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ABSTRACT

A spherical 2D adaptive mesh refinement (AMR) technique is applied to the so-called Lin–Rood ad-

vection algorithm, which is built upon a conservative and oscillation-free finite-volume discretization in flux

form. The AMR design is based on two modules: a block-structured data layout and a spherical AMR grid

library for parallel computer architectures. The latter defines and manages the adaptive blocks in spherical

geometry, provides user interfaces for interpolation routines, and supports the communication and load-

balancing aspects for parallel applications. The adaptive grid simulations are guided by user-defined ad-

aptation criteria. Both statically and dynamically adaptive setups that start from a regular block-structured

latitude–longitude grid are supported. All blocks are logically rectangular, self-similar, and independent

data units that are split into four in the event of refinement requests, thereby doubling the horizontal

resolution. Grid coarsenings reverse this refinement principle. Refinement and coarsening levels are con-

strained so that there is a uniform 2:1 mesh ratio at all fine–coarse-grid interfaces. The adaptive advection

model is tested using three standard advection tests with increasing complexity. These include the transport

of a cosine bell around the sphere, the advection of a slotted cylinder, and a smooth deformational flow that

describes the roll-up of two vortices. The latter two examples exhibit very sharp edges and gradients that

challenge not only the numerical scheme but also the AMR approach. The adaptive simulations show that

all features of interest are reliably detected and tracked with high-resolution grids. These are steered by

either a threshold- or gradient-based adaptation criterion that depends on the characteristics of the ad-

vected tracer field. The additional resolution clearly helps preserve the shape and amplitude of the trans-

ported tracer while saving computing resources in comparison to uniform-grid model runs.

1. Introduction

Adaptive mesh refinement (AMR) techniques pro-

vide an attractive framework for atmospheric flows

since they allow improved spatial resolutions in limited

regions without requiring a fine-grid resolution

throughout the entire model domain. The model re-

gions at high resolution are kept at a minimum and can

be individually tailored toward the atmospheric flow

conditions. A solution-adaptive grid is a virtual neces-

sity for resolving a problem with different length scales.

To avoid, for example, underresolving high-gradient re-

gions in the problem, or conversely, overresolving low-

gradient regions at the expense of more critical regions,

solution adaptation is a powerful tool saving several

orders of magnitude in computing resources for many

problems (Gombosi et al. 2004).

Climate and weather models, or generally speaking
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computational fluid dynamics codes, are among the

many applications that are characterized by multiscale

phenomena and their resulting interactions. But al-

though today’s atmospheric general circulation models

(GCMs), and in particular weather prediction codes,

are already capable of uniformly resolving horizontal

scales of order 25 km (Temperton 2004), the atmo-

spheric motions of interest span many more scales than

those captured in a fixed-resolution model run. As an

example, the resolution of convective motions and

cloud dynamics may require resolutions of order 1 km

or even finer mesh sizes (Bryan et al. 2003). The widely

varying spatial and temporal scales, in addition to the

nonlinearity of the dynamical system, raise an interest-

ing and challenging modeling problem. Solving such a

problem more efficiently and accurately requires vari-

able resolution.

Today, AMR techniques are rarely applied to atmo-

spheric flow simulations. More commonly, two alterna-

tive nonuniform-grid approaches are utilized. These are

the widely used nested and stretched grid techniques,

both of which can be implemented in a statically or

dynamically adaptive way [see also Fox-Rabinovitz et

al. (1997) for an overview]. The fundamental differ-

ences between AMR and the nested or stretched grid

strategies lie in their flexibilities to adapt readily to

arbitrary flow situations. While AMR varies the num-

ber of grid points as demanded by the adaptation cri-

terion and evolving flow features, the total number of

grid points in nested or stretched meshes stays constant

during the simulation. They may therefore be consid-

ered global remapping approaches that, in case of dy-

namic remappings, move the fine-resolution regions at

the expense of other coarsened model areas. Recent

examples of dynamic grid deformations include Iselin

et al. (2002) and Prusa and Smolarkiewicz (2003). Iselin

et al. (2002) applied flow-dependent weighting func-

tions to steer the varying grid resolution whereas Prusa

and Smolarkiewicz (2003) used a priori information

about the evolving flow field for their remapping strat-

egy. AMR, on the other hand, adds and removes grid

points locally without affecting the resolution in distant

model domains and, most importantly, does not require

a priori knowledge of future refinement regions. Both

aspects are a strength of the AMR design. However,

despite the differences between the three nonuniform-

grid paradigms they all have one aspect in common.

The varying resolution can cause artificial reflections

and refractions of waves due to incompatible mecha-

nisms at fine–coarse-grid interfaces. As an example, a

traveling wave may undergo false reflections or aliasing

when propagating from the fine grid to the coarse do-

main. Therefore, special attention needs to be paid to

the fine–coarse-grid interface conditions. Here, mass-

conserving interpolation and flux-matching mecha-

nisms that foster the smooth transport of the advected

feature across varying grid resolutions are employed.

Introduced in this paper is a 2D adaptive grid tech-

nique on the sphere, which is built upon a block-

structured data layout and an AMR grid library for

parallel computer architectures (Oehmke and Stout

2001; Oehmke 2004). For conciseness, the discussion is

focused on an adaptive advection problem, although

the underlying principles are readily applicable to non-

linear model setups (Jablonowski 2004; Jablonowski et

al. 2004). These are further addressed in a future

paper that illustrates the AMR technique for 2D

shallow water and 3D primitive equation models. In

general, atmospheric dynamics on all scales is domi-

nated by the advection process. A precise numeri-

cal solution of the advection problem is therefore

fundamentally important to the overall accuracy of

atmospheric flow solvers and tracer transport schemes.

To date, various dynamically adaptive advection

codes have been presented in the atmospheric science

literature. These include the 2D passive advection

algorithms by Behrens (1996) and Behrens et al. (2000)

who formulated an adaptive grid triangulation method

in the x–y plane. Kessler (1999) implemented a

finite-element advection technique and evaluated

different refinement criteria for the adaptive transport

process. Another AMR advection study by Stevens

and Bretherton (1996) concentrated on numerical

aspects of adaptive multilevel solvers, and Tomlin et al.

(1997) investigated adaptive gridding options for

modeling chemical transports with multiscale sources.

In particular, the analysis of Tomlin et al. (1997)

was focused on the interactions among emission plumes

and the ambient air. Similar emission scenarios were

also discussed by Odman et al. (1997), Sarma et

al. (1999), and Srivastava et al. (2000) in their adap-

tive air quality studies. In addition, Bacon et al. (2000)

and Boybeyi et al. (2001) introduced the adaptive

regional weather and tracer transport model OMEGA

(Operational Multiscale Environmental Model with

Grid Adaptivity), which is based on unstructured,

triangulated meshes with rotated Cartesian coordi-

nates. The triangulations can statically or dynamically

be adapted to user-defined regions or features of inter-

est. This operational modeling system has mainly been

designed for real-time aerosol and gas hazard predic-

tions.

Most recently and most relevant to the study pre-

sented here, Hubbard and Nikiforakis (2003) described
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the design of an adaptive 3D passive advection code for

tracer transport problems on the sphere. They utilized

an extended version of the publicly available Berger–

Oliger AMR grid library (Berger and Oliger 1984)

which was originally designed for logically rectangular

block-data approaches in Cartesian coordinates. To

date the Berger–Oliger AMR approach has also been

used multiple times in the context of limited-area or

regional atmospheric modeling in Cartesian geometry.

Examples include Skamarock et al. (1989) and Skama-

rock and Klemp (1993) who investigated adaptive

meshes for regional weather prediction applications.

Furthermore, the movable nested grids for cyclone

track predictions by Fulton (1997, 2001) as well as the

adaptive ocean model by Blayo and Debreu (1999) are

based on the Berger–Oliger AMR design. The main

differences between Berger and Oliger (1984), Hub-

bard and Nikiforakis (2003), and the AMR approach

discussed here are the underlying space–time refine-

ment paradigms, the native coordinate systems and grid

hierarchies, the AMR user interfaces, and most impor-

tantly, the software engineering aspects like the parallel

computing support for modern distributed-memory

hardware architectures. This parallel computing sup-

port is not provided by the Berger–Oliger AMR library

but will become fundamentally important for more

complex fully nonlinear AMR applications, especially

in 3D. Therefore, the AMR library proposed here has

built-in parallel communication and dynamic load-

balancing mechanisms.

The paper is organized as follows. In section 2 the

basic AMR design principles are explained. This sec-

tion includes a discussion of the block-data grid con-

figuration in spherical geometry, the refinement and

coarsening strategies, as well as the interpolation, av-

eraging, and numerical flux-matching mechanisms at

fine–coarse-grid interfaces. In addition, the functional-

ity of the AMR grid library is described. Section 3 re-

views the so-called Lin–Rood finite-volume advection

algorithm (Lin and Rood 1996, referred to as LR96

hereafter), which serves as an example application for

the adaptive mesh approach. The adaptive transport

code is tested using three standard advection examples

that increase in complexity. In particular, these are the

transport of a cosine bell around the sphere at various

rotation angles, the advection of a slotted cylinder, and

a smooth deformational flow (cyclogenesis) problem.

The model setups, error measures, test definitions, and

the results of the adaptive advection simulations are

presented in section 4. Section 5 summarizes the find-

ings and outlines the future potential of AMR for non-

linear atmospheric flow problems.

2. AMR design on the sphere

To date, dynamically adaptive meshes in atmospheric

modeling have mostly been applied to limited-area

models in Cartesian geometry. Cartesian grids are well

suited for AMR techniques since the physical locations

of neighboring grid points are uniquely defined by their

coordinate positions. This is in contrast to global grids

in spherical geometry, especially if regular latitude–

longitude grids with converging meridians are selected

as discussed here. The main differences occur at the

pole points due to the singularity of the grid and its

coordinate system. The identification of neighbors

across the poles, together with the cross-polar sign re-

versal of the velocity components in spherical coordi-

nates (see also Hubbard and Nikiforakis 2003), adds

extra complexity to the AMR approach on the sphere.

As a consequence, the AMR design in spherical coor-

dinates needs special provisions for polar regions that

take a 180° shift in longitudinal direction for cross-polar

neighbors into account. This is further discussed in sec-

tion 2b. In addition, the periodicity of the spherical grid

in longitudinal direction needs to be supported by the

AMR library.

a. Block-structured adaptive grids

The AMR approach is based on a 2D block-

structured data configuration in spherical coordinates

that only requires minimal changes to the preexisting

Lin–Rood transport algorithm (LR96). The concept of

the block-data structure is displayed in Fig. 1, which

shows an orthographic projection of the earth with a

blocked latitude–longitude grid. Each self-similar block

is logically rectangular and comprises a constant num-

ber of Nx � Ny � grid cells in longitudinal and latitu-

dinal direction. Here, Nx � 9 and Ny � 6 grid points per

block are selected with Bx � By � 8 � 6 blocks on the

entire sphere. These parameters correspond to a 5° �

5° uniform mesh resolution. The computational grid

can then be viewed as a collection of individual blocks

that are independent data units. Here the block-data

principle is solely applied to the horizontal directions so

that the whole vertical column is contained in a block in

case of 3D model configurations. Other block-data ap-

proaches, as described in Stout et al. (1997), MacNeice

et al. (2000), and Hubbard and Nikiforakis (2003), em-

ploy a 3D strategy that includes a block distribution in

the vertical direction as well.

The block-data structure is well suited for adaptive

mesh applications. The basic AMR principle is illus-

trated in Fig. 2. Starting from an initial mesh at constant

resolution with, for example, 3 � 3 cells per block, a

parent block is divided into four children in the event of
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refinement requests. Each child becomes an indepen-

dent new block with the same number of grid cells in

each dimension, thereby doubling the horizontal reso-

lution in the region of interest. Coarsening, on the other

hand, reverses the refinement principle. Then four chil-

dren are coalesced into a single self-similar parent

block, which reduces the grid resolution in each direc-

tion by a factor of 2. Both the refinement and coarsen-

ing steps are mass-conservative. In the present AMR

setup, neighboring blocks can only differ by one refine-

ment level, guaranteeing a uniform 2:1 mesh resolution

at fine–coarse-grid interfaces. As a result, continuously

cascading refinement regions are created that provide a

desired buffer zone around the blocks at the finest nest-

ing level (see also section 4b).

Each block is surrounded by ghost cell regions that

share the information along adjacent block interfaces.

This makes each block independent of its neighbors

since the solution technique can now be individually

applied to each block. The ghost cell information en-

sures that the requirements for the numerical stencils

are satisfied. The advection algorithm then loops over

all available blocks on the sphere before a communica-

tion step with ghost cell exchanges becomes necessary.

The number of required ghost cells highly depends on

the numerical scheme. In the LR96 advection scheme

the piecewise parabolic method (PPM) (Colella and

Woodward 1984) is chosen. As a consequence, three

ghost cells in each horizontal direction are needed.

Note that all ghost regions are at the same resolution as

the inner domain of the block. There are two types of

interfaces in the adaptive grid configuration as illus-

trated in Fig. 3. If the adjacent blocks are at the same

refinement level (Fig. 3a) the neighboring information

can easily be exchanged since the data locations over-

lap. The ghost cell data are then assigned the appropri-

ate solution values of the neighboring block, which is

indicated by the gray-shaded areas. If, on the other

hand, the resolution changes between adjacent blocks

(Fig. 3b), averaging and interpolation routines are in-

voked at fine–coarse mesh boundaries. Here, an inter-

polation method is chosen that is based on the PPM

approach. This conservative and monotonic remapping

FIG. 2. Refinement and coarsening principles with two

refinement levels.

FIG. 3. Ghost cell updates for blocks at (a) the same and (b)

different refinement levels. The shading indicates the overlap re-

gions of the ghost cells. In this example 6 � 6 grid points per block

with three ghost cells are chosen.

FIG. 1. Distribution of grid points and blocks over the sphere in

an orthographic projection centered at 45°N, 0°. The resolution is

5° � 5° (nonadapted case).
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technique matches the order of accuracy of the under-

lying LR96 advection algorithm.

It is important to note that the adapted blocks do not

overlay each other in the AMR approach presented

here. Instead, each block is assigned a unique surface

patch on the sphere and, as a consequence, any coarse-

grid information is no longer accessible in refined re-

gions. This is in contrast to the AMR block-data design

by Berger and Oliger (1984). In particular, the Berger–

Oliger AMR method is built upon a hierarchy of nested

grids that are individually sized and, furthermore, all

actively used during the simulation. The solution is then

concurrently computed on all blocks at all refinement

levels, and in a second step, the coarse resolution data

are overwritten wherever the fine-resolution nests

overlap. This approach adds overhead to the AMR

simulation but, on the other hand, allows a Richardson-

type estimation of the local truncation error. Such an

adaptation criterion was for example used by Skama-

rock (1989). In the study presented here, a flow-based

refinement criterion is examined instead. Also note

that the Berger–Oliger library allows the refinement

factor between neighboring blocks to be any positive

integer number whereas a constant 2:1 ratio is chosen

for the AMR approach here. This guarantees rather

accurate inflow and outflow conditions at the fine–

coarse-grid interfaces, but on the other hand, limits the

flexibility of the adapted grid. For 3D applications, the

Berger–Oliger library also supports refinements in the

vertical direction. Another difference between the

AMR approaches lies in their time-stepping proce-

dures. The Berger–Oliger AMR design provides

smaller time steps at fine resolutions and as a result, the

solvers are subcycled in the nested domains. This re-

quires temporal interpolations of the coarse boundary

data during the subcycling steps, which are not applied

in the AMR approach here. Instead, the time step is

held constant at all refinement levels, which provides

instantaneous updates of the boundary information.

Only spatial interpolations are invoked in the ghost re-

gions at fine–coarse-grid interfaces. However, there are

also limitations to such an approach. The chosen time

step must be numerically stable on the finest grid in an

adapted model run. Therefore, overhead is added to

the coarse-resolution regions that do not require a short

time step for stability reasons. These pros and cons of

the two time-stepping techniques need to be further

examined for future AMR applications.

In general, the Berger–Oliger AMR design is based

on Cartesian meshes. Thus, special extensions for polar

regions were introduced by Hubbard and Nikiforakis

(2003) when customizing the approach for global grids

on the sphere. By contrast, the AMR grid library ap-

plied here is specifically designed for spherical coordi-

nate systems. Therefore, it has built-in pole point pro-

visions, provides user interfaces for application-specific

interpolation and averaging routines, and most impor-

tantly, supports the AMR approach on today’s parallel

computing architectures. An overview of the AMR li-

brary is given in the following section.

b. Overview of the AMR grid library

The adaptive blocks are managed by a spherical

adaptive grid library for distributed memory architec-

tures (Oehmke and Stout 2001; Oehmke 2004). The

library functions can be accessed via Fortran90 subrou-

tine calls. In brief, the characteristics and functions of

the library are listed as follows.

1) Sphere. The library provides functions for the cre-

ation of a sphere that is built upon a block-

structured latitude–longitude grid configuration. In

addition, reduced spherical grids are supported that

widen the zonal grid intervals in polar regions. In

both cases, the size of the blocks as well as the num-

ber of blocks on the sphere are user defined and

determine the initial, and thereby coarsest, resolu-

tion of the adaptive simulation. Overall, the library

maintains and initializes the geometric information

and allows the reinitialization of the geometry data

after adaptations have occurred. Here, each block

covers a unique surface patch on the sphere.

2) Bookkeeping. The library maintains the adjacency

information for all blocks at arbitrary refinement

levels. These comprise the cross-polar neighbors for

blocks at the pole points, which are shifted by 180°

in longitudinal direction. A schematic view of the

neighboring blocks is shown in Fig. 4. In this con-

stant resolution example, each block has eight

neighbors, which includes the neighboring blocks in

the cross directions. The communication in the cross

direction is provided to allow for a wide range of

user-selected algorithms. In the transport example

discussed in this paper, the cross directions are

needed for the cross derivatives of the interpolation

algorithm (see below) as well as the advective-form

inner operators of the Lin–Rood advection scheme

(Lin and Rood 1996). In a more general setting with

varying neighboring resolutions, the number of

neighbors lies between 6 and 12.

3) Iterators. Iterators enable the user to loop over all

assigned blocks on a given processor. They can be

viewed as pointers that pick out the next indepen-

dent block index for application-specific calcula-

tions. Note that consecutive blocks in the data
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structure may lie at arbitrary positions on the

sphere.

4) Communication. The library provides transfer func-

tions that manage the ghost cell updates on parallel

computer architectures. The communication is ei-

ther based on the message passing interface (MPI)

library or memory copies. The former is invoked for

neighboring blocks on different processors whereas

memory copies speed up the ghost cell exchange for

neighbors on the same processor. The transfer mod-

ule utilizes send-and-receive buffers and accesses

the block-adjacency information during the ghost

cell exchange. The details of the parallel communi-

cation are hidden from the user. Instead, user-

friendly communication functions are provided.

5) Load-balancing. The load-balancing module redis-

tributes the blocks among the processors during the

adaptive model run. Currently, the dynamic load-

balancing strategy is guided by the total number of

blocks. Here, the goal is to assign an approximately

equal number of blocks to each processor. For the

future, a space-filling-curve load-balancing ap-

proach is planned that takes data locality aspects

into account (Dennis 2003; Behrens and Zimmer-

mann 2000). Note that the parallel performance, es-

pecially of complex adaptive 3D GCM applications,

strongly depends on an efficient domain decompo-

sition and load-balancing strategy.

6) Adaptation module. The library manages the coars-

enings and refinements of the blocks based on ad-

aptation flags. These flags are set via library func-

tions during a model run and guided by user-defined

adaptation criteria. The adaptation module rede-

fines the block connectivity after adaptations oc-

curred and enforces the constraint that adjacent

blocks can differ by no more than one refinement

level.

7) User interface. User-defined subroutines need to be

provided that specify the algorithms for split-and-

join and ghost cell operations. These routines in-

clude the interpolation and averaging procedures

for the initialization of new blocks and the data ex-

change algorithms for neighboring blocks at both

identical and varying resolutions.

Adaptive blocks are well suited for distributed-

memory computing concepts. Since ghosted blocks are

self-sufficient they can be readily distributed among

many processors. During the simulation each processor

then iterates over its assigned blocks to solve the model

equations on a block-by-block basis. When ghost cell

exchanges are required all processors reach a synchro-

nization point and execute a parallel exchange of ghost

cell information. A schematic view of the program flow

is presented in Fig. 5, which shows the time loop of the

adaptive grid application discussed in this paper. In par-

ticular, an adaptation cycle of n � 1 is chosen that

checks the adaptation criterion at every time step. Re-

finements are triggered if the refinement flag for one or

more grid points in a block is set. Coarsenings, on the

other hand, are slightly harder to activate. They not

only require all four children to set the coarsening flag

FIG. 4. Information exchange amongst nearest neighbors.

Blocks at the poles (NP or SP) have neighbors across the poles

that are 180° shifted in longitudinal direction. The letters N, E, S,

and W symbolize the orientation of neighboring blocks.

FIG. 5. Program flow with adaptive mesh functionality. AMR

library calls are shaded in gray. The user-defined parameter n

denotes the number of time steps before the adaptation criterion

is checked.
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but also must ensure a uniform 2:1 mesh ratio at all

fine–coarse-grid boundaries after an adaptation step.

This is checked by the adaptation module of the AMR

library. Note that the gray-shaded areas in Fig. 5 indi-

cate the AMR library calls that are added to the advec-

tion model. In general, such an AMR principle is uni-

versally applicable to any flow solver that can utilize

block-structured data setups on the sphere.

c. Fine–coarse-grid interfaces

In an adaptive model run, neighboring blocks at dif-

ferent resolutions require the use of interpolation and

averaging routines to update the ghost cell regions at

every time step. In addition, blocks need to be reini-

tialized after adaptation requests. An overview of these

AMR user routines for the ghost cell exchange is pre-

sented below. In addition, a flux-matching strategy at

fine–coarse-grid interfaces is discussed that ensures

mass conservation in an adapted application.

1) INTERPOLATION METHOD

A suitable interpolation technique for the ghost cell

update in an AMR application is required to be (a)

monotonic, (b) conservative, and (c) consistent with the

selected transport algorithm. These three design prin-

ciples lead to a natural 2D extension of the underlying

1D finite-volume PPM algorithm as applied in LR96.

Details of PPM’s 1D reconstruct–evolve–average prin-

ciple can be found in Carpenter et al. (1990) and Colella

and Woodward (1984) who also show schematic dia-

grams of the PPM strategy. In short, each cell holds

cell-averaged model quantities that are pieced together

in either latitudinal or longitudinal direction to con-

struct a parabolic reconstruction of the selected field.

This is also called a “subgrid distribution,” which can be

made monotonic. Here, the 1D subgrid distributions

serve as building blocks for a PPM-like reconstruction

algorithm in 2D.

To use the PPM approach for the interpolation of a

conservative scalar h in an adaptive application, two

steps become necessary. First, a monotonic subgrid dis-

tribution h(x, y) is computed that is based on the coarse-

grid data. Then the subgrid distribution is integrated

over the nested fine-grid regions, which guarantees the

conservative mapping of the coarse-grid information.

For the 2D extension of the PPM algorithm, a bipa-

rabolic function needs to be defined. As shown by Ran-

čić (1992), a full 2D extension of the PPM scheme re-

quires the calculation of nine coefficients, which leads

to a rather computationally expensive method. There-

fore, a quasi-biparabolic approach with six components

is derived that modifies the scheme proposed by Nair

and Machenhauer (2002) with five coefficients. Here, a

directionally bias-free cross-term is added to the Nair

and Machenhauer (2002) algorithm that helps smooth

the subgrid distribution near sharp edges. A similar

mixed derivative term was also introduced by van Leer

(1985) in an alternative definition of a 2D biparabolic

subgrid function. The piecewise parabolic subgrid dis-

tribution h(x, y) for a discrete cell-averaged scalar field

h at the cell center (i, j) is given by

h�x, y�� h � �axx � bx� 1

12
� x2� � �ayy

� by� 1

12
� y2� � 1

2
�cxy � cyx�xy. �1�

The indices (i, j) are dropped for conciseness. Here,

�ax, �ay indicate the slopes, and bx, by indicate the

curvature terms of the parabola in longitudinal and lati-

tudinal direction, respectively. These 1D coefficients

are defined in Carpenter et al. (1990) who used the

notation �a for �ax and �ay, a6 for bx and by, and �a	 for

h. All coefficients are monotonized as in LR96’s mono-

tonic Flux-Form Semi-Lagrangian (FFSL-3) scheme.

The cross-term consists of the two components cxy and

cyx that are averaged to avoid a directional bias.

In particular, cxy and cyx at a cell center (i, j) are

determined by

cxy �
1

2
��a i, j�1

x � �a i, j�1
x �, �2�

cyx �
1

2
��a i�1, j

y � �a i�1, j
y �, �3�

where 
ax and 
ay are the centered-difference slopes

�a i, j
x �

1

2
�hi�1, j � hi�1, j�, �4�

�a i, j
y �

1

2
�hi, j�1 � hi, j�1�, �5�

which are further monotonized via the van Leer (1977)

monotonized-central (MC) slope limiter. This limiter is

given by

�a i, j
x � min� |�a i, j

x
| , 2 |hi�1, j � hi, j | ,

2 |hi, j � hi�1, j | � sgn��a i, j
x � if

�hi�1, j � hi, j��hi, j � hi�1, j� � 0

� 0 otherwise. �6�
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The MC slope limiter is also applied to 
ay with respect

to the y direction and both cross components cxy and

c yx. Furthermore, the cell-averaged value h is de-

fined as

h � �
�1�2

1�2 �
�1�2

1�2

h�x, y� dx dy, �7�

where x, y are the local normalized coordinates in each

grid cell with x, y ∈ [�1/2, 1/2]. For the spherical coor-

dinate system (�, �) they are given as in Nair and

Machenhauer (2002):

x �
� � � i

�� i

�
1

2
, �8�

y �
� � � j

�� j

�
1

2
, �9�

with 
�i � (�i�1 � �i), 

j � (
j�1 � 
j) and 
j � sin �j

[for the derivation see Nair and Machenhauer (2002)].

It is important to point out that the 
 coordinates are

no longer equidistant and become increasingly com-

pressed in polar regions. Nevertheless, the parameters

of the parabola in Eq. (1) are computed in the equidis-

tant (�, �) grid point space. This approximation of the

h (x, y) � h [x(�), y(
)] distribution is motivated by

Veldman and Verstappen (1998) who discussed the ad-

vection–diffusion problem for nonuniform meshes.

They found that equidistant estimates of the derivatives

maintain the skew-symmetry of the problem. As an al-

ternative, a more complex nonequidistant formulation

for the parameters of the parabola (Colella and Wood-

ward 1984) can also be used.

In a second step, the coarse-grid data are remapped

via analytic integrals. If assuming that the fine-grid re-

gion lies within the lower and upper limits x ∈ [xl, xu],

y ∈ [yl, yu] inside a coarse-grid cell, the new h
r

value for

the refined mesh is determined by

h
r
�

1

�x�y
�

yl

yu �
xl

xu

h�x,y� dx dy

� h �
�ax

2
�xu � xl�� bx� 1

12
�

1

3
�xu

2 � xuxl � x l
2��

�
�ay

2
�yu � yl�� by� 1

12
�

1

3
�yu

2 � yuyl � y l
2��

�
cxy � cyx

8
�xu � xl��yu � yl�, �10�

with 
x� (xu � xl) and 
y� (yu � yl). The limits of the

integral are also schematically shown in Fig. 6 for the

lower-right refined cell h r
4. Here, the coarse-grid symbol

hc corresponds to h in Eq. (10). Note that in practice,

the position of yu in Fig. 6 is slightly off-centered due to

the nonequidistant 
 distribution. As an aside, in this

specific configuration with equidistant normalized x co-

ordinates (x2
u � xuxl � x2

l )� 1⁄4 holds in each of the four

refined grid boxes. Therefore, the bx expression (third

term on the right-hand side) in Eq. (10) is identical to

zero.

2) AVERAGING

Averaging routines need to be invoked for join-

operations in newly coarsened model domains and dur-

ing fine-to-coarse ghost cell transfers. For the cell-

centered variables as shown in Fig. 6, this averaging

step involves the four fine-resolution grid cells (dotted

contours) that are entirely contained in the correspond-

ing coarse-grid domain (dashed contour). Then the

coarse-grid cell mean hc can be determined by the

weighted average

hc �
1

Ac�
i�1

4

h i
rA i

r , �11�

where Ac, Ar stand for the area of the coarse and re-

fined spherical surface patches, and h r
i symbolizes the

fine-grid cell means in the ith grid box. This averaging

strategy is mass-conservative.

3) FLUX UPDATES

In the LR96 transport algorithm, neighboring grid

cells exchange flux information across cell edges to

prognosticate the time evolution of the advected quan-

tity (details in section 3). However, at a fine–coarse-

grid interface the numerical fluxes on the coarse grid

are not consistent with the accumulated fluxes on the

FIG. 6. Location of the scalar cell-mean variable h on the coarse

and refined grid (the overbar is omitted). The coarse cell is dashed

with gray-shaded symbol h c. The four refined cells are denoted

with h r (dotted contours). For cell h r
4, the upper (u) and lower (l)

limits of the integral that span the latitudinal and longitudinal

distances 
y and 
x in the normalized coordinate system are

shown.
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fine grid. The differences result, for example, from the

approximations of the subgrid distributions in the two

domains. Therefore, flux corrections at fine–coarse-grid

interfaces are imperative to ensure global mass conser-

vation. Because of the constant time step at all refine-

ment levels, the numerical fluxes are readily available

at any given time. Neither temporal interpolations nor

flux accumulations at the interfaces are required. By

contrast, both techniques are essential for AMR ap-

proaches with subcycled time steps in refined domains

(Berger and Colella 1989). Here, it is assumed that the

fine-resolution fluxes are more accurate than the cor-

responding flux in the coarse area. Therefore, the fine-

grid fluxes are averaged and consequently override the

coarse-grid flux at the interface. This flux-matching

strategy is schematically displayed in Fig. 7. The figure

shows the locations of the coarse- and fine-grid fluxes in

latitudinal (G) and longitudinal (F) direction at the

mesh boundaries. The arrows point from the two fine-

grid fluxes to the coarse neighboring flux that is re-

placed at every time step. In this 2D design, the flux-

matching condition becomes

f c �
1

Ac
� f 1

rA1
r � f 2

rA2
r �, �12�

where f symbolizes the fluxes F or G. As before, the

superscripts c and r stand for the coarse and refined

grid and A represents the area of a spherical surface

patch. One of these surface weights is symbolically in-

dicated by the dashed grid box for the lower-left cell.

Note that each flux is considered a new cell center for

the computation of the area weights that vary spatially

in contrast to equivalent weights in a Cartesian setup.

This flux update algorithm ensures mass conservation

up to machine precision.

3. Review of the finite-volume advection algorithm

The AMR advection algorithm is built upon the

LR96 finite-volume scheme, which utilizes advanced

oscillation-free numerical approaches to solving the

transport equation in conservation form. Details of the

algorithm in spherical geometry are provided in Lin

and Rood (1997) who applied the finite-volume con-

cepts to the shallow water framework. Here, only a

brief overview of the relevant transport equation in the

shallow water system is given.

The model equation for the adaptive advection ex-

periments is the conservation law

�

�t
h � � · �hV�� 0 �13�

for the free surface height h of the shallow water sys-

tem. Here, V � (u, �)T is the two-dimensional vector

velocity, and � • represents the horizontal divergence

operator. The corresponding integral form of the con-

servation law can be derived when integrating Eq. (13)

over the control volume � and time t (see also

LeVeque 2002):

�
tn

tn�1 �
�

� �

�t
h� d� dt � �

�

�
tn

tn�1

� · �hV� dt d� � 0,

�14�

where n denotes the discrete time level, and 
t � tn�1

� tn stands for the duration of a time step. In the fol-

lowing derivation, only two-dimensional control vol-

umes with surface areas A� are considered. Eq. (14)

can be rewritten as

�
tn

tn�1 � d

dt
h� dt �

�t

A�
�

�

� · F d� � 0, �15�

where the overbar ( ) symbolizes the spatial average

over the area A� and F � (1/
t)� tn�1
tn

hV dt indicates the

temporal average of the flux vector. Applying the

Gauss divergence theorem yields

�
tn

tn�1 � d

dt
h� dt �

�t

A�
�

��

F · n̂ dl � 0 �16�

in which n̂ is an outward-pointing unit normal vector to

the boundary �� of the control volume and dl is an

infinitesimal line segment along the contour. Thus, the

discrete representation of the conservation law be-

comes

h
n�1

� h
n
�

�t

A�
�
i�1

4

Fi · n̂i li , �17�

where the sum comprises the four line segments with

lengths li that surround a rectangular 2D region; Fi sym-

FIG. 7. Flux updates at fine–coarse model interfaces; G and F

symbolize the numerical fluxes in latitudinal and longitudinal di-

rection. Fine-grid fluxes are averaged and override the coarse-grid

flux at the interface. The dashed box indicates the area weight of

G in box 1.
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bolizes the time-averaged flux vectors at the cell inter-

faces, and n̂i indicates the unit normal vectors to the ith

contour line. Assuming an orthogonal x–y control vol-

ume with surface area Ai,j � 
xi,j 
yi,j and correspond-

ing 1D numerical fluxes F and G in x and y direction,

Eq. (17) is equivalent to

h i, j

n�1
� h i, j

n
�

�t

Ai, j

��yi��1�2�, jFi��1�2�, j � �yi��1�2�, jFi��1�2�, j

� �xi, j��1�2�Gi, j��1�2�� �xi, j��1�2�Gi, j��1�2� �

�18�

in which the indices i, j define the gridpoint position of

the cell center, and the half index represents the bound-

aries of the grid box. In such a Cartesian setup, the

lengths of the line segments 
xi, j � [xi�(1/2),j � xi�(1/2),j]

and 
yi, j � [yi, j�(1/2) � yi, j�(1/2)] are independent of the

y and x direction, respectively. This is in contrast to

grids in spherical geometry where 
xi,j, 
yi,j and the

surface area Ai,j in Eq. (18) are substituted with the

corresponding representation in spherical space:

�xi, j � a cos	j��i , �19�

�yi, j � a�	j , �20�

Ai, j � a2�
�i��1�2�

�i��1�2� �
	j��1�2�

	j��1�2�

cos	 d	 d�

� a2�sin	j��1�2�� sin	j��1�2����i . �21�

Here, a � 6.371229 � 106 m represents the earth’s ra-

dius and 
�i � [�i�(1/2) � �i�(1/2)] and 
�i � [�j�(1/2) �

�j�(1/2)] denote the longitudinal (�) and latitudinal (�)

grid spacings measured in radians. In the Lin–Rood

advection algorithm though (Lin and Rood 1997), a

slightly different flux-differencing approach has been

chosen that corresponds to Eq. (18) if Ai,j is replaced

with the approximation Ai,j � a2 cos�j 
�i 
�j. As a

result, the discrete conservation law for the cell-

averaged free surface height in spherical coordinates

becomes

h i, j

n�1
� h i, j

n
� Fnet � Gnet �22�

with

Fnet � �
�t

a cos	j��i

�Fi��1�2�, j � Fi��1�2�, j�, �23�

Gnet � �
�t

a cos	j�	j

� cos	j��1�2�Gi, j��1�2�

� cos	j��1�2�Gi, j��1�2��. �24�

Here, Gnet and Fnet denote the net fluxes through the

interfaces in latitudinal and longitudinal direction that

solely determine the rate of change of the spatially av-

eraged scalar field h. This notation corresponds exactly

to the Eqs. (4)–(5) in Lin and Rood (1997) when de-

fining the time-averaged fluxes as X and Y and omitting

the subscript “net” in the preceding equations. Note

that Eq. (22) still contains a directional bias when op-

erating splitting methods are applied. Therefore, the

following directional-bias free 2D scheme is employed:

h i, j

n�1
� h i, j

n
� Fnet�h i, j

n
�

1

2
g�h i, j

n
��

� Gnet�h i, j

n
�

1

2
f�h i, j

n
��, �25�

where g and f symbolize advection operators in latitu-

dinal and longitudinal direction, respectively. These ad-

vective operators avoid a deformational error (details

in LR96). In particular, LR96 combined a first-order

Euler upwind scheme in advective form (inner opera-

tor) with higher-order finite-volume methods in flux

form (outer operator). Both a second-order van Leer–

type flux algorithm (van Leer 1974, 1977) and the third-

order PPM scheme were implemented for the flux cal-

culations that are both monotonic, upstream-biased,

and fully conservative. For the adaptive advection ex-

periments discussed here, the PPM approach has been

chosen for the fluxes F and G. Details of the flux com-

putations and monotonicity constraints are provided in

Carpenter et al. (1990), Colella and Woodward (1984),

and LR96 (with monotonicity constraint FFSL-3). Note

that the scheme is in fact not strictly monotonic in two

dimensions. As explained in LR96, very minor viola-

tions of the monotonicity constraint can be observed

near sharp edges due to the application of purely 1D

monotonicity operators. The time-stepping scheme is

explicit and stable for zonal and meridional Courant

numbers [Courant–Friedrichs–Lewy (CFL) criterion]

| CFL | � 1. This restriction arises since the semi-

Lagrangian extension of the LR96 algorithm is not uti-

lized in the AMR model experiments to keep the width

of the ghost cell regions small. Note that the variables

u, �, and h for the advection experiment are staggered

as in the Arakawa C grid with originally (prior to the

AMR extension) two cell centers at the poles. For

the adaptive mesh implementations though, this base

C-grid configuration needed to be shifted by half a

grid length in latitudinal direction. Such a shift places

velocity points at the poles and avoids fixed polar

mass centers that would inhibit the flexible AMR prin-

ciple.
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4. Results

The advection algorithm is one of the fundamental

building blocks of atmospheric flow simulations. It is

therefore imperative to evaluate its performance not

only in the adaptive model runs but also in the non-

adapted model setups. This allows comparisons of the

AMR approach to both analytic reference solutions

and uniform-grid model experiments. This section dis-

cusses results from three standard advection tests with

increasing complexity. These are the transport of a co-

sine bell, the advection of a slotted cylinder and a

smooth deformational flow that describes the roll-up of

two vortices.

Different adaptation criteria are assessed. In general,

each criterion is compared to a problem-dependent

threshold value. If one or more grid points within a

block exceed this user-determined limit the block is

flagged for refinement. If, on the other hand, the grid

points in an adapted block no longer meet the adapta-

tion criterion the coarsening flag in the corresponding

block is set. The refinement criterion is examined at

each time step, which is determined dynamically during

the simulation to match a chosen |CFL | � 0.95 limit.

All adaptations occur consecutively until either the

user-defined maximum refinement level or the initial

resolution is reached. The mesh cannot be coarsened

further than the initial layout. Here, the block configu-

ration Bx � 8, By � 6, Nx � 9, Ny � 6 (as introduced in

Fig. 1) is chosen for all test cases with a maximum

refinement level between 0 and 4. Such a setup corre-

sponds to the uniform 
�, 
� grid spacings 5°, 2.5°,

1.25°, 0.625°, and 0.3125° at the individual nesting lev-

els. They are further explained in Table 1, which gives

an overview of the corresponding resolutions in spheri-

cal coordinates and physical space. The effect of the

converging meridians in the latitude–longitude grid can

clearly be seen at all refinement levels. This signifi-

cantly reduces the physical grid spacings in polar re-

gions and, as a consequence, the maximum allowable

time step for stable computations.

All three passive advection tests are driven by pre-

scribed wind speeds. These are reinitialized analytically

whenever adaptations occur during the course of the

simulation. In addition, the initial geopotential height

field is reinitialized analytically if initial adaptations are

requested. This is the case for the cosine bell and slot-

ted cylinder test scenarios. During the model runs

though, the geopotential height field in newly adapted

blocks is initialized via the conservative averaging al-

gorithm and the PPM-based interpolation method as

discussed earlier.

a. Error statistics

The performance of the advection tests is quantita-

tively measured using the standard normalized l1, l2, l�
error norms and the height error hmax. They are defined

as in Williamson et al. (1992). For the adaptive grid

runs, the following approximation to the global integral

of the scalar field h is adopted:

I�h��
1

4

�

0

2
 �
�
�2


�2

h��, 	� cos	 d	 d� �26�

�
1

Asp
�

m�1

Nb

�
j�1

Ny

�
i�1

Nx

hi, j, mAi, j, m . �27�

In particular, the integral is replaced by three nested

sums that loop over the total number of blocks Nb and

all grid cells. As before, Ny and Nx denote the number

of latitudinal and longitudinal grid points per block and

m stands for the block index. The spherical area weights

Ai,j,m are defined as in Eq. (21) and take the particular

resolution 
�, 
� in the mth block into account. The

normalization factor Asp � 4�a2 indicates the surface

area of the whole sphere. In a parallel computing setup,

each processor then loops over its assigned blocks and

computes a partial sum, which is collectively communi-

cated over the network to determine the global value.

b. Adaptive advection experiments

1) TRANSPORT OF A COSINE BELL

The first test of the 2D adaptive finite-volume advec-

tion model is the passive transport of a cosine bell

TABLE 1. Refinement levels and corresponding global grid resolutions on the sphere for a 5° � 5° base grid.

Refinement

level

Resolution


�, 
�

Max No. of grid points

lat � lon (full grid)

Resolution 
x (km) at different positions �

Equator 60°N/S 75°N/S Near pole

0 5° 36 � 72 556.0 278.0 143.9 24.26

1 2.5° 72 � 144 278.0 139.0 72.0 6.06

2 1.25° 144 � 288 139.0 69.5 36.0 1.52

3 0.625° 288 � 576 69.5 34.8 18.0 0.38

4 0.3125° 576 � 1152 34.8 17.4 9.0 0.09
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around the sphere (Williamson et al. 1992; shallow wa-

ter test case 1). The advecting wind field is given by

u � u0�cos� cos	 � sin� cos� sin	�, �28�

� � �u0 sin� sin�, �29�

where u and � stand for the nondivergent zonal and

meridional velocities with maximum wind speed u0 �

2�a/(12 days) � 38.61 m s�1. Various flow orientation

angles � to the equator can be chosen. Here, � � 0°,

� � 45°, and � � 90° are tested that define the advec-

tion of the cosine bell along the equator, at a 45° angle

through the Tropics and midlatitudes as well as the

transport across the poles.

The initial distribution of the free surface height h is

defined as

h��, 	�� �h0�2�1 � cos�
r�R�� if r 
 R

0 if r � R
,

�30�

with radius R � a/3 and the peak amplitude h0 � 1000

m. Here, r denotes the great circle distance

r � a arccos�sin	c sin	 � cos	c cos	 cos�� � �c��

�31�

between a position (�, �) and the center of the cosine

bell, initially set to (�c, �c) � (3�/2, 0). For conve-

nience, pointwise values instead of cell averages are

used for the initialization and validation. In general, the

numerical scheme is expected to translate the cosine

bell without any change of shape. The bell then reaches

its initial position after one full revolution at the end of

model day 12.

The refinement criterion for the adaptive transport

of the cosine bell is a simple threshold criterion that

assesses the value of the geopotential height at each

grid point. In particular, if the geopotential height ex-

ceeds the user-determined limit h � 53 m the block is

flagged for refinement. This sensitive value corre-

sponds to approximately 5% of the initial peak with

max(h) � 1000 m. The threshold is chosen since the

adapted blocks now tightly bind the cosine bell, which

is also illustrated in Fig. 8. This keeps the total number

of adapted blocks in the given example small while cov-

ering most of the traveling feature with the adaptive

block structure. Any smaller threshold would trigger a

wider refinement area.

Figure 8 explains the basic adaptation principle and

gives insight into the load-balancing strategy on parallel

computing platforms. The left column shows four snap-

shots of the adaptive � � 90° simulation at day 0, 1, 3,

and 4 with three refinement levels. The adapted blocks

reliably track the geopotential height field of the cosine

bell as indicated by the overlaid block distribution. It

can clearly be seen that the cosine bell passes over the

North Pole without distortions or noise. The pole point

itself with its converging grid lines is spread out in the

chosen equidistant cylindrical map projection. This em-

phasizes the numerous grid boxes in polar regions that

need to be refined for transport processes at high lati-

tudes. They severely restrict the maximum allowable

time step that obeys the |CFL |� 0.95 condition in polar

regions. For example, in this simulation with three re-

finement levels and a maximum zonal wind speed of

u � 38.61 m s�1 at the poles, the adaptive time step

depends greatly on the position of the cosine bell. It

varies between 
t � 597.3 s in equatorial regions and


t � 9.3 s at very high latitudes. The right column in

Fig. 8 displays the corresponding distribution of the

adaptive blocks in a parallel execution mode. Here four

processors are used and are indicated by the gray shad-

ings. The current load-balancing strategy assumes an

equal workload per block and therefore, assigns an ap-

proximately equal number of blocks to each processor.

If needed, new blocks are readily redistributed after

adaptations occurred. Here, the redistribution of the

blocks does not take data locality issues into account.

For the future, a space-filling-curve load-balancing ap-

proach (Dennis 2003; Behrens and Zimmermann 2000)

is planned that improves the data locality and thereby is

expected to reduce the communication across the par-

allel network. Note that the parallel speedups that can

be achieved with the AMR library highly depend on

several factors. Among them are the size of the blocks,

the ratio between compute cells and ghost cells, the

workload per block, and the frequency of the ghost cell

updates due to the algorithmic design, the data locality

of the blocks, and the performance of the network.

These issues will be thoroughly discussed in a different

publication.

The cosine bell is advected once around the sphere

and reaches its initial position after 12 days. Then the

solution can be compared to the initial conditions that

serve as the true reference field. A closer examination

of the final states at refinement level 1 (2.5°) and dif-

ferent rotation parameters � is illustrated in Fig. 9,

which also presents the overlaid true solution with dot-

ted contours. Here it is shown that the cosine bell un-

dergoes a stretching in the flow direction which is typi-

cally observed for monotonic finite-volume advection

algorithms (LR96; Nair and Machenhauer 2002; Hub-

bard and Nikiforakis 2003). The effect is clearly visible

at this relatively coarse resolution and diminishes sig-

nificantly with decreasing grid sizes (Fig. 10). As

pointed out by Nair and Machenhauer (2002) the deg-
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radation of the shape is caused by the monotonicity

constraint that translates into slightly less accurate er-

ror norms in comparison to, for example, positive defi-

nite methods. Nevertheless, in practice the advantages

of the monotonicity-preserving advection algorithm

outweigh the slight decrease in accuracy [see also com-

parisons in van Leer (1977)].

Figure 10 confirms that the shape of the cosine bell

after one revolution is well preserved at high resolu-

tions. The figure depicts a sequence of model runs with

increasing number of refinement levels at rotation

angle � � 45°. This transport direction represents the

“worst case” scenario for the advection algorithm with

underlying operator splitting approach. The results at

the highest refinement levels 3 and 4 are almost indis-

tinguishable from each other. It is also interesting to

note that the cosine bells at the higher resolutions (Figs.

10c–e) no longer show the small phase error, which is

visible in the coarser runs (Figs. 10a–b). The solutions

then resemble the true solution very closely, which is

FIG. 8. Snapshots of the adaptive cosine bell advection test (� � 90°) with three refinement levels (0.625°) at

(from top to bottom) days 0, 1, 3, and 4. (left) The geopotential height field of the cosine bell with overlaid adapted

blocks. The contour intervals are 100 m, and the zero contour line is omitted. (right) The distribution of the adapted

blocks among four parallel processors as indicated by the gray shadings.
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demonstrated in Fig. 10f. Figure 10f displays the differ-

ence of the cosine bell at refinement level 4 with the

analytic reference state. The differences mainly de-

velop along the edges in the 45° flow direction. In par-

ticular, the leading edge in the upper-right corner

shows slightly enhanced geopotential height values,

whereas the tail in the lower left corner drops below the

reference state. These errors are small in comparison to

the peak amplitude of the cosine bell. In general, the

same type of error patterns can also be found in non-

adapted model runs.

In addition, it is interesting to assess the adaptive

model performance with a cross polar flow field at � �

90°. Dynamic adaptations in polar regions are demand-

ing since they involve many more adapted blocks close

to the poles as discussed before. Nevertheless, the

adapted advection scheme performs satisfactorily at all

three refinement levels displayed in Fig. 11. Here, three

snapshots of the cosine bell at day 2, 3, and 4 (from the

bottom to the top) in a North Polar stereographic pro-

jection are shown. There are no visible distortions of

the height field at any resolution as the cosine bell ap-

proaches, passes over, and leaves the North Pole. The

increased resolution clearly helps preserve the shape

and peak amplitude.

The overall performance of the adaptive advection

tests with different rotation angles and increasing re-

finement levels is summarized in Table 2. The table

shows not only the normalized l1, l2, l�, and hmax errors

after one revolution but also contains information on

the final peak amplitude, the minimum and maximum

number of blocks during the 12-day forecast period, the

number of total time steps as well as the CPU time

measured on one processor of a SUN Ultra 60 work-

station. In addition, the error statistics of selected uni-

form-grid model runs (1.25°) are listed for comparison.

It can clearly be observed that the cosine bell is suc-

cessfully tracked in all adapted model simulations. This

is not only true for the l1 and l2 error norms that assess

the overall shape, but also for the peak amplitudes

evaluated by the l� errors. The peak amplitudes im-

prove considerably with increasing refinement levels.

An approximately second order convergence rate can

be found for the rotation angles �� 0° and �� 90°. For

� � 45° though, the convergence rate drops slightly

below second order.

Table 2 furthermore shows that the CPU time in the

adapted runs is significantly reduced in comparison to

the uniform-resolution model simulations. For ex-

ample, when comparing the uniform 1.25° runs with the

corresponding adapted runs at refinement level 2 the

speedup factors are approximately 7, 33, and 10 for the

rotation angle � � 0°, � � 45°, and � � 90°, respec-

tively. The speedup is determined by two main factors.

First, the number of blocks and therefore the overall

workload is decreased in the adapted simulations. Sec-

ond, the total number of time steps necessary for the

12-day integration is drastically reduced. The latter is

due to the fact that the adaptive time step can be

greatly increased if the fine grid does not cover the

polar regions. In particular, this effect can be seen in

the �� 45° case where the time step in the uniform run

solely depends on the CFL restriction at the poles. This

consequently leads to a rather short time step and large

number of iterations. In the corresponding adapted run,

the grid around the poles is mostly kept at the coarse

resolution so that the time step is mainly determined by

the traveling cosine bell. The latter is also true for the

FIG. 9. Geopotential height of the cosine bell after one revolution (12 days) with one refinement level (2.5°) and different rotation

angles �: (a) � � 0°: advection along the equator, (b) � � 45°: advection at a 45° angle, and (c) � � 90°: advection over the poles. The

analytic solution is overlaid (dotted contours). Contour intervals are 100 m, and the zero contour is omitted.
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� � 0° test case, where the time step exclusively relies

on the true advective wind speeds and grid distances at

the equator. Therefore, an identical number of time

steps is required for both the uniform and adapted runs

at the 1.25° resolution and the computational savings

are exclusively due to the reduced workload.

The error norms for the adaptive simulations in

Table 2 compare well to similar monotonic and conser-

vative advection schemes presented in the literature.

For example, the errors of the � � 90° run with one

refinement level (2.5°) closely resemble the corre-

sponding error measures for the weighted average flux

(WAF) scheme in Hubbard and Nikiforakis (2003), the

FFSL-3 algorithm in LR96 and the cell-integrated semi-

Lagrangian method with monotonic option (CISL-M)

in Nair and Machenhauer (2002) at comparable reso-

lutions (and a slightly wider bell radius R � a7�/64).

This is important to note since the latter two algorithms

are semi-Lagrangian-type schemes that only require

very few time steps for one revolution of the cosine bell.

Both schemes finish after 256 integration steps,

whereas the adaptive finite-volume model needs 4085

time steps due to the CFL restriction. Therefore, it is

emphasized that the error norms match despite the

large difference in the number of time steps. The sheer

number of integration steps has significant implications

on the model results. This has already been docu-

mented in Table 2, which shows that the error norms of

the adapted runs at refinement level 2 for nonzero ro-

tation angles are in fact slightly lower than the errors of

the uniform-grid runs. The effect can be linked to the

reduced number of integration steps. An even clearer

example is given in Table 3, which assesses the perfor-

mance of the � � 0° advection test with different maxi-

mum CFL numbers. As the CFL numbers decrease, the

resulting number of time steps for one revolution in-

creases, which leads to considerably less accurate re-

sults in this constant-flow test case. Here, an increased

FIG. 10. (a)–(e) Geopotential height of the cosine bell and (f) height errors after one revolution (12 days) with rotation angle � �

45°. (a) No refinements (5° resolution), (b) one refinement level (2.5°), (c) two refinement levels (1.25°), (d) three refinement levels

(0.625°), (e) four refinement levels (0.3125°), and (f) difference of the solution on the finest mesh [case (e)] with the analytic solution.

Contour intervals are 100 m in (a)–(e) and 1 m in (f). The zero contour is omitted in (a)–(e).
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number of time steps adds numerical diffusion to the

transport problem, which flattens the peak of the cosine

bell. A similar time-stepping effect was also observed

by Stevens and Bretherton (1996).

The time traces of the normalized l2 and l� error

norms with � � 45° and � � 90° are illustrated in Fig.

12. The figure displays the evolution of the errors at

three different refinement levels that show the ex-

pected decline of the solution error at finer resolutions.

The norms are slightly sensitive to the rotation angle,

especially in comparison to the � � 0° values listed in

Table 2. This is in contrast to findings by Taylor et al.

(1997) who utilized a high-order spectral element

method on a cubed-sphere computational grid. The

TABLE 2. Error measures and statistics for the solid-body rotation of the cosine bell after one revolution (12 days) for different

refinement levels and rotation angles �. The CFL number is 0.95. The number of blocks reflects the minimum and maximum during

the 12-day run. The CPU time is the user time on a single processor of a SUN Ultra 60 workstation.

Base resolution


�, 
�

Refinement

level

Height error norms

hmax

Final h

(m)

No. of blocks
No. of

time steps

CPU

time (s)l1 l2 l� Min Max

� � 0°

1.25° 0 0.0073 0.0078 0.0107 �0.0106 984.2 768 312 230

5° 0 0.1157 0.1001 0.0949 �0.0869 838.0 48 84 4

5° 1 0.0341 0.0301 0.0317 �0.0305 949.1 54 60 156 12

5° 2 0.0097 0.0103 0.0150 �0.0106 984.2 72 84 312 32

5° 3 0.0016 0.0021 0.0044 �0.0036 995.0 174 204 612 159

5° 4 0.0003 0.0005 0.0014 �0.0012 998.4 348 384 1224 642

� � 45°

1.25° 0 0.0264 0.0259 0.0557 �0.0555 939.5 768 19 872 13 873

5° 0 0.5077 0.4194 0.4835 �0.4762 480.8 48 1440 64

5° 1 0.0927 0.0911 0.1525 �0.1514 830.7 54 60 1440 97

5° 2 0.0278 0.0251 0.0507 �0.0505 944.4 72 106 3333 418

5° 3 0.0088 0.0080 0.0159 �0.0159 982.8 171 210 3871 994

5° 4 0.0031 0.0030 0.0053 �0.0039 995.8 348 462 4120 2407

� � 90°

1.25° 0 0.0250 0.0256 0.0421 �0.0420 953.0 768 27 936 19 551

5° 0 0.4683 0.3860 0.3923 �0.3902 559.7 48 2016 97

5° 1 0.0924 0.0898 0.1253 �0.1250 856.6 60 72 4085 305

5° 2 0.0244 0.0240 0.0405 �0.0405 954.5 72 200 11 152 1885

5° 3 0.0048 0.0052 0.0125 �0.0125 986.2 192 480 33 288 15 465

5° 4 0.0010 0.0011 0.0038 �0.0038 995.9 348 1440 107 199 159 708

FIG. 11. (from the bottom to the top) Polar stereographic projections of the cosine bell transported over the North Pole (the outer

circle is located at 45°N). Snapshots are taken after 2, 3, and 4 days, respectively, with refinement levels (a) 1, (b) 2, and (c) 3. Contour

intervals of the geopotential height fields are 100 m, and the zero contour is omitted.
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trace of the l� norm is rather noisy at low resolutions

and, additionally, shows distinct spikes when the cosine

bell is transported over the poles. This was also ob-

served by Rasch (1994) and Nair and Machenhauer

(2002). These spikes are not a consequence of the dy-

namically adaptive grid implementation, but also occur

in uniform-grid model runs. As pointed out by Jakob-

Chien et al. (1995) the source of the noise is the discrete

sampling of the numerical and reference solution. Here

the reference solution is computed analytically during

the course of the integration. This leads to an occa-

sional small increase in the peak amplitude of the ref-

erence field depending on the distance of the center to

the closest grid point. This effect diminishes with in-

creasing resolution.

2) TRANSPORT OF A SLOTTED CYLINDER

In the second example the cosine bell is replaced with

a slotted cylinder. All other parameters and flow fields

stay the same as discussed above. Such an advection

test was originally proposed by Zalesak (1979) and has

recently been applied in spherical geometry by Nair et

al. (2003) and Lipscomb and Ringler (2005). The slot-

ted cylinder exhibits very sharp nonsmooth edges in

comparison to the rather smoothly varying cosine bell.

Therefore, it challenges not only the numerical scheme

but also the interpolation algorithm in an adaptive

model simulation. The radius of the cylinder is set to

R � a � �/4 with a slot of width a � �/8 and length

a � 3�/8. This rather wide slotted cylinder is chosen to

allow grid coarsenings within the slot. As in Lipscomb

and Ringler (2005), the initial height of the cylinder is

set to h � 1000 m, whereas h is set to zero for all r � R

and inside the slot. The long axis of the slot is perpen-

dicular to the equator and the cylinder is initially cen-

tered at (�c, �c) � (3�/2, 0). The flow orientation angle

� � 30°, which avoids any grid symmetries along the

trajectory path, is selected.

The model is run for 12 days, which completes a full

revolution of the advected cylinder. As before, the ini-

tial conditions then serve as the true reference solution.

Four refinement levels are used that start from a coarse

5°� 5° base grid. Here, a grid-scale-dependent gradient

criterion is applied that flags a block for refinement if

one or more grid points with grid indices (i, j) exceed

the user-defined threshold

�i, j � max� |hi�1, j � hi, j | , |hi, j�1 � hi, j | � � 10 m �32�

FIG. 12. Normalized (a) l2 and (b) l� height errors of the cosine

bell for different refinement levels and rotation angles � � 45°

and � � 90°.

TABLE 3. Error measures and statistics for the solid-body rotation of the cosine bell along the equator after one revolution (12 days)

with refinement level 2 (1.25°). Results are shown for different CFL numbers. The CPU time is the user time on a single processor of

a SUN Ultra 60 workstation.

Base resolution


�, 
�

Refinement

level

CFL

number

Height error norms
Final h

(m)

Base time

step (s)

No. of

time steps

CPU

time (s)l1 l2 l�

� � 0°

5° 2 0.95 0.0097 0.0103 0.0150 984.2 3420 312 32

5° 2 0.5 0.0170 0.0184 0.0279 967.0 1800 576 58

5° 2 0.1 0.0295 0.0275 0.0354 959.6 360 2880 275
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for 0 � i � Nx and 0 � j � Ny. This criterion evaluates

the local height difference between neighboring cells,

which incorporates some ghost cell information along a

block boundary. A similar criterion was also formu-

lated by Hubbard and Nikiforakis (2003) who evalu-

ated � with centered differences.

Figures 13a–e show snapshots of the adaptive simu-

lation at model day 0, 3, 6, 9, and 12. The positive height

field is shaded in gray with overlaid adapted blocks. It

can clearly be seen that the grid is refined along the

sharp edges of the advected cylinder and kept coarse

elsewhere. At this high resolution within the refined

area (0.3125°) there is some minor numerical diffusion

along the sharp edges. This leads to a slight broadening

of the cylinder and its refined area during the course of

the simulation. The broadening can also be seen in Fig.

13f, which shows a cross section of the slotted cylinder

along the equator for four different refinement levels at

day 12. Here, the slotted cylinder can be compared to

its reference shape. The adapted grids clearly help pre-

serve the sharpness of the edges with increased resolu-

tion. This trend seems to level off at refinement levels

3 and 4, which visually overlay each other.

The performance of the refined and corresponding

uniform-resolution model runs after one revolution

(day 12) is quantitatively measured in Table 4. The

table lists not only the normalized l2 and l� geopotential

height error norms but also gives information on the

minimum and maximum number of blocks during the

12-day simulation, the total number of time steps, and

the CPU time on a single AMD Opteron processor.

The model runs are grouped according to their finest

grid resolution. It can be seen that the l2 errors of the

adaptive and corresponding uniform-resolution runs

FIG. 13. Advection of a slotted cylinder with rotation angle � � 30° and four refinement levels (0.3125°). The

positive height field is shaded in gray. (a) Initial height field (h � 1000 m), (b) height field at day 3, (c) day 6 (half

a revolution), (d) day 9, and (e) day 12 (full revolution). (f) A cross section of h along the equator at day 12 for

different refinement levels. The curves for refinement levels 3 and 4 overlay each other. The adapted blocks are

guided by the resolution-dependent criterion � � 10 m.
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closely match and slowly decrease with increasing reso-

lution. This error reduction cannot be observed for the

l� norms that measure the maximum deviations from

the reference solution. In particular, the l� norms stay

almost constant. Here, the reduced convergence rate of

both error norms is most likely due to the highly non-

smooth characteristics of the initial dataset. Overall, the

AMR simulations show considerable speedup factors of

about 17 and 120 at the two highest resolutions.

3) SMOOTH DEFORMATIONAL FLOW

An even more challenging advection test is the de-

formational flow (cyclogenesis) problem. This test was

first suggested by Doswell (1984) and has been formu-

lated for spherical geometries by Nair et al. (1999,

2002). Here, the smooth variant of the test that de-

scribes the simultaneous roll-up of two vortices is cho-

sen.

The vortices are centered at the poles of a rotated

spherical coordinate system (��, ��). This rotation is

defined with respect to the regular (�, �) coordinates

such that the North Pole of the rotated system is lo-

cated at (�0, �0) in the (�, �) reference frame. The

vortices are characterized by the normalized tangential

velocity

Vt �
3�3

2
sech2���� tanh����, �33�

with the radial distance of the vortex �� � r0 cos�� and

the constant r0 � 3. The representation of the wind

speeds (u, �) in the unrotated coordinates is described

in Nair et al. (1999). Note that all variables are nondi-

mensional and that the radius of the earth a is set to 1.

The angular velocity  � is defined by

���	��� �
0 if �� � 0,

Vt

��
if �� � 0

, �34�

which is used for the computation of the scalar field !.

In particular, ! is given by

����, 	�, t�� 1 � tanh���

d
sin��� � ��t��, �35�

which also serves as the analytic reference solution at

times t � 0. Here, the constant d � 5 determines the

characteristic width of the two vortices. In addition, the

parameters (�0, �0) � (�/2, �/18) are chosen which

point to the location (10°N, 90°E). This avoids any grid

symmetry effects during the simulation.

The adaptive advection model is run for three non-

dimensional time units. As before, up to four refine-

ment levels are tested that start from the coarse 5° � 5°

initial grid. The chosen refinement criterion is based on

the gradient of the scalar field !. In particular, if the

magnitude of the gradient exceeds the threshold

|�! | � 1 at one or more grid points in a given block the

block is flagged for refinement. Note that such a crite-

rion is independent of the block resolution and there-

fore contrasts the resolution-sensitive nearest neighbor

refinement strategy (�) discussed in the previous sec-

tion. An example of an adapted model run with four

refinement levels is displayed in Fig. 14. The figure

shows the scalar field ! with its corresponding block

distribution at times 0, 1, and t � 3. As it can be seen in

Figs. 14a and 14d no initial adaptations are invoked.

The first refinements are triggered shortly before t � 1

is reached. This is illustrated in Fig. 14e, which only

exhibits two of the four maximum refinement levels.

The missing two refinement stages are invoked imme-

TABLE 4. Error measures and statistics for the solid-body rotation of the slotted cylinder after one revolution (12 days) with rotation

angle � � 30°. Model runs with different refinement levels and uniform-grid simulations are compared and grouped together according

to their finest grid resolution. The CFL number is 0.95. The number of blocks reflects the minimum and maximum during the 12-day

run. The CPU time is the user time on a single AMD Opteron processor.

Base resolution


�, 
�

Refinement

level

Height error norms No. of blocks
No. of

time steps

CPU

time (s)l2 l� Min Max

5° 0 0.5042 0.7725 48 1152 2

2.5° 0 0.3082 0.7506 192 3744 23

5° 1 0.3076 0.7492 72 96 3061 18

1.25° 0 0.2290 0.7682 768 14 400 342

5° 2 0.2296 0.7667 174 246 6822 103

0.625° 0 0.1738 0.7532 3072 56 160 5545

5° 3 0.1770 0.7555 420 573 8667 320

0.3125° 0 0.1313 0.7899 12 288 223 488 99 924

5° 4 0.1375 0.7968 948 1299 9399 834
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diately after this time stamp. At t � 3 the two vortices

have matured and developed very sharp gradients that

are now covered by an extended refined area. Overall,

the evolving roll-up of the scalar is well captured by the

adaptive model simulation. No noise or distortions at

fine–coarse-grid boundaries are visible.

A quantitative comparison of the refined and corre-

sponding uniform model runs is presented in Table 5.

The table lists the normalized l2 and l� error norms of

the scalar field !, an overview of the CPU times on a

single AMD Opteron processor as well as the number

of blocks and time steps at t � 3. As before, the model

runs are grouped according to their finest grid resolu-

tion. It is interesting to note that the coarse 5° base-

resolution runs only show small improvements in the

error statistics when refined up to a refinement level of

4. On the contrary, the errors slightly increase at refine-

ment level 4. It suggests that the initial errors on the

coarse mesh (until t � 1) cannot be successfully recov-

ered by later refinement regions that are initialized via

interpolations from the coarser mesh. Therefore, even

an AMR run must reasonably represent the solution on

the coarsest mesh if accuracy is expected to be gained in

the refined areas. A good compromise between accu-

racy and computational costs are the 1.25° model simu-

lations with one or two refinement levels. They show

the smallest error measures even in comparison to the

uniform high-resolution model runs 0.625° and 0.3125°.

This is mainly attributable to the reduced number of

integration steps that also lead to the considerable

speedup factors of �8.6 and �108, respectively.

5. Conclusions

A spherical 2D AMR technique has been applied to

a revised version of the conservative and monotonic

Lin and Rood (1996) advection algorithm. The adap-

tive grid design is based on two building blocks: a block-

structured data layout and a spherical AMR grid library

FIG. 14. Smooth deformational vortex test case with four refinement levels (0.3125°). Shown on the left are the

scalar field ! at the nondimensional times (a) t � 0, (b) t � 1, and (c) t � 3. (d)–(f) The corresponding adapted

blocks that are steered by the nondimensional gradient criterion |�! | � 1.
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for parallel computer architectures. The library con-

tains special provisions for ghost cell exchanges in polar

regions and supports both static and dynamic grid ad-

aptations. Furthermore, it has built-in parallel commu-

nication and load-balancing support, which reduces the

development time for parallel AMR applications. The

latter is especially important for more complex, nonlin-

ear AMR models in 3D.

Three advection examples with increasing complex-

ity have been tested. These include the advection of a

cosine bell around the sphere at different rotation

angles, the transport of a slotted cylinder with sharp

edges, and a smooth deformational cyclogenesis test

case that describes the roll-up of two vortices. Up to

four refinement levels have been tested with a minimal

mesh spacing of 0.3125°. The adaptations were guided

by user-defined adaptation criteria. In particular,

simple height- and gradient-based refinement strategies

were chosen that triggered refinements whenever the

problem-specific threshold values were reached. All

three test examples showed that the chosen features of

interest were reliably detected and tracked by the re-

finement regions. The additional resolution clearly

helped preserve the shape and amplitude of the trans-

ported field while saving computing resources in com-

parison to uniform-grid model runs. Overall, the adap-

tive simulations demonstrate that AMR might be a vi-

able option for atmospheric transport schemes. For

practical applications, the adaptation criterion can then

be tailored toward the specific advected quantities and

flow conditions.

The AMR block design is readily applicable to non-

linear model configurations that can utilize a block-data

structure on the sphere. This research effort is there-

fore a step toward a statically and dynamically adaptive

GCM that can focus its resolution on user-determined

regions or features of interest. The refined domains

could, for example, include static adaptations in moun-

tainous terrain or dynamic adaptations for cyclones or

convective regions. Tests with an adaptive nonlinear

2D and 3D version of the finite-volume dynamical core

have already been successfully performed and will be

discussed in a follow-up paper.

Whether adaptive mesh approaches for climate and

weather research will prevail in the future will crucially

depend on two major aspects. First, it must be shown

that adaptive atmospheric modeling is not just feasible,

but also accurate with respect to the resulting flow pat-

terns and furthermore, capable of detecting the fea-

tures of interest reliably in 3D setups. Second, adaptive

model simulations must also be computationally less

expensive than comparable uniform high-resolution

runs. We argue that both goals are within reach for

future atmospheric model generations.
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