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Abstract—We consider compressed sensing of block-sparse sig-
nals, i.e., sparse signals that have nonzero coefficients occurring
in clusters. An uncertainty relation for block-sparse signals is de-
rived, based on a block-coherence measure, which we introduce.
We then show that a block-version of the orthogonal matching
pursuit algorithm recovers block k-sparse signals in no more than
k steps if the block-coherence is sufficiently small. The same
condition on block-coherence is shown to guarantee successful
recovery through a mixed `2/`1-optimization approach. This
complements previous recovery results for the block-sparse case
which relied on small block-restricted isometry constants. The
significance of the results presented in this paper lies in the fact
that making explicit use of block-sparsity can provably yield
better reconstruction properties than treating the signal as being
sparse in the conventional sense, thereby ignoring the additional
structure in the problem.

I. INTRODUCTION

The framework of compressed sensing is concerned with
the recovery of an unknown vector from an underdetermined
system of linear equations [1], [2]. The key property exploited
for recovery of the unknown data is the assumption of sparsity.
More concretely, denoting by x an unknown vector that is
observed through a measurement matrix D according to y =
Dx, it is assumed that x has only a few nonzero entries. A
fundamental observation is that if D is chosen properly and x
is sufficiently sparse, then x can be recovered from y = Dx,
irrespectively of the locations of the nonzero entries of x, even
if D has far fewer rows than columns. This result has given
rise to a multitude of different recovery algorithms which can
be proven to recover a sparse vector x under a variety of
different conditions on D [3], [4], [5], [1], [6].

Two widely studied recovery algorithms are the basis pursuit
(BP), or `1-minimization approach [7], [1], and the orthogonal
matching pursuit (OMP) algorithm [8]. One of the main tools
for the characterization of the recovery abilities of BP is
the restricted isometry property (RIP) [1], [9]. Specifically, if
the measurement matrix D satisfies the RIP with appropriate
restricted isometry constants, then x can be recovered by
BP. Unfortunately, determining the RIP constants of a given
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matrix is in general an NP-hard problem. A more simple
and convenient way to characterize recovery properties of a
dictionary is via the coherence measure [10], [11], [5]. It was
shown in [5], [12] that appropriate conditions on the coherence
guarantee that both BP and OMP recover the sparse vector
x. The coherence also plays an important role in uncertainty
relations for sparse signals [10], [11], [13].

In this paper, we consider compressed sensing of sparse
signals that exhibit additional structure in the form of the
nonzero coefficients occurring in clusters. Such signals are
referred to as block-sparse [14], [15]. Our goal is to explicitly
take this block structure into account, both in terms of the
recovery algorithms and in terms of the measures that are
used to characterize their performance. The significance of
the results we obtain lies in the fact that making explicit
use of block-sparsity can provably yield better reconstruction
properties than treating the signal as being sparse in the
conventional sense, thereby ignoring the additional structure
in the problem.

Block-sparsity arises naturally, e.g., when dealing with
multi-band signals [16], [17], [18] or in measurements of
gene expression levels [19]. Another interesting special case of
the block-sparse model appears in the multiple measurement
vector (MMV) problem, which deals with the measurement of
a set of vectors that share a joint sparsity pattern [20], [21],
[22], [14], [23]. Furthermore, it was shown in [14], [15] that
the block-sparsity model can be used to treat the problem of
sampling signals that lie in a union of subspaces [24], [25],
[14], [26], [13], [16], [17].

One approach to exploiting block-sparsity is by suitably
extending the BP method, resulting in a mixed `2/`1-norm
recovery algorithm [14], [27]. It was shown in [14] that if D
has small block-restricted isometry constants, which general-
izes the conventional RIP notion, then the mixed norm method
is guaranteed to recover any block-sparse signal, irrespectively
of the locations of the nonzero blocks. Furthermore, recovery
will be robust in the presence of noise and modeling errors
(i.e., when the vector is not exactly block-sparse). It was
also established in [14] that certain random matrices satisfy
the block RIP with overwhelming probability, and that this
probability is substantially larger than that of satisfying the
standard RIP. In [28] extensions of the CoSaMP algorithm
[29] and of iterative hard thresholding [30] to the model-based
setting, which includes block-sparsity as a special case, are
proposed and shown to exhibit provable recovery guarantees
and robustness properties.

The focus of the present paper is on developing a parallel

ar
X

iv
:0

90
6.

31
73

v2
  [

cs
.I

T
] 

 1
8 

Ju
n 

20
09



2

line of results by generalizing the notion of coherence to the
block setting. This can be seen as extending the program
laid out in [5], [12] to the block-sparse case. Specifically, we
define two separate notions of coherence: coherence within
a block, referred to as sub-coherence and capturing local
properties of the dictionary, and block-coherence, describing
global dictionary properties. We will show that both coherence
notions are necessary to characterize the essence of block-
sparsity. We present extensions of the BP, the matching pursuit
(MP), and the OMP algorithms to the block-sparse case and
prove corresponding performance guarantees.

We point out that the term block-coherence was used
previously in [31] in the context of quantifying the recovery
performance of the MP algorithm in block-incoherent dictio-
naries. Our definition pertains to block-versions of the MP and
the OMP algorithm and is different from that used in [31].

We begin, in Section II, by introducing our definitions
of block-coherence and sub-coherence. In Section III, we
establish an uncertainty relation for block-sparse signals, and
show how the block-coherence measure defined previously
occurs naturally in this uncertainty relation. In Section IV,
we introduce a block version of the OMP algorithm, termed
BOMP, and of the MP algorithm [8], termed BMP, and
find a sufficient condition on block-coherence that guarantees
recovery of block k-sparse signals through BOMP in no more
than k steps as well as exponential convergence of BMP. The
same condition on block-coherence is shown to guarantee
successful recovery through the mixed `2/`1 optimization
approach. The BOMP algorithm can be viewed as an extension
of the subspace OMP method for MMV systems [23]. The
proofs of our main results are contained in Section V. A dis-
cussion on the performance improvements that can be obtained
through exploiting block-sparsity is provided in Section VI.
Corresponding numerical results are reported in Section VII.
We conclude in Section VIII.

Throughout the paper, we denote vectors by boldface lower-
case letters, e.g., x, and matrices by boldface uppercase letters,
e.g., A. The identity matrix is written as I or Id when the
dimension is not clear from the context. For a given matrix A,
AT , AH , and Tr(A) denote its transpose, conjugate transpose,
and trace, respectively, A† is the pseudo inverse, R(A)
denotes the range space of A, Ai,j is the element in the ith row
and jth column of A, and a` stands for the `th column of A.
The `th element of a vector x is denoted by x`. The Euclidean
norm of the vector x is ‖x‖2 =

√
xHx, ‖x‖1 =

∑
` |x`| is

the `1-norm, ‖x‖∞ = max` |x`| is the `∞-norm, and ‖x‖0
designates the number of nonzero entries in x. The Kronecker
product of the matrices A and B is written as A ⊗ B. The
spectral norm of A is denoted by ρ(A) = λ

1/2
max(AHA), where

λmax(B) is the largest eigenvalue of the positive-semidefinite
matrix B.

II. BLOCK-SPARSITY AND BLOCK-COHERENCE

A. Block-sparsity

We consider the problem of representing a vector y ∈ CL

in a given dictionary D of size L×N with L < N , so that

y = Dx (1)

for a coefficient vector x ∈ CN . Since the system of equations
(1) is underdetermined, there are, in general, many possible
choices of x that satisfy (1) for a given y. Therefore, further
assumptions on x are needed to guarantee uniqueness of the
representation. Here, we consider the case of sparse vectors x,
i.e., x has only a few nonzero entries relative to its dimension.
The standard sparsity model considered in compressed sensing
[1], [2] assumes that x has at most k nonzero elements, which
can appear anywhere in the vector. As discussed in [28],
[14], [15] there are practical scenarios that involve vectors
x with nonzero entries appearing in blocks (or clusters) rather
than being arbitrarily spread throughout the vector. Specific
examples include signals that lie in unions of subspaces [25],
[24], [14], [26], and multi-band signals [16], [17], [18].

The recovery of block-sparse vectors x from measurements
y = Dx is the focus of this paper. To define block-sparsity,
we view x as a concatenation of blocks —assumed throughout
the paper to be of length d— with x[`] denoting the `th block,
i.e.,

x = [x1 . . . xd︸ ︷︷ ︸
xT [1]

xd+1 . . . x2d︸ ︷︷ ︸
xT [2]

. . . xN−d+1 . . . xN︸ ︷︷ ︸
xT [M ]

]T (2)

where N = Md. We furthermore assume that L = Rd with R
integer. Similarly to (2), we can represent D as a concatenation
of column-blocks D[`] of size L× d:

D = [d1 . . . dd︸ ︷︷ ︸
D[1]

dd+1 . . . d2d︸ ︷︷ ︸
D[2]

. . . dN−d+1 . . . dN︸ ︷︷ ︸
D[M ]

]. (3)

A vector x ∈ CN is called block k-sparse if x[`] has
nonzero Euclidean norm for at most k indices `. When d = 1,
block-sparsity reduces to conventional sparsity as defined in
[1], [2]. Denoting

‖x‖2,0 =
M∑

`=1

I(‖x[`]‖2 > 0) (4)

with the indicator function I(·), a block k-sparse vector x is
defined as a vector that satisfies ‖x‖2,0 ≤ k. In the remainder
of the paper conventional sparsity will be referred to simply
as sparsity, in contrast to block-sparsity.

We are interested in providing conditions on the dictionary
D ensuring that the block-sparse vector x can be recovered
from measurements y of the form (1) through computationally
efficient algorithms. Our approach is partly based on [5],
[11], [12] (and the mathematical techniques used therein)
where equivalent results are provided for the sparse case. The
two algorithms investigated are BOMP and a mixed `2/`1-
optimization program (referred to as L-OPT [14]). It was
shown in [14] that L-OPT yields perfect recovery if the dic-
tionary D satisfies appropriate restricted isometry properties.
The purpose of this paper is to provide recovery conditions
for BOMP and L-OPT based on a suitably defined measure
of block-coherence. We will see that block-coherence plays a
role similar to coherence in the case of conventional sparsity.

Before defining block-coherence, we note that in order to
have a unique block k-sparse x satisfying (1) it is clear that
we need R > k and the columns within each block D[`], ` =
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1, 2, ...,M , need to be linearly independent. More generally,
we have the following proposition taken from [14].

Proposition 1. The representation (1) is unique if and only if
Dg 6= 0 for every g 6= 0 that is block 2k-sparse.

From Proposition 1 the columns of D[`] are linearly inde-
pendent for all `. Throughout the paper, we assume that the
dictionaries we consider satisfy the condition of Proposition
1, and, furthermore, ‖dr‖2 = 1, r = 1, 2, ..., N .

B. Block-coherence

The coherence of a dictionary D measures the similarity
between basis elements, and is defined by [10], [11], [5]

µ = max
`,r 6=`

|dH
` dr|. (5)

This definition was introduced in [8] to heuristically character-
ize the performance of the MP algorithm, and was later shown
to play a fundamental role in quantifying recovery thresholds
for the OMP algorithm and for BP [5]. The coherence µ
furthermore occurs in `1-uncertainty relations relevant in the
context of decomposing a vector into two orthonormal bases
[10], [11]. A definition of coherence for analog signals, along
with a corresponding uncertainty relation, is provided in [13].

It is natural to seek a generalization of coherence to the
block-sparse setting with the resulting block-coherence mea-
sure having the same operational significance as the coherence
µ in the sparse case. Below, we propose such a generalization,
which is shown —in Sections III and IV— to occur naturally
in uncertainty relations and in recovery thresholds for the
block-sparse case.

We define the block-coherence of D as

µB = max
`,r 6=`

1
d
ρ(M[`, r]) (6)

with
M[`, r] = DH [`]D[r]. (7)

Note that M[`, r] is the (`, r)th d × d block of the N × N
matrix M = DHD. When d = 1, as expected, µB = µ.
While µB quantifies global properties of the dictionary D,
local properties are described by the sub-coherence of D,
defined as

ν = max
`

max
i,j 6=i
|dH

i dj |, di,dj ∈ D[`]. (8)

We define ν = 0 for d = 1. In addition, if the columns of
D[`] are orthonormal for each `, then ν = 0.

Since the columns of D have unit norm, the coherence µ
in (5) satisfies µ ∈ [0, 1] and therefore, as a consequence of
ν ∈ [0, µ], we have ν ∈ [0, 1]. The following proposition
establishes the same limits for the block-coherence µB, which
explains the choice of normalization by 1/d in the definition
(6).

In the remainder of the paper conventional coherence will be
referred to simply as coherence, in contrast to block-coherence
and sub-coherence.

Proposition 2. The block-coherence µB satisfies 0 ≤ µB ≤ µ.

Proof: Since the spectral norm is non-negative, clearly
µB ≥ 0. To prove that µB ≤ µ, note that the entries of M[`, r]
for ` 6= r have absolute value smaller than or equal to µ. It
then follows that

µB = max
`,r 6=`

1
d
ρ(M[`, r])

= max
`,r 6=`

1
d

√
λmax(MH [`, r]M[`, r])

≤ max
`,r 6=`

1
d

√√√√max
i

d∑
j=1

∣∣(MH [`, r]M[`, r])i,j

∣∣ (9)

≤ max
`,r 6=`

1
d

√√√√max
i

d∑
j=1

dµ2

= µ (10)

where (9) is a consequence of Geršgorin’s disc theorem ([32,
Corollary 6.1.5]).

From µ ≤ 1, with Proposition 2, it now follows trivially
that µB ≤ 1.

When the columns of D[`] are orthonormal for each `, we
can further bound µB.

Proposition 3. If D consists of orthonormal blocks, i.e.,
DH [`]D[`] = Id for all `, then µB ≤ 1/d.

Proof: Using the submultiplicativity of the spectral norm,
we have

µB = max
`,r 6=`

1
d
ρ(M[`, r])

= max
`,r 6=`

1
d
ρ(DH [`]D[r])

≤ max
`,r 6=`

1
d
ρ(DH [`])ρ(D[r])

=
1
d

(11)

where (11) follows from DH [`]D[`] = Id, for all `,
λmax(DH [`]D[`]) = λmax(D[`]DH [`]), and λmax(Id) = 1
combined with the definition of the spectral norm.

III. UNCERTAINTY RELATION FOR BLOCK-SPARSE
SIGNALS

We next show how the block-coherence µB defined above
naturally appears in an uncertainty relation for block-sparse
signals. This uncertainty relation generalizes the corresponding
result for the sparse case derived in [10], [11].

Uncertainty relations for sparse signals are concerned with
representations of a vector x ∈ CL in two different orthonor-
mal bases for CL: {φ`, 1 ≤ ` ≤ L} and {ψ`, 1 ≤ ` ≤ L}
[10], [11]. Any vector x ∈ CL can be expanded uniquely in
terms of each one of these bases according to:

x =
L∑

`=1

a`φ` =
L∑

`=1

b`ψ`. (12)
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The uncertainty relation sets limits on the sparsity of the
decompositions (12) for any x ∈ CL. Specifically, denoting
A = ‖a‖0 and B = ‖b‖0, it is shown in [11] that

1
2

(A+B) ≥
√
AB ≥ 1

µ(Φ,Ψ)
(13)

where µ(Φ,Ψ) is the coherence between Φ and Ψ, defined
as

µ(Φ,Ψ) = max
`,r
|φH

` ψr|. (14)

It is easily seen that for D consisting of the orthonormal bases
Φ and Ψ, i.e., D = [Φ Ψ], we have µ(Φ,Ψ) = µ, where µ
is as defined in (5) and associated with D = [Φ Ψ].

In [10] it is shown that 1/
√
L ≤ µ(Φ,Ψ) ≤ 1. The upper

bound follows from the Cauchy-Schwarz inequality and the
fact that the basis elements have norm 1. The lower bound is
obtained as follows: The matrix M = ΦHΨ is unitary so that∑L

`=1

∑L
r=1 |φ

H
` ψr|2 = Tr(MHM) = Tr(IL) = L. Con-

sequently, we have L2 max`,r |φH
` ψr|2 ≥ L which implies

µ(Φ,Ψ) ≥ 1/
√
L. This lower bound can be achieved, for

example, by choosing the two orthonormal bases Φ and Ψ as
the spike (identity) and Fourier bases [10]. With this choice,
the uncertainty relation (13) becomes

A+B ≥ 2
√
AB ≥ 2

√
L. (15)

When
√
L is an integer, the relations in (15) can all be satisfied

with equality by choosing x as a Dirac comb δ√L with spacing√
L, resulting in

√
L nonzero elements. This follows from the

fact that the Fourier transform of δ√L is also δ√L.
We now develop an uncertainty relation for block-sparse

decompositions. Specifically, we derive a result that is equiva-
lent to (13) with A and B replaced by block-sparsity levels as
defined in (4), and µ(Φ,Ψ) replaced by the block-coherence
between the orthonormal bases considered, and defined below
in (18).

Theorem 1. Let Φ,Ψ be two unitary L × L matrices with
L × d blocks {Φ[`],Ψ[`], 1 ≤ ` ≤ R} and let x ∈ CL satisfy

x =
R∑

`=1

Φ[`]a[`] =
R∑

`=1

Ψ[`]b[`]. (16)

Let A = ‖a‖2,0 and B = ‖b‖2,0. Then,
1
2

(A+B) ≥
√
AB ≥ 1

dµB(Φ,Ψ)
(17)

where
µB(Φ,Ψ) = max

`,r

1
d
ρ(ΦH [`]Ψ[r]). (18)

Note that for D consisting of the orthonormal bases Φ and
Ψ, i.e., D = [Φ Ψ], we have µB(Φ,Ψ) = µB, where µB is
as defined in (6) and associated with D = [Φ Ψ].

Proof: Without loss of generality, we assume that ‖x‖22 =
1. Then,

1 = ‖x‖22 =
R∑

`,r=1

aH [`]A[`, r]b[r] (19)

≤
R∑

`,r=1

|aH [`]A[`, r]b[r]| (20)

where we set A[`, r] = ΦH [`]Ψ[r]. Now, from the Cauchy-
Schwarz inequality, for any a,b,∣∣aHA[`, r]b

∣∣ ≤ ‖b‖2‖AH [`, r]a‖2
≤ λ1/2

max(A[`, r]AH [`, r])‖b‖2‖a‖2
≤ dµB‖b‖2‖a‖2 (21)

where, for brevity, we wrote µB = µB(Φ,Ψ). Substituting
into (19), we get

1 ≤ dµB

R∑
r=1

‖b[r]‖2
R∑

`=1

‖a[`]‖2. (22)

Applying the Cauchy-Schwarz inequality yields

R∑
r=1

‖b[r]‖2 ≤
√
B

(
R∑

r=1

‖b[r]‖22

)1/2

=
√
B (23)

where we used the fact that
∑R

r=1 ‖b[r]‖22 = ‖b‖22 = 1
since ‖x‖22 = 1 and Ψ is unitary. Similarly, we have that∑R

r=1 ‖a[r]‖2 ≤
√
A. Substituting into (22) and using the

inequality of arithmetic and geometric means completes the
proof.

The bound provided by Theorem 1 can be tighter than that
obtained by applying the conventional uncertainty relation (13)
to the block-sparse case. This can be seen by using ‖a‖0 ≤
d‖a‖2,0 and ‖b‖0 ≤ d‖b‖2,0 in (13) to obtain√

‖a‖2,0‖b‖2,0 ≥
1
dµ
. (24)

Since µB ≤ µ, this bound may be looser than (17).

A. Block-incoherent dictionaries

As already noted, in the sparse case (i.e., d = 1) for any two
orthonormal bases Φ and Ψ, we have µ ≥ 1/

√
L. We next

show that the block-coherence satisfies a similar inequality,
namely µB ≥ 1/

√
dL.

Proposition 4. The block-coherence (18) satisfies µB ≥
1/
√
dL.

Proof: Let Φ and Ψ be two orthonormal bases for CL

and let A = ΦHΨ with A[`, r] denoting the (`, r)th d × d
block of A. With R = L/d, we have

R2µ2
B ≥

R∑
`=1

R∑
r=1

1
d2
λmax(AH [`, r]A[`, r])

≥ 1
d2
λmax

(
R∑

`=1

R∑
r=1

AH [`, r]A[`, r]

)
. (25)

Now, it holds that

R∑
`=1

R∑
r=1

AH [`, r]A[`, r] =
R∑

r=1

ΨH [r]

(
R∑

`=1

Φ[`]ΦH [`]

)
Ψ[r].

(26)
Since Φ is a square matrix consisting of orthonormal columns,
we have

∑R
`=1 Φ[`]ΦH [`] = ΦΦH = IL. Furthermore, since
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Ψ[r] consists of orthonormal columns, for each r, we have
ΨH [r]Ψ[r] = Id. Therefore, (25) becomes

µ2
B ≥

1
d2R

=
1
dL

(27)

which concludes the proof.
We now construct a pair of bases that achieves the lower

bound in (27) and therefore has the smallest possible block-
coherence. Let F be the DFT matrix of size R = L/d with
F`,r = (1/

√
R) exp(j2π`r/R). Define Φ = IL and

Ψ = F⊗Ud (28)

where Ud is an arbitrary d × d unitary matrix. For this choice,
ΦH [`]Ψ[r] = F`,rUd. Since ρ(Ud) = 1 and |F`,r| = 1/

√
R,

we get

µB =
1

d
√
R

=
1√
dL

. (29)

When d = 1, this basis pair reduces to the spike-Fourier pair
which is well known to be maximally incoherent [10].

When µB satisfies (29) the uncertainty relation becomes

A+B ≥ 2
√
AB ≥ 2

√
R. (30)

If
√
R is integer, the inequalities in (30) are met with equality

for the signal x = δ√R ⊗ c where c is an arbitrary nonzero
length-d vector. Indeed, in this case, the representation of x
in the spike basis requires

√
R blocks (of size d), so that

‖a‖2,0 =
√
R. The representation of x in the basis Ψ in (28)

is obtained as

b = (FH ⊗UH
d )(δ√R ⊗ c) = δ√R ⊗UH

d c (31)

where we used the fact that the Fourier transform of δ√R

is also δ√R. Therefore, b has
√
R nonzero blocks so that

‖b‖2,0 =
√
R and hence A = B =

√
R, which implies that

all inequalities in (30) are met with equality.

IV. EFFICIENT RECOVERY ALGORITHMS

We now give operational meaning to block-coherence by
showing that if it is small enough, then a block-sparse signal
x can be recovered from the measurements y = Dx using
computationally efficient algorithms. We consider two differ-
ent recovery methods, namely the mixed `2/`1-optimization
program (L-OPT) proposed in [14]:

min
x

M∑
`=1

‖x[`]‖2 s. t. y = Dx (32)

and an extension of the OMP algorithm [8] to the block-
sparse case described below and termed block-OMP (BOMP).
We then derive thresholds on the block-sparsity level as a
function of µB and ν for both methods to recover the correct
block-sparse x. For L-OPT this complements the results in
[14] that establish the recovery capabilities of L-OPT under
the condition that D satisfies a block-RIP with a small
enough restricted isometry constant. For the special case of
the columns of D[`] being orthonormal for each `, we suggest
a block-version of the MP algorithm [8], termed block-MP
(BMP).

A. Block OMP and block MP

The BOMP algorithm begins by initializing the residual as
r0 = y. At the `th stage (` ≥ 1) we choose the block that is
best matched to r`−1 according to:

i` = arg max
i

‖DH [i]r`−1‖2. (33)

Once the index i` is chosen, we find x`[i] as the solution to

min

∥∥∥∥∥y −∑
i∈I

D[i]x`[i]

∥∥∥∥∥
2

(34)

where I is the set of chosen indices ij , 1 ≤ j ≤ `. The residual
is then updated as

r` = y −
∑
i∈I

D[i]x`[i]. (35)

In the special case of the columns of D[`] being orthonormal
for each ` (the elements across different blocks do not have
to be orthonormal), we consider an extension of the MP
algorithm to the block-case. The resulting algorithm, termed
BMP, starts by initializing the residual as r0 = y and at the
`th stage (` ≥ 1) chooses the block that is best matched to
r`−1 according to (33). Then, however, the algorithm does
not perform a least-squares minimization over the blocks that
have already been selected, but directly updates the residual
according to

r` = r`−1 −D[i`]DH [i`]r`−1. (36)

B. Recovery conditions

Our main result, summarized in Theorems 2 and 3 below,
is that any block k-sparse vector x can be recovered from
measurements y = Dx using either the BOMP algorithm or
L-OPT if the block-coherence satisfies kd < (µ−1

B + d− (d−
1)νµ−1

B )/2. In the special case of the columns of D[`] being
orthonormal for each `, we have ν = 0 and therefore the
recovery condition becomes kd < (µ−1

B + d)/2. In this case
BMP exhibits exponential convergence rate (see Theorem 4).
If the block-sparse vector x was treated as a (conventional)
kd-sparse vector without exploiting knowledge of the block-
sparsity structure, a sufficient condition for perfect recovery
using OMP [5] or (32) for d = 1 (known as BP) is kd <
(µ−1 +1)/2. Comparing with kd < (µ−1

B +d)/2, we can see
that, thanks to µB ≤ µ, making explicit use of block-sparsity
leads to guaranteed recovery for a potentially higher sparsity
level. Later, we will establish conditions for such a result to
hold even when ν 6= 0.

To formally state our main results, suppose that x0 is a
length-N block k-sparse vector, and let y = Dx0. Let D0

denote the L × (kd) matrix whose blocks correspond to the
nonzero blocks of x0, and let D0 be the matrix of size L ×
(N−kd) which contains the L × d blocks of D that are not in
D0. We then have the following theorem proved in Section V.

Theorem 2. Let x0 ∈ CN be a block k-sparse vector with
blocks of length d, and let y = Dx0 for a given L × N
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matrix D. A sufficient condition for the BOMP and the L-OPT
algorithm to recover x0 is that

ρc(D†0D0) < 1 (37)

where
ρc(A) = max

r

∑
`

ρ(A[`, r]) (38)

and A[`, r] is the (`, r)th d× d block of A. In this case, BOMP
picks up a correct new block in each step, and consequently
converges in at most k steps.

Note that

ρc(D†0D0) = max
r
ρc(D†0D0[r]). (39)

Therefore, (37) implies that for all r,

ρc(D†0D0[r]) < 1. (40)

The sufficient condition (37) depends on D0 and therefore
on the location of the nonzero blocks in x0, which, of
course, is not known in advance. Nonetheless, as the following
theorem, proved in Section V, shows, (37) holds universally
under certain conditions on µB and ν associated with the
dictionary D.

Theorem 3. Let µB be the block-coherence and ν the sub-
coherence of the dictionary D. Then (37) is satisfied if

kd <
1
2

(
µ−1

B + d− (d− 1)
ν

µB

)
. (41)

For d = 1, and therefore ν = 0, we recover the corresponding
condition k < (µ−1+1)/2 reported in [5], [12]. In the special
case where the columns of D[`] are orthonormal for each `,
we have ν = 0 and (41) becomes

kd <
1
2

(µ−1
B + d). (42)

The next theorem shows that under condition (42), BMP
exhibits exponential convergence rate in the case where each
block D[`] consists of orthonormal columns.

Theorem 4. If DH [`]D[`] = Id, for all `, and kd < (µ−1
B +

d)/2, then we have:
1) BMP picks up a correct block in each step.
2) The energy of the residual decays exponentially, i.e.,
‖r`‖22 ≤ β`‖r0‖22 with

β = 1− 1− (k − 1)dµB

k
. (43)

V. PROOFS OF THEOREMS 2, 3, AND 4

Before proceeding with the actual proofs, we start with
some definitions and basic results that will be used throughout
this section.

For x ∈ CN , we define the general mixed `2/`p-norm
(p = 1, 2,∞ here and in the following):

‖x‖2,p = ‖v‖p, where v` = ‖x[`]‖2 (44)

and the x[`] are consecutive length-d blocks. For an L × N
matrix A with L = Rd and N = Md, where R and M are

integers, we define the mixed matrix norm (with block size d)
as

‖A‖2,p = max
x 6= 0

‖Ax‖2,p

‖x‖2,p
. (45)

The following lemma provides bounds on ‖A‖2,p, which
will be used in the sequel.

Lemma 1. Let A be an L × N matrix with L = Rd and
N = Md. Denote by A[`, r] the (`, r)th d × d block of A.
Then,

‖A‖2,∞ ≤ max
`

∑
r

ρ(A[`, r])
4
= ρr(A) (46)

‖A‖2,1 ≤ max
r

∑
`

ρ(A[`, r])
4
= ρc(A). (47)

In particular, ρr(A) = ρc(AH).
Proof: See Appendix A.

Lemma 2. ρc(A) as defined in (38) is a matrix norm and as
such satisfies the following properties:

• Nonnegative: ρc(A) ≥ 0
• Positive: ρc(A) = 0 if and only if A = 0
• Homogeneous: ρc(αA) = |α|ρc(A) for all α ∈ C
• Triangle inequality: ρc(A + B) ≤ ρc(A) + ρc(B)
• Submultiplicative: ρc(AB) ≤ ρc(A)ρc(B).

Proof: See Appendix B.

A. Proof of Theorem 2 for BOMP

We begin by proving that (37) is sufficient to ensure
recovery using the BOMP algorithm. We first show that if r`−1

is inR(D0), then the next chosen index i` will correspond to a
block in D0. Assuming that this is true, it follows immediately
that i1 is correct since clearly r0 = y lies in R(D0). Noting
that r` lies in the space spanned by y and D[i], i ∈ I`, where
I` denotes the indices chosen up to stage `, it follows that if
I` corresponds to correct indices, i.e., D[i] is a block of D0

for all i ∈ I`, then r` also lies in R(D0) and the next index
will be correct as well. Thus, at every step a correct L × d
block of D is selected. As we will show below no index will
be chosen twice since the new residual is orthogonal to all the
previously chosen subspaces; consequently the correct x0 will
be recovered in k steps.

We first show that if r`−1 ∈ R(D0), then under (37) the
next chosen index corresponds to a block in D0. This is
equivalent to requiring that

z(r`−1) =
‖DH

0 r`−1‖2,∞
‖DH

0 r`−1‖2,∞
< 1. (48)

From the properties of the pseudo-inverse, it follows that
D0D

†
0 is the orthogonal projector ontoR(D0). Hence, it holds

that D0D
†
0r`−1 = r`−1. Since D0D

†
0 is Hermitian, we have

(D†0)HDH
0 r`−1 = r`−1. (49)
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Substituting (49) into (48) yields

z(r`−1) =
‖DH

0 (D†0)HDH
0 r`−1‖2,∞

‖DH
0 r`−1‖2,∞

≤ ρr(D
H

0 (D†0)H)

= ρc(D†0D0) (50)

where we used Lemma 1.
It remains to show that BOMP in each step chooses a new

block participating in the (unique) representation y = Dx. We
start by defining D` = [D[i1] · · · D[i`]] where ij ∈ I, 1 ≤
j ≤ `. It follows that the solution of the minimization problem
in (34) is given by

x̂ = (DH
` D`)−1DH

` y

which upon inserting into (35) yields

r` = (I−D`(DH
` D`)−1DH

` )y.

Now, we note that D`(DH
` D`)−1DH

` is the orthogonal pro-
jector onto the range space of D`. Therefore ‖DH [i]r`‖2 = 0
for all blocks D[i] that lie in the span of the matrix D`. By the
assumption in Proposition (1) we are guaranteed that as long
as l < k there exists at least one block (in D0) which does not
lie in the span of D`. Since this block (or these blocks) will
lead to strictly positive ‖DH [i]r`‖2 the result is established.
This concludes the proof.

B. Proof of Theorem 2 for L-OPT

We next show that (37) is also sufficient to ensure recovery
using L-OPT. To this end we rely on the following lemma:

Lemma 3. Suppose that v ∈ Ckd with ‖v[`]‖2 > 0, for all
`, and that A is a matrix of size L× (kd), with L = Rd and
the d × d blocks A[`, r]. Then, ‖Av‖2,1 ≤ ρc(A)‖v‖2,1. If
in addition the values of ρc(AJ`) are not all equal, then the
inequality is strict. Here, J` is a (kd) × d matrix that is all
zero except for the `th d × d block which equals Id.

Proof: See Appendix C.
To prove that L-OPT recovers the correct vector x0, let

x′ 6= x0 be another length-N block k-sparse vector for
which y = Dx′. Denote by c0 and c′ the length-kd vectors
consisting of the nonzero elements of x0 and x′, respectively.
Let D0 and D′ denote the corresponding columns of D so that
y = D0c0 = D′c′. From the assumption in Proposition 1,
it follows that there cannot be two different representations
using the same blocks D0. Therefore, D′ must contain at least
one block, Z, that is not included in D0. From (40), we get
ρc(D†0Z) < 1. For any other block U in D, we must have
that

ρc(D†0U) ≤ 1. (51)

Indeed, if U ∈ D0, then U = D0[`] = D0J` where J` was
defined in Lemma 3. In this case, D†0D0[`] = J` and therefore
ρc(D†0U) = ρc(J`) = 1. If, on the other hand, U = D[`] for
some `, then it follows from (40) that ρc(D†0U) < 1.

Now, suppose first that the (kd) × d blocks in D†0D
′ do

not all have the same1 ρc. Then,

‖c0‖2,1 = ‖D†0D0c0‖2,1 (52)

= ‖D†0D′c′‖2,1

< ρc(D†0D
′)‖c′‖2,1 (53)

≤ ‖c′‖2,1 (54)

where the first equality is a consequence of the columns of D0

being linearly independent (a consequence of the assumption
in Proposition 1), the first inequality follows from Lemma 3
since ‖c′[`]‖2 > 0, for all `, and the last inequality follows
from (51). If all the (kd) × d blocks in D†0D

′ have identical
ρc, then the inequality (53) is no longer strict, but the second
inequality (54) becomes strict instead as a consequence of
ρc(D†0Z) < 1; therefore ‖c0‖2,1 < ‖c′‖2,1 still holds.

Since ‖x0‖2,1 = ‖c0‖2,1 and ‖x′‖2,1 = ‖c′‖2,1, we
conclude that under (40), any set of coefficients used to
represent the original signal that is not equal to x0 will result
in a larger `2/`1-norm.

C. Proof of Theorem 3

We start by deriving an upper bound on ρc(D†0D) in terms
of µB and ν. Writing D†0 out, we have that

ρc(D†0D) = ρc((DH
0 D0)−1DH

0 D). (55)

Submultiplicativity of ρc(A) (Lemma 2) implies that

ρc(D†0D) ≤ ρc((DH
0 D0)−1)ρc(DH

0 D)

= ρc((DH
0 D0)−1) max

j /∈Λ0

∑
i∈Λ0

ρ(DH [i]D[j]) (56)

where Λ0 is the set of indices ` for which D[`] is in D0. Since
Λ0 contains k indices, the last term in (56) is bounded above
by kdµB, which allows us to conclude that

ρc(D†0D) ≤ ρc((DH
0 D0)−1)kdµB. (57)

It remains to develop a bound on ρc((DH
0 D0)−1). To this

end, we express DH
0 D0 as DH

0 D0 = I + A, where A is a
(kd) × (kd) matrix with blocks A[`, r] of size d × d such
that Ai,i = 0, for all i. This follows from the fact that the
columns of A are normalized. Since A[`, r] = DH

0 [`]D0[r],
for all ` 6= r, and A[r, r] = DH

0 [r]D0[r]− Id, we have

ρc(A) = max
r

∑
`

ρ(A[`, r])

≤ max
r
ρ(A[r, r]) + max

r

∑
` 6=r

ρ(A[`, r]) (58)

≤ (d− 1)ν + (k − 1)dµB (59)

where the first term in (59) is obtained by applying Geršgorin’s
disc theorem ([32, Corollary 6.1.5]) together with the defini-
tion of ν; the second term in (59) follows from the fact that the
summation in the second term of (58) is over k − 1 elements
and ρ(A[`, r]), for all ` 6= r, can be upper-bounded by dµB.

1Note that for an (sd) × d matrix A, ρc(A) =
P

` ρ(A[`]), where
A[`], ` = 1, 2, ..., s, denotes the d × d block of A made up of the rows
{(`− 1)d+ 1, ..., `d}.
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Assumption (41) now implies that (d− 1)ν+ (k− 1)dµB < 1
and therefore, from (59), we have ρc(A) < 1.

We next use the following result.

Lemma 4. Suppose that ρc(A) < 1. Then (I + A)−1 =∑∞
k=0(−A)k.

Proof: Follows immediately by using the fact that ρc(A)
is a matrix norm (cf. Lemma 2) and applying [32, Corollary
5.6.16].

Thanks to Lemma 4, we have that

ρc((DH
0 D0)−1) = ρc

( ∞∑
k=0

(−A)k

)

≤
∞∑

k=0

(ρc(A))k (60)

=
1

1− ρc(A)

≤ 1
1− (d− 1)ν − (k − 1)dµB

. (61)

Here, (60) is a consequence of ρc(A) satisfying the triangle
inequality and being submultiplicative and (61) follows by
using (59).

Combining (61) with (57), we get

ρc(D†0D) ≤ kdµB

1− (d− 1)ν − (k − 1)dµB
< 1 (62)

where the last inequality is a consequence of (41).

D. Proof of Theorem 4

The proof of the first part of Theorem 4 follows from the
arguments in the proofs of Theorems 2 and 3 for ν = 0. As
a consequence of the first statement of Theorem 4, we get
that the residual r` in each step of the algorithm will be in
R(D0). For the proof of the second statement in Theorem 4,
we mimic the corresponding proof in [33]. We first need the
following lemma, which is an extension of [34, Lemma 3.5]
to the block-sparse case. This lemma will provide us with a
lower bound on the amount of energy that can be removed
from the residual r` in one step of the BMP algorithm.

Lemma 5. Let D0 denote the L× (kd) matrix whose blocks
correspond to the nonzero blocks of x0. Then, we have

max
i
‖DH

0 [i]r`‖2 ≥
‖r`‖22
‖c`‖2,1

(63)

where c` is the coefficient vector corresponding to r` 6= 0,
i.e., r` = D0c`.

Proof: We start by noting that r` = D0c` =∑k
i=1 D0[i]c`[i], where c`[i] 6= 0 for at least one index

i ∈ {1, 2, ..., k}. It follows that

‖r`‖22 =
k∑

i=1

cH
` [i]DH

0 [i]r`

≤
k∑

i=1

|cH
` [i]DH

0 [i]r`|

≤
k∑

i=1

‖c`[i]‖2‖DH
0 [i]r`‖2

≤
(

max
i
‖DH

0 [i]r`‖2
) k∑

i=1

‖c`[i]‖2. (64)

The result then follows by noting that
∑k

i=1 ‖c`[i]‖2 =
‖c`‖2,1.

Next, we compute an upper bound on ‖c`‖2,1. Using
M[i, j] = DH

0 [i]D0[j], where i, j ∈ {1, . . . , k}, we get

‖r`‖22 = cH
` DH

0 D0c`

=
k∑

i=1

k∑
j=1

cH
` [i]M[i, j]c`[j]

=
k∑

i=1

cH
` [i]M[i, i]c`[i] +

k∑
i=1

k∑
j=1
j 6=i

cH
` [i]M[i, j]c`[j]

≥
k∑

i=1

‖c`[i]‖22 −
k∑

i=1

k∑
j=1
j 6=i

|cH
` [i]M[i, j]c`[j]| (65)

where we used the fact that M[i, i] = Id, for all i, as
a consequence of each of the blocks of D0 consisting of
orthonormal vectors. Applying the Cauchy-Schwarz inequality
to the second term in (65), we get

‖r`‖22 ≥
k∑

i=1

‖c`[i]‖22 −
k∑

i=1

k∑
j=1
j 6=i

‖c`[i]‖2‖M[i, j]c`[j]‖2 (66)

≥ ‖c`‖22,2 −
k∑

i=1

k∑
j=1
j 6=i

‖c`[i]‖2‖c`[j]‖2dµB (67)

= ‖c`‖22,2 − dµB

k−1∑
s=1

k∑
i=1

‖c`[i]‖2‖c`[(i+ s)k]‖2 (68)

where (i + s)k stands for (i + s) modulo k, (67) follows
from ‖M[i, j]c`[j]‖2 ≤ dµB‖c`[j]‖2, and (68) is obtained
by merely rearranging terms in the summation in (67). Ap-
plying the Cauchy-Schwarz inequality to the inner product∑k

i=1 ‖c`[i]‖2‖c`[(i+ s)k]‖2, we obtain

‖r`‖22 ≥ ‖c`‖22,2 − dµB

k−1∑
s=1

‖c`‖22,2 (69)

= (1− (k − 1)dµB)‖c`‖22,2

≥ (1− (k − 1)dµB)
k

‖c`‖22,1 (70)
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where (70) follows by the same argument as used in (23).
Thus, combining (64) with (70), we get

max
i
‖DH

0 [i]r`‖2 ≥
√

(1− (k − 1)dµB)
k

‖r`‖2. (71)

Since, by the first statement in Theorem 4, BMP picks a block
in D0 in each step, we can bound the energy of the residual
in the (`+ 1)st step as

‖r`+1‖22 = ‖r`‖22 − ‖DH [i`+1]r`‖22 (72)

= ‖r`‖22 −max
i
‖DH

0 [i]r`‖22

≤
(

1− (1− (k − 1)dµB)
k

)
‖r`‖22 (73)

where in (72) we used the fact that r`+1 is orthogonal to
D[i`+1]DH [i`+1]r`. This concludes the proof.

VI. DISCUSSION

Theorem 3 indicates under which conditions exploiting
block-sparsity leads to higher recovery thresholds than treating
the block-sparse signal as a (conventionally) sparse signal. For
dictionaries D where the individual blocks D[`] consist of
orthonormal columns, for each `, we have ν = 0 and hence,
thanks to µB ≤ µ, recovery through exploiting block-sparsity
is guaranteed for a potentially higher sparsity level. If the
individual blocks D[`] are, however, not orthonormal, we have
ν > 0, and (41) shows that ν has to be small for block-
sparse recovery to result in higher recovery thresholds than
sparse recovery. It is now natural to consider the case where
one starts with a general dictionary D and orthogonalizes
the individual blocks D[`] so that ν = 0. The comparison
that is meaningful here is between the recovery threshold of
the original dictionary D without exploiting block-sparsity
and the recovery threshold of the orthogonalized dictionary
taking block-sparsity into account. To this end, we start by
noting that the assumption in Proposition 1 implies that the
columns of D[`] are linearly independent, for each `. We
can therefore write D[`] = A[`]W` where A[`] consists of
orthonormal columns that span R(D[`]) and W` is invertible.
The orthogonalized dictionary is given by the L × N matrix
A with blocks A[`]. Since D = AW with the N × N
block-diagonal matrix W with blocks W`, we conclude that
c = Wx is block-sparse and —thanks to the invertibility
of the W`— of the same block-sparsity level as x, i.e.,
orthogonalization preserves the block-sparsity level. It is easy
to see that the definition of block-coherence in (6) is invariant
to the choice of orthonormal basis A[`] for R(A[`]). This is
because any other basis has the form A[`]U` for some unitary
matrix U`, and from the properties of the spectral norm

ρ(M[`, r]) = ρ(UH
` M[`, r]Ur) (74)

for any unitary matrices U`,Ur. Unfortunately, it seems
difficult to derive general results on the relation between µ
before and µB after orthogonalization. Nevertheless, we can
establish a minimum block size d above which orthogonaliza-
tion followed by block-sparse recovery leads to a guaranteed
improvement in the recovery thresholds. We first note that the
coherence µ of a dictionary consisting of N = Md elements
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Fig. 1. Recovery thresholds for both block-sparsity and conventional sparsity
for R = 10 as a function of d.

in a vector space of dimension L = Rd can be lower-bounded
as [35]

µ ≥

√
M −R

R(Md− 1)
Md� 1
≈

√
M −R
RMd

. (75)

Using this lower bound together with Proposition 3 and the
fact that after orthogonalization we have ν = 0, it can
be shown that if d > RM/(M − R), then the recovery
threshold obtained from taking block-sparsity into account
in the orthogonalized dictionary is higher than the recovery
threshold corresponding to conventional sparsity in the original
dictionary. This is true irrespectively of the dictionary we
start from as long as the dictionary satisfies the conditions
of Proposition 1.

Finally, we note that finding dictionaries that lead to signifi-
cant improvements in the recovery thresholds when exploiting
block-sparsity seems to be a difficult design problem. For ex-
ample, partitioning the realizations of i.i.d. Gaussian matrices
into blocks will, in general, not lead to satisfactory results.
Nevertheless, there do exist dictionaries where significant
improvements are possible. Consider, for example, the pair
of bases Φ = IL and Ψ = F ⊗Ud shown in Section III-A
to achieve the lower bound in (27). For the corresponding
dictionary D = [Φ Ψ], we have M = 2R, µB = 1/(d

√
R),

with the recovery threshold, assuming that block-sparsity is
exploited, given by kd < d(

√
R + 1)/2. The coherence of

the dictionary is µ = ‖vec(Ud)‖∞/
√
R. Fig. 1, obtained

by averaging over randomly chosen unitary matrices Ud,
shows that the recovery thresholds obtained by taking block-
sparsity into account can be significantly higher than those for
conventional sparsity. In particular, for Ud = Id, we obtain
the conventional recovery threshold as k = kd < (

√
R+1)/2,

which allows us to conclude that exploiting block-sparsity can
result in guaranteed recovery for a sparsity level that is d
times higher than what would be obtained in the (conventional)
sparse case.

VII. NUMERICAL RESULTS

The aim of this section is to quantify the improvement in the
recovery properties of OMP and BP obtained by taking block-
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Fig. 2. Performance of OMP, BOMP, and BOMP-O for a dictionary with
L = 40, N = 400, and d = 4.

sparsity explicitly into account and performing recovery using
BOMP and L-OPT, respectively. In all simulation examples
below, we randomly generate dictionaries by drawing from
i.i.d. Gaussian matrices and normalizing the resulting columns
to 1. The dictionary is divided into consecutive blocks of
length d. The sparse vector to be recovered has i.i.d. Gaussian
entries on the randomly chosen support set (according to a
uniform prior).

In Figs. 2 and 3, we plot the recovery success rate2 as
a function of the block-sparsity level of the signal to be
recovered. For each block-sparsity level we average over 1000
pairs of realizations of the dictionary and the block-sparse
signal. We can see that BOMP outperforms OMP significantly
and BOMP with orthogonalized blocks, denoted as BOMP-
O, yields slightly better performance than BOMP. We also
evaluate the performance of L-OPT compared to BP, as well
as L-OPT run on orthogonalized blocks, termed L-OPT-O.
For each block-sparsity level we average over 200 pairs of
realizations of the dictionary and the block-sparse signal. The
corresponding results, depicted in Figs. 4 and 5, show that
L-OPT outperforms BP, and L-OPT-O slightly outperforms
L-OPT. Furthermore, we can see that BOMP-O significantly
outperforms L-OPT-O.

VIII. CONCLUSION

This paper extends the concepts of uncertainty relations,
coherence, and recovery thresholds for matching pursuit and
basis pursuit to the case of sparse signals that have additional
structure, namely block-sparsity. The extension is made pos-
sible by an appropriate definition of block-coherence.

The motivation for considering block-sparse signals is two-
fold. First, in many applications the nonzero elements of
sparse vectors tend to cluster in blocks; several examples
are given in [14]. Second, it is shown in [14] that sampling
problems over unions of subspaces can be converted into
block-sparse recovery problems. Specifically, this is true when
the union has a direct-sum decomposition, which is the case

2Success is declared if the recovered vector is within a certain small
Euclidean distance of the original vector.
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L = 80, N = 160, and d = 8.
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in many applications including multiband signals [26], [16],
[17], [18]. Reducing union of subspaces problems to block-
sparse recovery problems allows for the first general class of
concrete recovery methods for union of subspace problems.
This was the main contribution of [14] together with equiv-
alence and robustness proofs for L-OPT based on a suitably
modified definition of the restricted isometry property. Here,
we complement this contribution by developing similar results
using the concept of block-coherence.

APPENDIX A
PROOF OF LEMMA 1

We first prove (46):

‖Ax‖2,∞ = max
j

∥∥∥∥∥∑
i

A[j, i]x[i]

∥∥∥∥∥
2

≤ max
j

∑
i

‖A[j, i]x[i]‖2

≤ max
j

∑
i

‖x[i]‖2 ρ(A[j, i])

≤ ‖x‖2,∞max
j

∑
i

ρ(A[j, i]). (76)



11

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

block-sparsity level

su
cc

es
s

ra
te

BP

L-OPT

L-OPT-O

BOMP-O

Fig. 5. Performance of BP, L-OPT, L-OPT-O, and BOMP-O for a dictionary
with L = 80, N = 160, and d = 8.

Therefore, for any x ∈ CN with x 6= 0, we have

‖Ax‖2,∞
‖x‖2,∞

≤ ρr(A) (77)

which establishes (46). The proof of (47) is similar:

‖Ax‖2,1 =
∑

j

∥∥∥∥∥∑
i

A[j, i]x[i]

∥∥∥∥∥
2

≤
∑

j

∑
i

‖A[j, i]x[i]‖2

≤
∑

i

‖x[i]‖2
∑

j

ρ(A[j, i])

≤ ρc(A)‖x‖2,1 (78)

from which the result follows. Finally, we have ρc(AH) =
maxr

∑
` ρ(AH [`, r]) = maxr

∑
` ρ(A[r, `]) = ρr(A).

APPENDIX B
PROOF OF LEMMA 2

Nonnegativity and positivity follow immediately from the
fact that the spectral norm is a matrix norm [32, p. 295].
Homogeneity follows by noting that

ρc(αA) = max
r

∑
`

ρ(αA[`, r])

= max
r

∑
`

|α|ρ(A[`, r])

= |α|ρc(A). (79)

The triangle inequality is obtained as follows:

ρc(A + B) = max
r

∑
`

ρ(A[`, r] + B[`, r])

≤ max
r

(∑
`

ρ(A[`, r]) +
∑

`

ρ(B[`, r])

)
≤ max

r

∑
`

ρ(A[`, r]) + max
r

∑
`

ρ(B[`, r])

= ρc(A) + ρc(B)

where the first inequality is a consequence of the spectral norm
satisfying the triangle inequality.

Finally, to verify submultiplicativity, note that,

ρc(AB) = max
`
ρc(AB[`]). (80)

Therefore, if we prove that

ρc(AB[`]) ≤ ρc(A)ρc(B[`]) (81)

the result follows from (80) and the fact that max` ρc(B[`]) =
ρc(B).

To prove (81), note that

ρc(AB[`]) =
∑

i

ρ

∑
j

A[i, j]B[j, `]


≤
∑

i

∑
j

ρ (A[i, j]B[j, `])

≤
∑

i

∑
j

ρ(A[i, j])ρ(B[j, `]) (82)

where we used the triangle inequality for, and the submulti-
plicativity of, the spectral norm. Now, we have∑

i

ρ(A[i, j]) ≤ max
`

∑
i

ρ(A[i, `]) = ρc(A). (83)

Substituting into (82) yields

ρc(AB[`]) ≤ ρc(A)
∑

j

ρ(B[j, `]) = ρc(A)ρc(B[`]) (84)

which completes the proof.

APPENDIX C
PROOF OF LEMMA 3

The proof of the statement ‖Av‖2,1 ≤ ρc(A)‖v‖2,1

follows directly from (78) by replacing A by an L × (kd)
matrix and x ∈ CN by v ∈ Ckd with ‖v[l]‖2 > 0, for
all `. If the ai =

∑
j ρ(A[j, i]) are not all equal, then the

last inequality in (78) is strict. Since ai = ρc(AJi) the result
follows.
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