon-

struction is depicted in Fig. 4. Figure 4(a) shows the FL esti-

mate for coherent sources based on the simulation setup of

Sec. III E on a 1� grid, where each of the two sources have

equal complex amplitude along their extent (e.g., vibrating

surfaces). Figure 4(b) considers that each monopole on each

of the two considered sources is driven by an incoherent

mechanism such that is modeled with constant amplitude but

random, uniformly distributed phase (e.g., aeroacoustic noise

on wind-blades).

The more complicated the phase pattern is in the distrib-

uted arrangement of an extended source, the less robust the

amplitude estimation, as is the case when the monopoles are

modeled with random phase, Fig. 4(b). This is due to the fact

that the TV regularization term kDTVxk1 applies the
FIG. 3. (Color online) The FL solution vector (21) for a set of values of the

regularization parameters l1 and lTV.
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multiplexing matrix DTV to the complex vector x rather than

to its amplitude jxj. However, replacing the TV constraint in

Eq. (21) with kDTVjxj k1 leads to a non-convex problem,

and its solution is out of the scope of this paper.44

G. Elastic net

Another optimization method proposed to achieve group

selection of correlated variables (thus, promote block spar-

sity) is the elastic net45 (EN), which combines an ‘2-norm
and an ‘1-norm regularizer to achieve a balance between

smoothness and sparsity17

x̂ENðl2; l1Þ ¼ argmin
x

½ky� Axk22 þ l2kxk22 þ l1kxk1�:

(25)

Problem (25) can be reformulated as

x̂ENðl2; l1Þ ¼ argmin
x

kyEN � AENxk22 þ l1kxk1; (26)

where yEN ¼ ½y; 0ðN�MÞ�1� and AEN ¼ ½A; l2IðN�MÞ�N�. Note
that Eq. (26) is a standard LASSO formulation where the ‘2-
norm regularization is incorporated into the sensing matrix

AEN 2 C
N�N

.

In a Bayesian interpretation, the EN problem combines

a Gaussian and a Laplacian-like prior. The relative impor-

tance of each prior is controlled by the regularization param-

eters l2 ¼ r2=�2 and l1 ¼ r2=�, which are both dependent

on the relative noise level. Regularization with the ‘1-norm
often improves accuracy in least-squares estimation over ‘2-
norm regularization, trading-off decreased variance for

increased bias.14 EN optimization was introduced in order to

alleviate the bias-variance trade-off through accurate regu-

larization. EN optimization is useful for applications that

involve groups of highly correlated variables and improves

the resolution compared to ‘2-norm regularization as

depicted in the solution path of Fig. 5. However, EN regular-

ization does not promote a piecewise constant coefficient

profile but rather a smoothed solution; compare the corre-

sponding estimates in Figs. 3 and 5.

H. Regularization parameter selection

The characteristics of the MAP estimate [Eq. (11)] and,

by extension, the quality of the source reconstruction depend

strongly on the regularization parameters li as indicated in

Figs. 1, 2, 3, and 5. The choice of the regularization parame-

ters li ¼ r2=�i is dictated by the noise level relative to the

source strengths, which are, normally, unknown. This makes

the regularization parameter selection non-trivial and partly

explains the wide application of the parameter-free CBF

method [Eq. (14)].

There are several methods for regularization parameter

selection for the ‘2-norm regularized least-squares prob-

lem.2,34 For problems with sparsifying regularization terms,

as the LASSO and TV-norm regularization, the regulariza-

tion parameter is indicated by either the solution path or the

dual path kinks.22,25 However, the accuracy of the existing

methods depends on the configuration of the individual prob-

lem (i.e., the spatial source distribution). Regularization

parameter tuning becomes more involved with multiple reg-

ularization terms as the solution path involves a two-

dimensional search (see Sec. III F 1) while the dual path is

non-informative (see Sec. III F 2).

A study on regularization parameter selection methods

would deserve a dedicated analysis. An interesting approach

is based on a hierarchical Bayes model, which offers

evidence-based regularization parameter selection (i.e., max-

imizing a type-II likelihood).46–48 The focus of this paper is

to compare qualitatively different regularization methods;

thus, for a given SNR we present the results with ad hoc reg-

ularization parameters.

I. Comparison of regularization methods

Figure 6 compares the MAP estimates in Eqs. (14), (16),

(20), (21), and (25) for the simulation setup of Sec. III E, on a

refined 1� angular grid. To facilitate the comparison, all regu-

larization parameters are set to 1, l ¼ l1 ¼ l2 ¼ lTV ¼ 1.

The CBF solution [Fig. 6(a)] is smooth, spreading energy

along the whole angular spectrum, which is characteristic of

a Gaussian prior. Contrary, the LASSO solution [Fig. 6(b)]

is sparse, comprising only a few non-zero peaks, as imposed

from the Laplacian-like prior. The TV-norm solution

FIG. 4. (Color online) FL reconstruction (lTV¼l1¼ 1) of spatially

extended (a) coherent and (b) incoherent sources.

FIG. 5. (Color online) The EN solution vector (25) for a set of values of the

regularization parameters l1 and l2.
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[Fig. 6(c)] has the characteristic piecewise constant profile

with reduced dynamic range (Laplacian-like prior for the

model’s coefficients difference). The EN [Fig. 6(d)] and

the FL [Fig. 6(e)] solutions are based on composite priors.

Hence, the EN solution combines the smoothness and spar-

sity characteristics of CBF and LASSO, respectively, while

the FL solution combines the piecewise constant profile and

sparsity characteristics of TV and LASSO accordingly.

Even though all estimates indicate concentration of energy

along the regions of DOAs covered by the assumed

extended sources, the FL solution recovers almost perfectly

the exact solution.

The sparsity level of each MAP estimate (number of

non-zero coefficients in the solution) is depicted in Fig. 6(f).

CBF and TV estimates are not sparse, attributing energy to

all N coefficients in the DOA grid, while the LASSO, EN,

and FL solutions, which incorporate an ‘1-norm regularizer,

exhibit a degree of sparsity, hence, improved resolution. The

sparsity of the LASSO solution does not exceed M as dic-

tated by Eq. (23), thus, LASSO cannot recover accurately

spatially extended sources. The EN and FL solutions allow

the degree of sparsity to exceed M.

The comparison indicates that FL, which is designed for

problems that exhibit block sparsity,31 is a suitable optimiza-

tion problem for DOA estimation and sound source recon-

struction involving spatially extended sound sources.

IV. EXPERIMENTAL RESULTS

The suitability of FL for reconstructing spatially

extended sources due to the block sparsity characteristics of

the FL solution is validated with experimental data in

anechoic conditions and compared to other regularization

methods as in Sec. III I.

Two spatially extended sources are tested (Fig. 7); a

loudspeaker with driver diameter 0.3m as a coherent piston-

like source and a fan with diameter 0.7m as an incoherent

aeroacoustic source. The data are collected from a ULA with

M¼ 12 sensors and intersensor spacing d¼ 0.075m. The

sound speed in air is considered as c¼ 343m/s. Both sources

are placed at a range of 2.5m from the array plane. The loud-

speaker is placed parallel to the array plane and centered to

the array axis such that it extends over [�3,3]� DOAs, i.e.,

kxk0 ¼ 7. The fan is placed with its rotational axis parallel

to the array plane such that it constitutes a linear source

extending over [�15,0]� DOAs, i.e., kxk0 ¼ 16. Placing the

sources at larger distances from the array would limit their

apparent spatial extent to point sources rather than extended

FIG. 6. (Color online) Comparison of the MAP estimate (11) conditioned

with different priors setting li¼ 1 for all i 2 [1,…,Q]. (a) CBF [Eq. (14)],

(b) LASSO [Eq. (16)], (c) TV [Eq. (20)], (d) EN [Eq. (25)], and (e) FL [Eq.

(21)]. (f) Sparsity level of each MAP estimate, where the dimensions of the

problemM¼ 20 and N¼ 181 as well as the sparsity level of the true solution

kxk0 ¼ 32 are also indicated.

FIG. 7. (Color online) Experimental setup. Measurements with a ULA for

DOA estimation of (a) a loudspeaker source and (b) aeroacoustic noise from

a fan.

FIG. 8. (Color online) MAP estimates from experimental single-snapshot

data for the loudspeaker source at 200Hz. (a) CBF [Eq. (14)], (b) LASSO

[Eq. (16)], (c) TV [Eq. (20)], (d) EN [Eq. (25)], and (e) FL [Eq. (21)]. (f)

Sparsity level of each MAP estimate, where the dimensions of the problem

M¼ 12 and N¼ 181 as well as the sparsity level of the true solution kxk0
¼ 7 are also indicated.
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sources. The plane wave model [Eq. (2)] is assumed and pos-

sible errors due to wavefront curvature are neglected as

near-field processing does not affect significantly the recon-

struction (results not shown). The measurements are con-

ducted in an anechoic chamber with free volume of around

1000 m3, which offers anechoic conditions down to 50Hz

(the large anechoic chamber of the Technical University of

Denmark). The data were acquired with a sampling fre-

quency of 8209Hz and Fourier transformed with 214 samples

per recorded second (with zero-padding).

According to Sec. III I, the data from a 10 s recording are

post-processed at 200 and 2000Hz, with CBF [Eq. (14)],

LASSO [Eq. (16)], TV-norm regularization [Eq. (20)], FL [Eq.

(21)], and EN [Eq. (25)], on a DOA grid [�90:1:90]� by set-

ting all regularization parameters l ¼ l1 ¼ l2 ¼ lTV ¼ 1.

The resulting MAP estimates and their corresponding sparsity

levels are depicted in Figs. 8 and 9 for the loudspeaker at 200

and 2000Hz and in Figs. 10 and 11 for the fan at 200 and

2000Hz. In all cases, the FL estimate captures more accurately

the underlying source spatial distribution [see the sparsity pro-

file of the estimates in subplots (f)], even though the regulari-

zation parameters are not finely tuned. Fine tuning the

regularization parameters l1 and lTV underlines the improved

resolution in reconstructing extended sources compared to

conventional methods (CBF); see Fig. 12.

V. CONCLUSION

DOA estimation with sensor arrays is essentially an

underdetermined problem that requires regularization. In a

probabilistic formulation, regularization is imposed in the

form of prior information and the DOA map results as the

MAP estimate in Bayesian inference. The characteristics of

FIG. 9. (Color online) MAP estimates (as in Fig. 8) from experimental

single-snapshot data for the loudspeaker source at 2000Hz.

FIG. 10. (Color online) MAP estimates (as in Fig. 8) from experimental

single-snapshot data for the fan source at 200Hz.

FIG. 11. (Color online) MAP estimates (as in Fig. 8) from experimental

single-snapshot data for the fan source at 2000Hz.

FIG. 12. (Color online) CBF (a),(c) and tuned FL estimates with (b)

l1¼ 2.4, lTV¼ 0.8 and (d) l1¼ 1.4, lTV¼ 0.8 from experimental single-

snapshot data for the loudspeaker and fan source at 2000Hz.
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the DOA estimate are dictated by the choice of the underlying

prior distribution on the model parameters: a Gaussian distri-

bution promotes smooth, low-resolution solutions through an

‘2-norm regularizer; a Laplacian distribution promotes sparse

solutions through an ‘1-norm regularizer, improving the reso-

lution significantly in the presence of point sources; a TV-

norm regularizer promotes piecewise constant solutions

(block sparsity), hence, it is suitable for applications that

involve extended sources. The choice of the regularization

parameters determines the quality of the reconstruction.

Composite priors are used to combine constraints in the

solution controlled by the regularization parameters. For

example, EN balances smoothness and sparsity in the esti-

mate by combining an ‘2-norm and ‘1-norm regularizer,

whereas FL combines a TV-norm and an ‘1-norm regularizer

to impose additional structural constraints on the solution

(such as block sparsity) besides pure sparsity. It is shown

with simulated and experimental data that FL with proper

regularization parameters improves the resolution in DOA

estimation and sound source reconstruction in a more gen-

eral framework (i.e., comprising spatially extended sources)

compared to established DOA estimation methods.

APPENDIX: THE WL DUAL PATH

The non-differentiable ‘1 constraint in the WL formula-

tion (17) is applied to a linear transformation of x and is,

therefore, difficult to analyze the problem in this form. For

that, we introduce the transformation of variables Dx¼ z,
where z 2 C

P
, such that the optimization problem in Eq.

(17) is reformulated as43,49

min
x;z

ðky� Axk22 þ lkzk1Þ subject to Dx ¼ z: (A1)

The equality constraints in Eq. (A1) can become implicit in

the objective function with the use of Lagrange multipliers

u 2 C
P
such that the objective function in Eq. (A1) in an

unconstrained form is the Lagrangian,

Lðx; z; u; lÞ ¼ ky� Axk22 þ lkzk1 þ Re½uHðDx� zÞ�
¼ L1ðx; uÞ þ L2ðz; u; lÞ; (A2)

where

L1ðx; uÞ ¼ ky� Axk22 þ Re½uHDx�; (A3)

and

L2ðz; u; lÞ ¼ lkzk1 � Re½uHz�: (A4)

The dual function is obtained by minimizing the

Lagrangian [Eq. (A2)] over the primal optimization variables

x and z.
Minimizing L1ðx; uÞ over x implies @xL1ðx; uÞ ¼ 0

which yields

DTu ¼ 2AHðy� Ax̂Þ: (A5)

Equation (A5) denotes the relation between the primal and

the dual variables, x and u, respectively. Granted that the vec-
tor DTu is orthogonal to the null space of the sensing matrix

A, i.e., DTu?NðAÞ or equivalently ðDWÞHu ¼ 0, where W
is an orthonormal basis of the null space N(A) obtained from

a singular value decomposition, Eq. (A5) yields

u ¼ 2ðDTÞþAHðy� Ax̂Þ; (A6)

and

x̂ ¼ Aþyþ xnull �
1

2
AHAð ÞþDTu; (A7)

where Aþy represents the minimum norm solution and xnull
represents a null solution such that their sum leads to the

unconstrained least squares solution. The infimum of

Eq. (A3) is evaluated by inserting successively Eqs. (A5)

and (A7),

L1 x̂;uð Þ ¼ ky�Ax̂k22 þRe DTuð ÞH x̂
h i

¼ kyk22 � kAx̂k22

¼ kyk22 �
�

�

�

�

A Aþyþ xnull �
1

2
AHAð ÞþDTu

� �
�

�

�

�

2

2

¼ kyk22 � k~y � ~D
H
uk22; (A8)

where, to simplify notation, we have introduced ~y ¼ AAþy
and ~D ¼ 1=2DAþ. Note that, since xnull 2 NðAÞ; Axnull ¼ 0.

Minimizing L2ðz; u; lÞ over z implies @zL2ðz; u; lÞ�0,

where the subdifferential operator @z is a generalization of

the partial differential operator for functions that are not dif-

ferentiable everywhere (Ref. 38, p. 338). The subgradient for

the ‘1-norm is the set of vectors,

@zkzk1 ¼ fs : ksk1 
 1; sHz ¼ kzk1g; (A9)

which implies

si ¼
zi

jzij
; zi 6¼ 0;

jsij 
 1; zi ¼ 0;
(A10)

i.e., for every active element zi 6¼ 0 of the vector z 2 C
P
(or

equivalently xi�1 6¼ xi), the corresponding element of the sub-

gradient is a unit vector in the direction of zi. For every null

element zi¼ 0 the corresponding element of the subgradient

has magnitude less than or equal to one. Thus, the magnitude

of the subgradient is uniformly bounded by unity, ksk1 
 1.

Since Eq. (A2) is convex, the global minimum is

attained if 0 2 @zL2ðz; u; lÞ, which leads to the necessary

and sufficient condition

l�1u 2 @zkzk1: (A11)

Then, from Eqs. (A10) and (A11), the coefficients ui of

the dual vector u 2 C
P
have amplitude such that

juij ¼ l; ẑi 6¼ 0;
juij 
 l; ẑi ¼ 0;

(A12)

i.e., whenever a component of ẑ becomes non-zero, the corre-

sponding component of the dual vector hits the boundary iden-

tified with the regularization parameter, kuk1 
 l. Thus,
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L2ðẑ; u; lÞ ¼
0; kuk1 
 l

�1; otherwise;

(

(A13)

which corresponds to a box constraint for the dual variable u.
From Eqs. (A8) and (A13), the dual problem is

max
u

kyk22 � k~y � ~D
H
uk22

subject to kuk1 
 l;

and ðDWÞHu ¼ 0: (A14)
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