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Adaptive mesh refinement techniques offer a flexible framework for future variable-
resolution climate and weather models since they can focus their computational mesh
on certain geographical areas or atmospheric events. Adaptive meshes can also be used
to coarsen a latitude–longitude grid in polar regions. This allows for the so-called reduced
grid setups.
A spherical, block-structured adaptive grid technique is applied to the Lin–Rood finite-
volume dynamical core for weather and climate research. This hydrostatic dynamics
package is based on a conservative and monotonic finite-volume discretization in flux form
with vertically floating Lagrangian layers. The adaptive dynamical core is built upon a
flexible latitude–longitude computational grid and tested in two- and three-dimensional
model configurations. The discussion is focused on static mesh adaptations and reduced
grids. The two-dimensional shallow water setup serves as an ideal testbed and allows
the use of shallow water test cases like the advection of a cosine bell, moving vortices, a
steady-state flow, the Rossby–Haurwitz wave or cross-polar flows. It is shown that redu-
ced grid configurations are viable candidates for pure advection applications but should
be used moderately in nonlinear simulations. In addition, static grid adaptations can be
successfully used to resolve three-dimensional baroclinic waves in the storm-track region.

Keywords: reduced latitude–longitude grid; adaptive mesh refinement; block-structured grid;

shallow water; dynamical core; baroclinic wave

1. Introduction

The use of variable grid resolutions has been discussed for regional atmospheric
modelling over the past three decades (Fox-Rabinovitz et al. 1997). In particular,
nested grids, stretched grids and dynamic adaptive mesh refinement (AMR)
techniques have been suggested in the literature. Nested grids are widely used
for local weather predictions and regional climate models to downscale a global
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large-scale simulation. Examples include the limited-area ‘Weather and Research
Forecasting Model’ WRF (Skamarock et al. 2005) and the ‘Canadian Regional
Climate Model’ CRCM (Caya & Laprise 1999). Typical grid ratios between 2 and
5 are chosen for the resolution jump (Denis et al. 2002). A fixed-size refined grid
is then permanently embedded in a coarse-resolution general circulation model,
which initializes the fine grid and periodically updates the lateral boundary
conditions of the nested area. Most often, different sets of equations, physics
approximations and numerical schemes are used in the two domains. Therefore,
special care must be taken to minimize the consequent numerical and physical
inconsistencies across the fine–coarse grid boundaries. In addition, nested grids
might also be placed within the same model to allow for further refinement steps
(Skamarock et al. 2005). Such an approach can also be viewed as a statically
adaptive mesh application. It considerably improves the numerical consistency
along the mesh interfaces due to the identical numerical setups in the nested
domains. In addition, it allows for two-way mesh interactions that provide small-
to-large scale feedbacks. In general, nested grid configurations make it possible
to combine large-scale simulations with realistic meso-scale forecasts for selected
domains. In contrast to dynamic AMR methods, the total number of grid points
stays constant during a nested grid model run.
The goal of dynamic grid adaptations is to refine the mesh locally in advance

of any important physical process that needs additional grid resolution, and to
coarsen the grid if the additional resolution is no longer required. Dynamic AMR
is therefore the most flexible variable-resolution global modelling technique that
can readily vary the number of grid points as demanded by the adaptation
criterion and the flow field. The grid interaction is automatically two-way
interactive. Dynamically adaptive grids for atmospheric flows were first applied by
Skamarock et al. (1989) and Skamarock & Klemp (1993) who discussed adaptive
grid techniques for three-dimensional limited-area models in Cartesian geometry.
More recently, Bacon et al. (2000) and Boybeyi et al. (2001) introduced the
adaptive non-hydrostatic limited-area weather and dispersion model OMEGA
for atmospheric transport and diffusion simulations. The model is based on
unstructured, triangulated grids with rotated Cartesian coordinates that can
be dynamically and statically adapted to features of interest. OMEGA has
also been used as a regional hurricane forecasting system in spherical geometry
(Gopalakrishnan et al. 2002).
In addition, a variety of statically and dynamically adaptive advection models

and shallow water codes on the sphere have been proposed. A literature review
of dynamically adaptive advection techniques is provided in Jablonowski et al.
(2006) who applied a block-structured AMR method to a finite-volume advection
algorithm. Most relevant to the advection studies presented here is the adaptive
transport model by Hubbard & Nikiforakis (2003) who also used a block-
structured finite-volume approach. Statically adaptive shallow water models on
the sphere were developed by Ruge et al. (1995), Barros & Garcia (2004), Fournier
et al. (2004), Giraldo & Warburton (2005), Ringler et al. (2008) and Weller &
Weller (2008). Dynamically adaptive shallow water codes on the sphere have
been discussed by Jablonowski (2004), Behrens et al. (2005), Jablonowski et al.
(2006), Läuter et al. (2007), St-Cyr et al. (2008) and Heinze (2009). Behrens
et al. (2005), Läuter et al. (2007) and Heinze (2009) utilized finite-element
methods on unstructured triangulated meshes, whereas Jablonowski et al. (2006)
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and St-Cyr et al. (2008) introduced block-structured AMR techniques for finite-
volume and high-order spectral-element methods. This paper is built upon
the latter block-structured finite-volume approach and extends its applicability.
In particular, the paper focuses on the use of adaptive blocks for two types of
static mesh adaptations. These are the (i) so-called reduced grids that coarsen
the latitude–longitude grid in longitudinal direction near polar regions and
(ii) static refinements in storm-track regions for three-dimensional atmospheric
flows. Reduced grids are attractive for computational performance reasons. This
is particularly true if the Courant–Friedrichs–Lewy (CFL) stability condition
in the polar regions limits the time step for the global domain. Reduced or
‘skipped’ grids have a long tradition in atmospheric general circulation modelling.
They were first introduced in finite-difference models by Gates & Riegel (1962)
and Kurihara (1965). The latter designed the so-called Kurihara grid with only
four grid points next to the poles that offered an almost homogeneous grid
distribution. But as noted by Shuman (1970) and Williamson & Browning (1973),
the numerical design of reduced grids must be carefully chosen. Finite-difference
models with curvilinear coordinates exhibit extreme curvature near the pole
points. As a consequence, large truncation errors might be present in reduced
grids. We will revisit this observation for finite-volume techniques.
This paper is organized as follows. Section 2 reviews the fundamental ideas

behind the block-structured adaptive mesh methodology that is used in this
paper. Both statically and dynamically adaptive meshes are supported, managed
by a spherical mesh library for parallel computing architectures. The AMR
technique is applied to a revised version of the finite-volume dynamical core,
originally developed by Lin (2004) and Lin & Rood (1997). The model design and
governing equations are briefly surveyed. The adaptive dynamical core is tested
in two model configurations: the full three-dimensional hydrostatic dynamical
core on the sphere and its corresponding single-level shallow water version.
This shallow water setup serves as an ideal testbed for the two-dimensional
adaptive mesh and reduced grid approach, which is discussed in §§3 and 4. In
particular, several standard test cases from the Williamson et al. (1992) test
suite, moving vortices (Nair & Jablonowski 2008) and a cross-polar flow test by
McDonald & Bates (1989) are presented. In §5 the static adaptations in three-
dimensional simulations are assessed using the idealized baroclinic wave test case
by Jablonowski & Williamson (2006a,b). Section 6 provides a summary of the
results and addresses future modelling challenges.

2. The adaptive finite-volume dynamical core

(a) Block-structured adaptive meshes and reduced grids on the sphere

The adaptive model design uses the spherical block-structured AMR grid
library for parallel computing architectures by Oehmke & Stout (2001) and
Oehmke (2004), which groups a latitude–longitude grid into horizontal, logically
rectangular blocks. Adaptive blocks offer flexible non-uniform grids that have
the potential to use the computing resources more efficiently than unstructured
meshes or cell-based trees. In particular, the high potential for loop and cache
optimization within a block, the reduced number of pointers to grid neighbours,
and the quadtree-based block management with reduced parallel communication

Phil. Trans. R. Soc. A (2009)

 on August 9, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


4500 C. Jablonowski et al.

overhead render adaptive blocks highly competitive as also argued by Stout et al.
(1997) and Colella et al. (2007). Adaptive blocks can be used for static and
dynamic grid adaptations. Static adaptations are placed in user-defined regions
of interest at the beginning of a forecast and are held fixed during the model
run. Typical applications include static refinements in mountainous terrain or
static refinements over selected geographical areas, e.g. for weather prediction
applications. Dynamic adaptations can be used to track features of interest as
they evolve. Examples are the life cycles of storm systems and cyclones or tracer
transport. Adaptive blocks can also be used to define a special type of grid,
the so-called reduced latitude–longitude grid. In a reduced grid, grid points are
coarsened in longitudinal direction as the poles are approached. This effectively
relaxes the strict time-step restrictions in a regular latitude–longitude grid if a
CFL stability condition in the polar regions limits the time step for the global
domain. In addition, it reduces the overall workload by reducing the number of
grid points. From a high-level viewpoint, such a reduced mesh can be considered
a statically adapted grid with one-dimensional mesh coarsenings.
Each adapted block is self-similar and contains an identical number of grid

points. The number of grid points and initial blocks are user-defined and together
determine the base resolution. In the experiments presented here 6× 9 grid points
per block in latitudinal × longitudinal direction are chosen. Furthermore, we
select 6× 8, 12× 16 or 24× 32 initial blocks that correspond to the horizontal
base resolutions 5◦ × 5◦, 2.5◦ × 2.5◦ and 1.25◦ × 1.25◦, respectively. In the event
of refinement requests, a block is split into four, thereby doubling the horizontal
resolution. Note that the vertical resolution is held fixed in the three-dimensional
model runs. Coarsening requests reverse the two-dimensional refinement principle.
Then four ‘children’ are coalesced into a single parent block, which reduces the
grid resolution in each horizontal direction by a factor of 2. Neighbouring blocks
can only differ by one refinement level. This leads to cascading refinement regions.
More details on the block-structured adaptation technique, the finite-volume
algorithm, the coarse–fine grid interface treatment including the flux corrections
and interpolation techniques are provided in Jablonowski (2004), Jablonowski
et al. (2006) and St-Cyr et al. (2008). The block-structured AMR algorithm
ensures mass conservation. It is enforced via numerical flux corrections that
average the fine grid fluxes and override the coarse grid flux at an adjacent
grid interface. In this paper we focus on new aspects of the adapted blocks that
address the reduced grid design and the performance of statically adapted grids
in three-dimensional model runs.
The AMR grid library provides provisions for block-structured reduced grids

in polar regions. Several of these reduced grid designs are explored here. As an
example, two configurations are shown in figure 1a,b, which illustrates a reduced
grid with base resolution 2.5◦ × 2.5◦ plus one (rg1) and two (rg2) reduction levels.
In addition, an adapted mesh with three static refinement levels is shown in
figure 1c. The latter spans the resolutions 5◦ × 5◦ to 0.625◦ × 0.625◦ and is used
for three-dimensional hydrostatic model simulations in §5. In the reduced grids,
the grid reductions are placed at 75◦ and 60◦ (rg2) in both hemispheres. At
each transition point the physical grid spacing �x in longitudinal direction then
changes abruptly by a factor of 2. Examples of the grid spacings are shown in
table 1. The table also lists the grid distance near the poles, which determines
the CFL numbers and maximum time steps in the advection examples in §3. This
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(a) (b) (c)

Figure 1. Distribution of adaptive blocks over the sphere (orthographic projection centred at
0◦E, 45◦N. (a) Reduced grid with one reduction (rg1); (b) reduced grid with two reductions (rg2);
and (c) adapted storm-track region with three static refinement levels. Base resolutions are (a,b)
2.5◦ × 2.5◦ and (c) 5◦ × 5◦. All blocks contain additional 6× 9 grid points (not depicted).

Table 1. Reduced grid statistics for the base resolution 2.5◦ × 2.5◦.

physical grid spacings �x (km)

latitude ϕ uniform one reduction (rg1) two reductions (rg2)

±60◦ 139.0 139.0 278.0
±75◦ 72.0 143.9 287.8
±88.75◦ 6.1 12.1 24.3

particular reduced grid design obeys the principle that the physical grid distances
on the sphere do not greatly exceed the maximum grid spacing �x ≈ 278 km at
the Equator. If wider grid distances are allowed in polar regions, the solution has
a greater potential to degrade, especially in nonlinear simulations. The possible
latitudinal positions of the reduction steps are restricted by the block-data design
and determined by the initial number of blocks in both horizontal directions and
the block size.
Each block has three additional cells, so-called ghost cells, in each horizontal

direction that provide information from neighbouring blocks for the numerical
scheme. The algorithm then loops over all blocks on the sphere before a Message
Passing Interface (MPI) communication step on parallel computing architectures
is triggered. This communication step updates the ghost cell region. The minimum
block size that fulfils the parallel communication constraint is therefore 6× 6 grid
points per block. Note that the time step is the same in all blocks, which are
treated as independent units. Depending on the particular adaptive or reduced
grid interface, the ghost cell updates use conservative interpolation or averaging
techniques, or just plain copies of the neighbouring data if the resolutions at
an interface are the same. The parallel workload is managed by a load-balancing
technique that can be called dynamically if required. It guarantees that an almost
identical number of blocks is assigned to each processor on a parallel machine,
which ensures the equal workload.
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(b) The finite-volume dynamical core

We apply the block-structured adaptive mesh technique to a revised version of
the finite-volume dynamical core, originally developed by Lin (2004) and Lin &
Rood (1997). This hydrostatic dynamics package is based on a conservative
two-dimensional finite-volume discretization in flux form and uses a floating
Lagrangian coordinate in the vertical direction. The underlying advection scheme
is upwind-biased and built upon the piecewise parabolic method (PPM) by
Colella & Woodward (1984). This finite-volume advection algorithm uses a
nonlinear monotonicity constraint that is a source of scale-selective numerical
diffusion, especially near sharp gradients. Here the monotonicity option FFSL-4
from Lin & Rood (1996) is used. Other diffusion and filtering mechanisms
include a horizontal second-order divergence damping mechanism, a fast Fourier
transform (FFT) filter near the poles and a fourth-order Shapiro filter (Shapiro
1970) in the longitudinal direction polewards of 60◦. The latter two stabilize the
fast waves that originate from the pressure gradient terms and filter high-speed
gravity waves at high latitudes. The filters are applied in tests of the full nonlinear
shallow water and hydrostatic equations. They are neither needed nor applied in
pure advection examples.
The PPM method is formally third-order accurate in each direction.

Nevertheless, the order of accuracy reduces to second-order in two dimensions
as shown by Jablonowski et al. (2006). The time-stepping scheme is explicit
and stable for zonal and meridional Courant numbers CFL< 1. This restriction
arises since the semi-Lagrangian extension of the Lin & Rood (1996) advection
algorithm is not used in the AMR model experiments. This keeps the width of the
ghost cell regions small, but on the other hand requires small time steps if high
wind speeds are present in polar regions. In this case the CFL condition is most
restrictive due to the convergence of the meridians in the latitude–longitude grid.
From a high-level viewpoint, the three-dimensional model design can be viewed

as vertically stacked shallow water layers. This provides an ideal framework for
two-dimensional and three-dimensional studies since the two-dimensional shallow
water model is equivalent to a single-level version of the three-dimensional design.
The underlying hyperbolic shallow water system comprises the mass continuity
equation and the momentum equation as shown in equations (2.1) and (2.2). Here
the flux form of the mass conservation law and the vector-invariant form of the
momentum equation are selected:

∂

∂t
h + ∇ · (hv) = 0, (2.1)

∂

∂t
v+ Ωak̂× v+ ∇

(

Φ + 1
2
v · v− νD

)

= 0. (2.2)

Here v is the spherical vector velocity with components u and v in the longitudinal
(λ) and latitudinal (ϕ) directions, and Ωa = ζ + f denotes the absolute vorticity.

The absolute vorticity is composed of the relative vorticity ζ = k̂ · (∇ × v) and
the Coriolis parameter f = 2Ω sin ϕ, where Ω is the angular velocity of the

Earth. Furthermore, k̂ is the outward radial unit vector, ∇ and ∇· represent
the horizontal gradient and divergence operators, and Φ = Φs + gh symbolizes
the free surface geopotential, where Φs is the surface geopotential, h is the depth
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or mass of the fluid and g is gravity. In addition, D is the horizontal divergence and
ν the divergence damping coefficient. A distinct advantage of this vector-invariant
formulation is that the metric terms, which are singular at the poles in the
chosen curvilinear spherical coordinate system, are hidden by the definition of the
relative vorticity.
In three dimensions, the set of equations is very closely related to the shallow

water system when replacing the height of the shallow water system with the
hydrostatic pressure difference δp between two bounding Lagrangian surfaces
in the vertical direction. Furthermore, the thermodynamic equation (2.4) in
conservation form is added to the set:

∂

∂t
δp + ∇ · (δpv) = 0, (2.3)

∂

∂t
(Θ δp) + ∇ · (Θδpv) = 0, (2.4)

∂

∂t
v+ Ωak̂× v+

1

ρ
∇p + ∇

(

Φ + 1
2
v · v− νD

)

= 0. (2.5)

Here Θ is the potential temperature and ρ denotes the density. The calculation
of the pressure gradient terms (1/ρ)∇p + ∇Φ is based on an integration over the
pressure forces acting upon a finite volume. This approach constitutes the main
difference between the shallow water system and the three-dimensional model
setup. The underlying method has been proposed by Lin (1997, 2004) who defines
the zonal and meridional components of the discretized pressure gradient terms

as P̂λ and P̂θ .
In this primitive-equation formulation, the prognostic variables of the

dynamical core are the wind components u and v, the potential temperature
Θ and the hydrostatic pressure thickness δp. The geopotential Φ, on the other
hand, is computed diagnostically via the numerical integration of the hydrostatic
relation in pressure coordinates. It is important to note that the hydrostatic
equation is the vertical coupling mechanism for the two-dimensional dynamical
systems in each layer.
The pressure value at each Lagrangian surface can be directly derived when

adding all the overlying pressure thicknesses within the vertical column. The
pressure at the model top ptop is prescribed and set to 2.19 hPa in the current
three-dimensional formulation with Nlev = 26 vertical levels. There are a total
of Nlev + 1 Lagrangian surfaces that enclose Nlev Lagrangian layers. Each layer
is allowed to float vertically as dictated by the hydrostatic flow and, as a
consequence, the two Lagrangian surfaces bounding the finite volumes will deform
over time. The displaced Lagrangian surfaces are then periodically mapped
back to a fixed Eulerian reference system via monotonic and conservative
interpolations. Lagrangian surfaces are non-penetrable material surfaces that
do not allow transport processes across the boundaries. The periodic vertical
remapping step essentially performs the function of a conservative vertical
advection process as viewed from the fixed Eulerian reference frame. The
lowermost Lagrangian surface coincides with the Earth’s surface.
Because of their equivalent designs, the two-dimensional shallow water version

can be immediately extracted out of the full three-dimensional dynamical
core with almost no changes of the source code. The main idea is to eliminate
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the influence of the thermodynamic equation in the momentum equation for the
shallow water setup. The thermodynamic equation is linked to the momentum
equation only via the computation of the geopotential gradient. Overall, three
steps need to be performed. First, the number of vertical layers needs to
be set to 1. Second, the potential temperature field Θ must be initialized
with the constant 1K and must not change during the shallow water run.
Furthermore, the δp field now stands for the geopotential height h instead of
a pressure thickness. Third, the gas constant for dry air Rd, the specific heat of
dry air at constant pressure cp and κ =Rdc

−1
p need to be overwritten and set to

unity. This guarantees that the discretized pressure gradient terms P̂λ and P̂θ in
the three-dimensional momentum equations (Lin 1997, 2004) become identical
to ∇h in the two-dimensional momentum equation. Additional details on the
adaptive grid implementation of the finite-volume dynamical core can be found
in Jablonowski (2004) and Jablonowski et al. (2006).

3. AMR and reduced grid advection tests

(a) Cosine bell advection test

The first test of the finite-volume advection scheme on reduced grids is based
upon the solid body rotation of a cosine bell. This test is part of the standard
shallow water test suite by Williamson et al. (1992) who describe the analytical
initial conditions for the height h and the wind speeds (see test case 1). In brief, a
cosine bell with peak amplitude of 1000m is initially placed at (λc,ϕc) = (3π/2, 0)
and passively advected once around the sphere over a 12-day period. For the tests
here, the flow orientation angle α = 90◦ is selected that forces the cosine bell to
cross both poles. This setup is therefore a stringent test of the reduction levels.
The cosine bell advection is tested on a 2.5◦ × 2.5◦ base grid with one or two

reduction levels positioned at 75◦ and 60◦ in both hemispheres. In addition, a
single refinement level is overlaid in two experiments to dynamically track the
path of the cosine bell. Refinements are triggered if one or more grid points
within a block exceed the user-defined height threshold h ≥ 53m. Coarsenings
are invoked if all grid points within a block fall below this value. Such an
adaptation criterion has also been used in the cosine bell advection tests in
Jablonowski et al. (2006) and St-Cyr et al. (2008) that serve as comparisons.
Here the dynamic adaptations are primarily used to demonstrate their interplay
with the reduced grid. In all experiments the time step is variable and matches
the CFL number of 0.95.
Figure 2 shows snapshots of two reduced grid simulations with one and two

reduction levels. Furthermore, a combined adapted and reduced grid (rg2) run
is depicted. The composites display a daily time series of the cosine bell from
day 1 through day 5 as it passes over the North Pole. The layout of the reduced
blocks is indicated by the dotted grid lines. For clarity, no attempt is made to
overlay the dynamic block adaptations in figure 2c. The figures show that the
cosine bell passes over the North Pole without visible distortions or noise. The
reduced grid rg1 has no negative impact on the quality of the simulations, which
are almost indistinguishable from the 2.5◦ reference run (fig. 11a in Jablonowski
et al. 2006). However, a minor degradation of the height field is apparent with
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Figure 2. Polar stereographic projections of the cosine bell (test case 1, α = 90◦) transported over
the North Pole (from the bottom to the top of the figure, the outer circle is located at 15◦N).
Snapshots are taken after 1, 2, 3, 4 and 5 days, respectively. Base resolution is 2.5◦ × 2.5◦. Reduced
grid runs with: (a) one reduction (rg1); (b) two reductions (rg2); and (c) two reductions and one
adaptive refinement level. The reduced grid configurations are indicated by dotted lines. Contour
intervals of the geopotential height field are 100m. The zero contour is omitted.

Table 2. Error norms and run-time statistics for the cosine bell advection test. (Normalized height
error norms and run-time statistics for the cosine bell advection test over the poles (test case 1,
α = 90◦) with a variety of uniform grids, reduced grids and AMR configurations after 12 days. The
number of time steps is given for one revolution with CFL= 0.95. The CPU time is measured on
a single processor of a SUN Ultra 60 workstation.)

height error norms no. of blocks
base red. ref. final h no. of CPU
�λ,�ϕ level level ℓ2 ℓ∞ (m) min max time steps time (s)

2.5◦ 0 0 0.0952 0.1285 853.5 192 7200 1202
2.5◦ 1 0 0.0911 0.1264 855.5 176 3744 415
2.5◦ 2 0 0.0889 0.1333 848.8 152 2016 205

1.25◦ 0 0 0.0256 0.0421 953.0 768 27936 19551
2.5◦ 0 1 0.0262 0.0419 953.1 204 276 13218 3529
2.5◦ 1 1 0.0249 0.0409 954.1 188 236 8696 2175
2.5◦ 2 1 0.0237 0.0427 952.3 164 194 5484 1228

two reduction levels (rg2). They slightly decrease the peak amplitude of the
bell as it passes over the North Pole. The interplay between the reduced grid
rg2 and dynamic adaptations is shown in figure 2c. It can be seen that the
refinement region improves not only the shape but also the peak amplitude of
the advected feature.
The tests are further quantified in table 2, which lists the normalized root mean

square ℓ2 and infinity ℓ∞ height error norms for the reduced, adapted and uniform
grid runs after one revolution (12 days). The uniform-resolution simulations
serve as reference runs. The norms are defined in Williamson et al. (1992) and
Jablonowski et al. (2006) for the block-structured setup. The table also lists the
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final height of the cosine bell at day 12, the minimum and maximum number
of blocks during the course of the simulation, the number of time steps for a
12-day run and CPU time on a single processor of a SUN Ultra 60 workstation.
The latter three provide insight into the relative computational performance
and workload of the model runs. They show that the reduced and adapted
grid simulations exhibit speed-up factors between 6 and 16 when compared with
their equivalent uniform-resolution runs. This is mainly attributable to the longer
time steps permitted in the reduced and adapted grid runs. In these simulations
the adaptive time step is determined by the smallest longitudinal grid spacing
closest to the poles. Table 2 shows that all error measures in the 2.5◦ and 1.25◦

resolution groups are very similar. This confirms the observation that the reduced
grids can be successfully used for the advection test. Here it is interesting to
note that the adapted reduced grid simulations show slightly improved ℓ2 error
measures despite the coarser longitudinal resolution at high latitudes. This effect
is mainly attributable to the decrease in the total number of integration steps. The
fewer invocations of the monotonicity constraint lessens the inherent numerical
diffusion of the advection scheme and helps preserve the peak amplitude in
the case of one reduction level. In the case of two reduction levels this time-
stepping effect is overshadowed by the slight smoothing effect of the second grid
reduction. The error measures in table 2 compare favourably to similar advection
experiments documented in the literature. In particular, Rasch (1994) performed
the cosine bell advection test with a reduced grid design and comparable base
resolution (2.8◦). The error measures for Rasch’s RG2.8 configuration with a
monotonic upstream-biased transport scheme exceed the errors in table 2 by a
factor of 1.5–2.

(b)Moving vortices on the sphere

A second more complex advection test confirms that reduced grids are viable
candidates for tracer advection problems. The initial conditions are identical
to those of Nair & Jablonowski (2008) and for brevity are not displayed here.
In short, this advection test describes the roll-up of a passive tracer that is
transported over the sphere over a 12-day time period. During this forecast period,
the initially smooth passive tracer develops sharp gradients. They are depicted in
figure 3a,b, which shows the initial field and analytical reference solution at day
12 after one revolution around the sphere. The advecting wind field is prescribed
analytically. As before, the flow orientation angle is set to α = 90◦, which
describes a translation over both pole points. Such a configuration challenges
the reduced grid setups, especially at days 3 and 9 when the vortex centres cross
both poles.
Figure 3c–f depicts snapshots of the tracer field at days 8 and 12, which are

simulated with two reduced grid setups. These are the 2.5◦ × 2.5◦ base resolution
with two reduction levels at 75◦ and 60◦ (rg2) as shown in table 1, and the 1.25◦ ×

1.25◦ base resolution with four reductions at 82.5◦, 75◦, 67.5◦ and 60◦ in both
hemispheres. Note that the polar grid spacing in the last configuration exceeds the
maximum mesh spacing in the equatorial region with �x ≈ 139 km. In particular,
the physical mesh distances �x for the 1.25◦ base resolution and the four reduced
grids are documented in table 3, which lists the mesh distances at the redu-
ced grid transition points and at the position closest to the poles. Therefore, the
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Figure 3. Roll up of moving vortices transported over the poles with flow orientation angle α = 90◦.
(a) Initial tracer distribution at day 0 and (b) analytical solution at day 12 after one full revolution.
(c–f ) Tracer at days 8 and 12 simulated (c,e) with the base resolution 2.5◦ × 2.5◦ and two reductions
(rg2), and (d,f ) with the base resolution 1.25◦ × 1.25◦ and four reductions. The blocks of the
reduced grids are overlaid.

Table 3. Reduced grid statistics for the base resolution 1.25◦ × 1.25◦.

physical grid spacings �x (km)

latitude ϕ uniform one reduction two reductions three reductions four reductions

±60◦ 69.5 69.5 69.5 69.5 139.0
±67.5◦ 53.2 53.2 53.2 106.4 212.8
±75◦ 36.0 36.0 71.9 143.9 288.8
±82.5◦ 18.1 36.3 72.6 145.1 290.3
±89.375◦ 1.5 3.0 6.1 12.1 24.3
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Table 4. Moving vortices: error measures and time step statistics at day 12. (Error measures and
time step statistics for the FV simulations with α = 90◦ after 12 days. Model runs with up to four
reduced grid levels and uniform grid simulations are compared. The time step is constant and
corresponds to CFL ≈ 0.95.)

error norms
base resolution reduction time step no. of no. of
�λ,�ϕ level ℓ1(φ) ℓ2(φ) ℓ∞(φ) �t (s) time steps blocks

2.5◦ 0 0.0102 0.0262 0.1125 150 6912 192
2.5◦ 1 0.0099 0.0260 0.1115 300 3456 176
2.5◦ 2 0.0096 0.0258 0.1090 600 1728 152

1.25◦ 0 0.0038 0.0117 0.0681 37.5 27648 768
1.25◦ 1 0.0037 0.0116 0.0674 75 13824 736
1.25◦ 2 0.0035 0.0113 0.0661 150 6912 688
1.25◦ 3 0.0033 0.0109 0.0639 300 3456 632
1.25◦ 4 0.0036 0.0118 0.0648 600 1728 572

configuration with four reductions tests the limits of the reduced grid in the
block-structured AMR framework. The grid should not be reduced further or
even be limited to three reduction levels in practice. The figures show that the
reduced grid can be successfully employed for this more demanding advection
test. The roll-up and solid body advection of the tracer are predicted reliably in
both reduced grid simulations. The equivalent uniform grid runs at the resolutions
2.5◦ × 2.5◦ and 1.25◦ × 1.25◦ are visually indistinguishable from the reduced grid
runs and therefore not shown here.
This observation is confirmed by global error statistics. The error measures

of selected uniform and reduced grid simulations are listed in table 4. The table
compares the normalized ℓ1, ℓ2 and ℓ∞ error norms of the tracer distribution (φ)
after 12 days for different uniform and reduced grid simulations. In addition, it
lists the constant length of the time step and the total number of time steps and
blocks. They are relative measures of the computational cost when disregarding
the overhead invoked by the adaptive mesh design of the reduced grids. The table
shows that the error norms improve slightly in the reduced grid runs despite the
coarsening of the polar grid spacing in longitudinal direction. This decrease in
the error is again due to the reduced number of integration steps needed to cover
the 12-day forecast period. As explained before, fewer integration steps invoke
less numerical damping. Such damping is inherent in the monotonicity constraint
of the finite-volume advection algorithm by Lin & Rood (1996). The reduced
grid setups allow longer time steps since in this particular test the CFL stability
condition is determined by the smallest grid spacing near the pole point. Here,
all runs reflect identical CFL numbers of about 0.95. Doubling the longitudinal
spacing allows for a doubling of the time step and speeds up the computation. In
addition, the reduced number of blocks lessens the overall workload. The latter
is partially compensated by the additional computational overhead that AMR
invokes. The error measures in table 4 can also be compared to the dynamic
AMR simulations by Nair & Jablonowski (2008) who list the errors for the flow
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orientation angle α = 0◦ (table 3 in Nair & Jablonowski 2008). This flow follows a
solid body rotation along the Equator where larger time steps can be used. They
necessitate fewer integration steps that reduce the inherent numerical diffusion.
Therefore, the error measures at day 12 with α = 0◦ are lower at comparable
resolutions and lie around ℓ2(φ) = 0.0226 and ℓ2(φ) = 0.0074 for the grid spacings
2.5◦ and 1.25◦, respectively.

4. Test of the reduced grid in nonlinear shallow water simulations

In order to assess the performance of the reduced grid setups in the nonlinear
shallow water system, three test scenarios are examined. These include the cross-
polar rotating flow by McDonald & Bates (1989) as well as the standard shallow
water tests 2 and 6 from the Williamson et al. (1992) test suite. The latter are
the steady-state geostrophic flow and Rossby–Haurwitz wave.

(a) Cross-polar rotating high–low

First, the results of a uniform grid control run and reduced grid simulations
are evaluated qualitatively using the McDonald & Bates (1989) cross-polar flow
test. The test has also been used by Bates et al. (1990), Giraldo et al. (2002) and
Nair et al. (2005). The initial condition consists of a geostrophically balanced flow
pattern where the geopotential is given by

Φ(λ,ϕ) = gh0 + 2Ωav0 sin
3 ϕ cosϕ sin λ, (4.1)

with gh0 = 5.768× 104m2 s−2. The Earth’s radius is denoted by a, the maximum
wind speed is set to v0 = 20m s

−1. The wind components u and v can then
be derived via the geostrophic relationship (see also Nair et al. 2005). This
test does not have an analytical solution. It consists of two large waves, with
the high wave in the west and the low wave in the east (in the Northern
Hemisphere). The positions in the Southern Hemisphere are reversed. The wave
rotates clockwise around the pole points and deforms slightly. After 5 days,
the low and high waves exchange their positions and almost arrive at their
starting locations at day 10. A cross-polar flow is well suited for the reduced grid
assessments. The wind field reaches its maximum speed at the poles and exhibits
strong gradients.
The results of the simulations in the Northern Hemisphere at day 10 are

illustrated in figure 4, which displays the flow pattern of the uniform full grid
(fg) control run (upper row) and the rg2 setup (bottom row). In particular,
the geopotential height field and the wind components u and v (from left to
right) are depicted. The reduced grid simulations with one (rg1, not shown) and
two reduction levels (rg2) are visually almost indistinguishable from the full grid
control run. There are no distortions in any of the large-scale flow patterns, which
are still well resolved even in the rg2 case with only 36 grid points next to the
poles. The time steps are�t = 240 s for the full grid and�t = 450 s for the reduced
grid model runs. The time step cannot be reduced further in the rg2 simulations
since the CFL condition at the poles no longer dominates the global time step.
This purely qualitative assessment suggests that reduced grids are potentially
viable for finite-volume simulations.
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Figure 4. Polar stereographic projections from the Equator to the North Pole of: (a) geopotential
height h (m); (b) zonal wind u (m s−1); and (c) meridional wind v (m s−1) at day 10 (McDonald &
Bates (1989) test case). Contour intervals are 50m, 3m s−1 and 1.5m s−1, respectively. The base
resolution is 2.5◦ × 2.5◦. Simulation with the uniform full grid (top row) and reduced grid with
two reductions (bottom row).

(b) Steady-state geostrophic flow

The aforementioned suggestion is only partly supported in the subsequent
examples. The second test scenario is based on standard shallow water test 2
with flow orientation angle α = 45◦, which directs the maximum wind speeds of
about 38.6m s−1 across the mid-latitudes. The initial conditions are described in
Williamson et al. (1992). In essence, the flow field consists of a large-scale steady-
state geopotential wave in geostrophic balance, which is the analytical solution.
The flow is expected to remain unchanged during the course of the integration
and can be directly compared with its initial state. The polar regions exhibit
a strong cross-polar flow with wind speeds of about 28m s−1 at the 45◦ angle.
This accentuates possible errors in the polar regions that result from the reduced
grid coarsenings. It furthermore challenges the numerical scheme with maximum
errors at the 45◦ angle. They are mainly due to the use of the latitude–longitude
grid and the very nature of upwind-biased finite-volume schemes as argued in
St-Cyr et al. (2008). Both reduced grid setups rg1 and rg2 have been tested as
documented by the geopotential height and height error field in figure 5. The
figure shows snapshots of the circulation at day 14 with overlaid blocks of the
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Figure 6. Time evolution of the normalized ℓ2 height error norm for the steady-state test case with
rotation angle α = 45◦. Simulations with uniform and reduced grids (one and two reductions) are
compared. The base resolution is 2.5◦ × 2.5◦. Solid line, full grid (fg); dotted line, one reduction
(rg1); dashed line, two reductions (rg2); plus symbol, Tolstykh (2.5◦) (Tolstykh 2002).

reduced grids. Visually, the contours of the geopotential height distributions in
both reduced grid simulations are indistinguishable. In the case of one reduction
level (rg1), a very moderate error pattern in the height field can be observed
that is similar in full grid simulations (not shown). However, the errors increase
considerably when adding a second reduction level (rg2). Here it is interesting
to note that the errors of the reduced grid are concentrated in, but not confined
to, the regions at high latitudes. Instead, the errors propagate and interact with
other model errors over time so that the whole domain is affected. The time steps
are �t = 200 s for the full grid and �t = 400 s for the rg1 and rg2 reduced grid
simulations.
This qualitative assessment is further quantified in figure 6, which illustrates

the normalized ℓ2 height error norms of the full grid and the reduced grid
simulations. The temporal evolution of the normalized ℓ2 error norms confirms the

Phil. Trans. R. Soc. A (2009)

 on August 9, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


4512 C. Jablonowski et al.

significant increase in the solution error in the case of the rg2 setup, whereas error
levels remain low for one reduction step. For comparison, Tolstykh (2002) also
reports comparable error measures, with ℓ2(h) = 4.3× 10−4 at day 5 for uniform-
grid finite-difference simulations at 2.5◦ resolution. In general, the error curves
depict a linear increase in the solution error, which is overlaid by inertio-gravity
wave oscillations. The latter are damped out over time. The sharp rise in the
error level for rg2 is not tolerable for practical applications. Therefore, the rg2
design cannot be recommended for future nonlinear adaptive grid applications.
This confirms the results by Lanser et al. (2000) who used this test with flow
orientation angle α = 90◦ to assess up to four reduction levels in a finite-volume
approach. As in Lanser et al. (2000) we also find that the errors primarily arise
in the velocity fields in polar regions due to the extreme curvature and metric
terms in the spherical representation.

(c) Rossby–Haurwitz wave

The third assessment of the reduced grid design is based on shallow water
test 6 that comprises a Rossby–Haurwitz wave with wavenumber 4. The initial
conditions are described in Williamson et al. (1992). The test translates the
symmetric wave pattern without change of shape from west to east. Figure 7
presents the geopotential height field at day 14 on a reduced grid with one
reduction level as well as the time series of various normalized ℓ2(h) height error
norms. In particular, the height error norms of the rg1 and rg2 reduced grid and
fg uniform-grid control runs are compared. These error norms are computed with
the help of the National Center for Atmospheric Research (NCAR) T511 spectral
transform reference solution with quadratic transform grid (approx. 0.235◦ grid
spacing) provided by the German Weather Service DWD. The solutions are
available online at http://icon.enes.org/swm/stswm/node5.html as an archived
network Common Data Form (NETCDF) dataset. Daily snapshots of the spectral
transform simulation are provided. Here it is interesting to note that the ℓ2 height
errors in the rg1 design almost overlay the full grid control run until the errors
split after day 11. The overall solution error is therefore hardly affected by one
reduction step, which is considered a viable option for nonlinear runs. In contrast,
the rg2 model simulation again shows unacceptably large errors and cannot be
recommended for future use.
The ℓ2 height error in both the uniform grid model run with ℓ2(h) = 0.0033

and the rg1 simulation with ℓ2(h) = 0.0036 at day 14 compare favourably to
values published in the literature. These are listed for comparable resolutions
in table 5. Besides from St-Cyr et al. (2008) these runs are compared with
the NCAR spectral transform reference solution at the lower T213 triangular
truncation (approx. 0.5625◦ grid spacing). Note that this reference solution
has an uncertainty of about 0.0008 as assessed by Taylor et al. (1997) and
Jakob-Chien et al. (1995).
Another aspect must be noted concerning the reduced grid setup. In test case 6

presented here, the time step �t = 360 s cannot be decreased in the two reduced
grid simulations as seen before in the advection experiments or the polar flow
shallow water problems. This is due to the fact that the time step is restricted not
by the advection speed in polar regions, but by the gravity wave activity in mid-
latitudes. Coarsening the polar regions therefore has no impact on the stability
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Table 5. Error statistics for the Rossby–Haurwitz test (test case 6). (Error statistics for the Rossby–
Haurwitz test (test case 6) for selected models. The spectral truncation T42 corresponds to ≈2.8◦

grid spacing.)

author model resolution ℓ2(h) at day 14

Jakob-Chien et al. (1995) spectral T42 0.0054
Taylor et al. (1997) spectral elements ≈2.5◦ 0.0079
Spotz et al. (1998) spectral T42 0.0044
Spotz et al. (1998) double Fourier method T42 0.011
Cheong (2000) double Fourier method T42 0.0042
Tolstykh (2002) finite differences 2.5◦ 0.0052
St-Cyr et al. (2008) spectral elements ≈2.5◦ 0.0005

criterion and an identical time step must be used for all three simulations. This
has implications with respect to the computational performance of the model
runs. The clear speed-up of a reduced grid run in the advection experiment can
no longer be achieved. On the contrary, choosing the rg1 reduced grid setup
adds extra work at the reduced grid interfaces despite the 9 per cent reduction
in the number of blocks. In Jablonowski (2004), the overhead was estimated to
be approximately 27 per cent, which outweighs the advantages of the reduced
number of blocks in the rg1 case. Therefore, it is not recommended to use a
reduced grid if the global time step is not limited by the CFL restrictions in polar
regions. However, it may be possible that future optimizations of the AMR library
and the interpolation-averaging routines will reduce the overhead significantly.
More detailed performance considerations are beyond the scope of this paper and
a subject for future research.
In order to improve the accuracy of the zonal gradients in the immediate

vicinity of the poles, special treatments could be introduced as suggested by
Purser (1988). He pointed out that zonal derivatives can still be calculated with
sufficient precision when high-frequency information is interpolated through an
assumption of smoothness from nearest neighbours in the polar regions. None
of these difficulties exist in spectral transform models, which need not calculate
difference operators in grid point space. Instead, derivatives are evaluated in a
spherical representation after applying Fourier and Legendre transforms. These
so-called reduced Gaussian grids have been successfully used in spectral transform
models for many years. Examples are discussed in Hortal & Simmons (1991)
and Williamson & Rosinski (2000) who developed reduced grids for weather
and climate applications. No significant loss of accuracy has been observed in
comparison to full grid simulations. However, spectral transform models do not
offer options for future adaptive or nested grids, which is the focus here.

5. Static refinements in the three-dimensional hydrostatic
finite-volume dynamical core

The final assessment of the block-structured finite-volume design addresses the
use of static adaptations in three-dimensional hydrostatic simulations. We place
nested grids in a mid-latitudinal channel to test the influence of variable resolution
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Figure 7. (a) Geopotential height field of the Rossby–Haurwitz wave test at day 14. The blocks
of the reduced grid with one reduction (rg1) are overlaid. (b) Time evolution of the normalized
ℓ2 height error norm for uniform and reduced grid simulations. The base resolution is 2.5

◦ × 2.5◦.
Solid line, full grid (fg); dotted line, one reduction (rg1); dashed line, two reductions (rg2).

on the evolution of baroclinic waves in the Northern Hemisphere. The baroclinic
wave test has been proposed by Jablonowski & Williamson (2006a,b) (referred
to as JW hereafter) who describe the initial analytical conditions. In short, the
test starts from balanced and steady-state initial conditions with an overlaid
perturbation in the zonal wind field. This perturbation triggers the growth of
baroclinic waves over the course of 10 days. The balanced initial state is an
analytical solution to the shallow atmosphere equations, which include both the
hydrostatic primitive equations as well as the non-hydrostatic equation set. The
flow comprises a zonally symmetric basic state with a jet in the mid-latitudes
of each hemisphere and a quasi-realistic temperature distribution. Overall, the
atmospheric conditions resemble the climatic state of a winter hemisphere
reasonably well. The test design guarantees static, inertial and symmetric stability
properties, but is unstable with respect to baroclinic or barotropic instability
mechanisms. The baroclinic wave starts growing around day 4 and evolves rapidly
thereafter, with explosive cyclogenesis at model day 8. The wave train breaks after
day 9 and generates a full circulation in both hemispheres between days 20 and
30 depending on the model formulation.
All adaptive model runs use the base resolution 5◦ × 5◦ that is statically refined

with up to three refinement steps. The latter then bridges the resolutions 5◦ × 5◦

to 0.625◦ × 0.625◦ that have already been shown in figure 1c. Note that the finest
resolution always covers the area between 30◦ and 75◦N, which is the pre-selected
storm-track region in the northern mid-latitudes. The refinements are confined to
the horizontal directions so that the whole vertical column with 26 levels is refined
in the event of refinement requests. Convergence studies by JW with uniform
resolutions have shown that the representation of the baroclinic wave improves
considerably with increasing horizontal resolution until the pattern converges at
spatial resolutions around 1◦–0.5◦. It has also been observed that the flow is rather
insensitive to the number of vertical levels, which justifies a purely horizontal
refinement strategy. The same convergence behaviour is expected for the locally
nested simulations.
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Figure 8. (a–d) Snapshots of the surface pressure at day 9 (JW baroclinic wave test case) simulated
with (a) a coarse 5◦ × 5◦ uniform grid and (b–d) three static refinement configurations; each
refinement step doubles the resolution. The adapted blocks are overlaid. The time steps are (a)
�t = 720 s; (b) 360 s; (c) 180 s and (d) 90 s. (e–h) The uniform-resolution runs for comparison. The
grid spacings are (e) 2.5◦ × 2.5◦, (f ) 1.25◦ × 1.25◦, (g) 0.625◦ × 0.625◦ and (h) 0.3125◦ × 0.3125◦.

The adaptive mesh designs are depicted in figure 8a–d by the overlaid adaptive
blocks. The panels show snapshots of the surface pressure field at day 9 simulated
with the nested grid resolution. In addition, uniform-resolution reference solutions
with the same model are shown in figure 8e–h. The additional resolution in the
nested grid simulations clearly helps intensify the baroclinic wave until the pattern
converges at resolutions around 0.625◦. Only minor deviations from the uniform
grid reference solutions are visible. These are apparent in the regions south of 30◦

when transitioning to coarser resolutions. Overall, the adapted runs match the
uniform grid simulations very closely. This is also confirmed in the time evolution
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uniform and adapted runs with one, two and three refinement levels (JW baroclinic wave test
case). Key as in figures 9 and 11: dashed-dotted line, 5◦ × 5◦ uniform; dotted line, 2.5◦ × 2.5◦

uniform; solid line, 1.25◦ × 1.25◦ uniform; dashed line, 0.625◦ × 0.625◦ uniform; dotted line with
circles, one ref. level (2.5◦); solid line with circles, two ref. levels (1.25◦); dashed line with circles,
three ref. levels (0.625◦).

of the minimum surface pressure depicted in figure 9. The figure shows the
expected drop in minimum surface pressure at higher resolutions. The drop slows
down considerably at the finest resolution, which indicates signs of convergence.
The uniform and adapted model runs almost perfectly overlay each other.
A quantitative assessment of the adapted simulations is provided in figure 10.

The figure displays the time evolution of the normalized ℓ2 and ℓ∞ surface
pressure error norms for both the nested and uniform model runs. The errors are
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Figure 11. Time evolution of the normalized ℓ2 surface pressure error norm in uniform and adapted
runs with one, two and three refinement levels (JW baroclinic wave test case): (a) error generated
in the Southern Hemisphere; (b) error generated in the adapted region 30◦–75◦N. Key as in figures 9
and 10: dashed-dotted line, 5◦ × 5◦ uniform; dotted line, 2.5◦ × 2.5◦ uniform; solid line, 1.25◦ ×

1.25◦ uniform; dashed line, 0.625◦ × 0.625◦ uniform; dotted line with circles, one ref. level (2.5◦);
solid line with circles, two ref. levels (1.25◦); dashed line with circles, three ref. levels (0.625◦).

computed with the help of the uniform high-resolution reference solution with
0.3125◦ × 0.3125◦ grid spacing. The error norms are defined as in Williamson
et al. (1992) and assess the global domain. Both the ℓ2 and ℓ∞ errors show that
the adapted runs start at a high error plateau before the baroclinic wave grows
considerably after day 6. The initially flat error plateau is almost independent
of the number of refinement steps. It is dominated by the 5◦ × 5◦ errors of the
coarse resolution in the Southern Hemisphere. During the simulation, the ℓ2 error
cannot be significantly reduced below its early state at day 1, thereby indicating
a lower limit for the mixed-resolution simulation. The nested runs can only slow
down the error growth from day 6 onwards when the baroclinic wave contributes
to the error pattern. At day 10 the errors in the nested simulations match the
uniform runs very closely. However, the adapted run with three refinement levels
shows slightly elevated ℓ2 error levels, partly due to the coarse grid error bound.
This ℓ2 error gap at day 10 is further analysed below. In contrast, the ℓ∞ error
norms at day 10 almost perfectly overlay each other. They pick out the maximum
error that lies in the refined region at day 10.
The errors displayed by the ℓ2 norm are further investigated in figure 11. The

figure shows the time series of the contributions to the global error from (a)
the Southern Hemisphere and (b) the refined region between 30◦ and 75◦N. The
ℓ2 errors in the Southern Hemisphere lie around an almost constant plateau in
the adapted runs. This confirms the existence of the Southern Hemisphere error
bound. The errors in the refined region (b) are more closely linked to the growing
baroclinic wave. The aforementioned error gap at day 10 between the uniform-grid
and refined 0.625◦ simulations becomes smaller without the contributions from
the Southern Hemisphere. However, a perfect match in the refined region cannot
be achieved. Figure 11b also displays that the errors in the adapted runs do not
drop down to the error levels of the uniform runs during the early phases of the
simulation. This suggests the existence of a second error bound before the growing
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baroclinic wave dominates the error pattern from day 6 onwards. This error bound
is most likely linked to propagating truncation errors from the remaining coarse
grid domain, wave reflections and refractions, and interpolation errors at fine–
coarse grid boundaries that all interact with the flow in the fine-grid domain.
Such errors are inherent in mixed-resolution simulations and must be kept small.

6. Summary and conclusions

A spherical, block-structured adaptive grid technique is assessed that has been
applied to a revised version of the finite-volume dynamical core (Lin 2004)
for weather and climate research. This hydrostatic dynamics package is based
on a conservative and monotonic finite-volume discretization in flux form with
vertically floating Lagrangian layers. It uses a latitude–longitude spherical grid
that can be coarsened in longitudinal direction in polar regions to form a reduced
grid. The adaptive model design is based upon the parallel AMR grid library by
Oehmke (2004). The adaptive blocks can be used for static and dynamic grid
adaptations. This paper focuses on the use of AMR techniques for reduced grids
and static adaptations. Both the two-dimensional shallow water equations and
the three-dimensional hydrostatic dynamical core are assessed. The shallow water
setup serves as an ideal testbed for the simulations and allows the use of shallow
water test cases like the advection of a cosine bell, moving vortices, a steady-state
flow, the Rossby–Haurwitz wave or cross-polar flows.
The two-dimensional results show that reduced grid configurations are viable

candidates for pure advection applications. The tracers are transported without
visible distortions or noise across the reduced grid interfaces in polar regions.
This extends the conclusion that reduced grids are suitable for passive advection
(Williamson & Browning 1973) to finite-volume approaches. Several block-
structured reduced grids are investigated that start from different base resolutions
with up to four reduction levels. It is suggested that the physical resolution in
longitudinal direction�x in polar regions should not greatly exceed the maximum
physical grid distance at the Equator. Otherwise, the transport algorithm might
suffer from inaccuracies due to the enhanced spacing. It is also shown that
reduced grid applications allow longer time steps if the simulation is bounded by
a CFL restriction near the poles. Furthermore, reduced grids decrease the overall
workload. This leads to computational speed-ups of the advection simulations
by factors between 6 and 16 when compared with uniform resolution despite
the computational overhead that AMR invokes. More detailed performance
considerations and optimizations are beyond the scope of this paper. It is
also shown that reduced grids should only be used moderately in nonlinear
simulations. These simulations exhibit enhanced errors that are mainly generated
in the velocity components in the polar regions due to the extreme curvature of
curvilinear coordinates near the poles. The enhanced truncation errors propagate
and interact with the flow in the whole model domain. Therefore, only very few
reduction levels are acceptable for nonlinear simulations with a finite-volume
approach in spherical geometry. The same applies to finite-difference models.
Only spectral models do not exhibit this characteristic due to the very different
and more accurate computation of the derivatives in spectral space. In addition,
errors at fine–coarse grid interfaces arise in reduced grids. These interface errors
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are small but inherent in non-conforming AMR approaches with 2:1 or even higher
jumps in the resolution. Smoothly varying unstructured grids or stretched grids
can minimize such boundary effects.
This paper also demonstrates that static grid adaptations in three-dimensional

model experiments can be successfully used to resolve growing baroclinic waves
in the storm-track region. The baroclinic wave test by Jablonowski & Williamson
(2006a,b) is used. Up to three refinement levels are tested in a mid-latitudinal
periodic channel that span the resolutions 5◦ × 5◦ to 0.625◦ × 0.625◦ in the
global domain. Global and regional error analyses of the adaptive model and
uniform grid simulations are presented. They confirm that the nested domains
reduce the errors considerably over the 10-day forecast period. The errors are
mostly generated by the evolving baroclinic wave in the storm-track regime.
The additional resolution clearly reduces both the global and regional error
measures. The mixed-resolution regional errors compare very well with their
corresponding uniform-resolution runs at the highest resolution. However, the
mixed-resolution errors are bounded by contributions from the coarsest grid
and additional errors triggered by wave reflections, refractions and interpolation
at fine–coarse grid interfaces. Such errors are universal and inherent in mixed-
resolution simulations (Ringler et al. 2008; Weller in press), especially for low-
order (e.g. second-order) numerical schemes. The interface errors must be kept
small and can be decreased or even hidden by switching to high-order numerical
methods as demonstrated by Fournier et al. (2004) and St-Cyr et al. (2008) with
spectral element schemes. The AMR interface effects are a subject of current and
future research.

The work was partly supported by the Climate Change Prediction Program of the US Department
of Energy (grant number DOE FG02 01 ER63248) and by the National Science Foundation (grants
ATM-0723440 and ATM-0620065).

References

Bacon, D., Ahmad, N. N., Boybeyi, Z., Dunn, T. J., Hall, M. S., Lee, P. C. S., Sarma, R. A. &
Turner, M. D. 2000 A dynamically adapting weather and dispersion model: the Operational
Multiscale Environment Model with Grid Adaptivity (OMEGA). Mon. Weather Rev. 128,
2044–2076. (doi:10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2)

Barros, S. R. M. & Garcia, C. I. 2004 A global semi-implicit semi-Lagrangian shallow-water
model on locally refined grids. Mon. Weather Rev. 132, 53–65. (doi:10.1175/1520-0493(2004)
132<0053:AGSSSM>2.0.CO;2)

Bates, J. R., Semazzi, F. H. M. & Higgins, R. W. 1990 Integration of the shallow water equations
on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Weather
Rev. 118, 1615–1627. (doi:10.1175/1520-0493(1990)118<1615:IOTSWE>2.0.CO;2)

Behrens, J., Rakowsky, N., Hiller, W., Handorf, D., Läuter, M. L., Päpke, J. & Dethloff, K. 2005
amatos: parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Modell.
10, 171–183. (doi:10.1016/j.ocemod.2004.06.003)

Boybeyi, Z., Ahmad, N. N., Bacon, D. P., Dunn, T. J., Hall, M. S., Lee, P. C. S. & Sarma, R. A. 2001
Evaluation of the operational multiscale environment model with grid adaptivity against the
European tracer experiment. J. Appl. Meteor. 40, 1541–1558. (doi:10.1175/1520-0450(2001)040
<1541:EOTOME>2.0.CO;2)

Caya, D. & Laprise, R. 1999 A semi-implicit semi-Lagrangian regional climate model:
the Canadian RCM. Mon. Weather Rev. 127, 341–362. (doi:10.1175/1520-0493(1999)127
<0341:ASISLR>2.0.CO;2)

Phil. Trans. R. Soc. A (2009)

 on August 9, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(2004)132<0053:AGSSSM>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(2004)132<0053:AGSSSM>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1990)118<1615:IOTSWE>2.0.CO;2
http://dx.doi.org/doi:10.1016/j.ocemod.2004.06.003
http://dx.doi.org/doi:10.1175/1520-0450(2001)040<1541:EOTOME>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0450(2001)040<1541:EOTOME>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2
http://rsta.royalsocietypublishing.org/


4520 C. Jablonowski et al.

Cheong, H.-B. 2000 Application of double Fourier series to the shallow-water equations on sphere.
J. Comput. Phys. 165, 261–287. (doi:10.1006/jcph.2000.6615)

Colella, P. & Woodward, P. R. 1984 The piecewise parabolic method (PPM) for gas-dynamical
simulations. J. Comput. Phys. 54, 174–201. (doi:10.1016/0021-9991(84)90143-8)

Colella, P., Bell, J., Keen, N., Ligocki, T., Lijewski, M. & Van Straalen, B. 2007 Performance and
scaling of locally-structured grid methods for partial differential equations. J. Phys.: Conf. Ser.,
78, 012013 (doi:10.1088/1742-6596/78/1/012013)

Denis, B., Laprise, R., Caya, D. & Côté, J. 2002 Downscaling ability of one-way nested
regional climate models: the Big-Brother experiment. Climate Dyn. 18, 627–646. (doi:10.1007/
s00382-001-0201-0)

Fournier, A., Taylor, M. A. & Tribbia, J. J. 2004 The spectral element atmospheric model: high-
resolution parallel computation and response to regional forcing. Mon. Weather Rev. 132, 726–
748. (doi:10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2)

Fox-Rabinovitz, M. S., Stenchikov, G. L., Suarez, M. J. & Takacs, L. L. 1997 A finite-difference
GCM dynamical core with a variable-resolution stretched grid. Mon. Weather Rev. 125, 2943–
2968. (doi:10.1175/1520-0493(1997)125<2943:AFDGDC>2.0.CO;2)

Gates, W. L. & Riegel, C. A. 1962 A study of numerical errors in the integration of barotropic flow
on a spherical grid. J. Geophys. Res. 67, 773–784. (doi:10.1029/JZ067i002p00773)

Giraldo, F. X. & Warburton, T. 2005 A nodal triangle-based spectral element method
for the shallow water equations on the sphere. J. Comput. Phys. 207, 129–150.
(doi:10.1016/j.jcp.2005.01.004)

Giraldo, F. X., Hesthaven, J. S. & Warburton, T. 2002 Nodal high-order discontinuous Galerkin
methods for the spherical shallow water equations. J. Comput. Phys. 181, 499–525. (doi:10.1006/
jcph.2002.7139)

Gopalakrishnan, S. G. et al. 2002 An operational multiscale hurricane forecasting system. Mon.
Weather Rev. 130, 1830–1847. (doi:10.1175/1520-0493(2002)130<1830:AOMHFS>2.0.CO;2)

Heinze, T. 2009 An adaptive shallow water model on the sphere. PhD thesis, University of
Bremen, Germany.

Hortal, M. & Simmons, A. J. 1991 Use of reduced grids in spectral models. Mon. Weather Rev.
119, 1057–1074. (doi:10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2)

Hubbard, M. E. & Nikiforakis, N. 2003 A three-dimensional, adaptive, Godunov-type model for
global atmospheric flows. Mon. Weather Rev. 131, 1848–1864. (doi:10.1175//2568.1)

Jablonowski, C. 2004 Adaptive grids in weather and climate modeling. PhD thesis, University of
Michigan, Ann Arbor, MI, USA.

Jablonowski, C. & Williamson, D. L. 2006a A baroclinic instability test case for atmospheric
model dynamical cores. Q. J. R. Meteor. Soc. 132, 2943–2975. (doi:10.1256/qj.06.12)

Jablonowski, C. & Williamson, D. L. 2006b A baroclinic wave test case for dynamical cores of
general circulation models: model intercomparisons. National Center for Atmospheric Research
Technical Note NCAR/TN469+STR, Boulder, CO, USA.

Jablonowski, C., Herzog, M., Penner, J. E., Oehmke, R. C., Stout, Q. F., van Leer, B. & Powell, K.
G. 2006 Block-structured adaptive grids on the sphere: advection experiments. Mon. Weather
Rev. 134, 3691–3713. (doi:10.1175/MWR3223.1)

Jakob-Chien, R., Hack, J. J. & Williamson, D. L. 1995 Spectral transform solutions to the shallow
water test set. J. Comput. Phys. 119, 164–187. (doi:10.1006/jcph.1995.1125)

Kurihara, Y. 1965 Numerical integration of the primitive equations on a spherical grid. Mon.
Weather Rev. 93, 399–415. (doi:10.1175/1520-0493(1965)093<0399:NIOTPE>2.3.CO;2)

Lanser, D., Blom, J. G. & Verwer, J. G. 2000 Spatial discretization of the shallow water equations
in spherical geometry using Osher’s scheme. J. Comput. Phys. 165, 542–564. (doi:10.1006/
jcph.2000.6632)

Läuter, M., Handorf, D., Rakowsky, N., Behrens, J., Frickenhaus, S., Best, M., Dethloff, K. &
Hiller, W. 2007 A parallel adaptive barotropic model of the atmosphere. J. Comput. Phys. 223,
609–628. (doi:10.1016/j.jcp.2006.09.029)

Lin, S.-J. 1997 A finite-volume integration method for computing pressure gradient force in general
vertical coordinates. Q. J. R. Meteor. Soc. 123, 1749–1762. (doi:10.1002/qj.49712354214)

Phil. Trans. R. Soc. A (2009)

 on August 9, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1006/jcph.2000.6615
http://dx.doi.org/doi:10.1016/0021-9991(84)90143-8
http://dx.doi.org/doi:10.1088/1742-6596/78/1/012013
http://dx.doi.org/doi:10.1007/s00382-001-0201-0
http://dx.doi.org/doi:10.1007/s00382-001-0201-0
http://dx.doi.org/doi:10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1997)125<2943:AFDGDC>2.0.CO;2
http://dx.doi.org/doi:10.1029/JZ067i002p00773
http://dx.doi.org/doi:10.1016/j.jcp.2005.01.004
http://dx.doi.org/doi:10.1006/jcph.2002.7139
http://dx.doi.org/doi:10.1006/jcph.2002.7139
http://dx.doi.org/doi:10.1175/1520-0493(2002)130<1830:AOMHFS>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2
http://dx.doi.org/doi:10.1175//2568.1
http://dx.doi.org/doi:10.1256/qj.06.12
http://dx.doi.org/doi:10.1175/MWR3223.1
http://dx.doi.org/doi:10.1006/jcph.1995.1125
http://dx.doi.org/doi:10.1175/1520-0493(1965)093<0399:NIOTPE>2.3.CO;2
http://dx.doi.org/doi:10.1006/jcph.2000.6632
http://dx.doi.org/doi:10.1006/jcph.2000.6632
http://dx.doi.org/doi:10.1016/j.jcp.2006.09.029
http://dx.doi.org/doi:10.1002/qj.49712354214
http://rsta.royalsocietypublishing.org/


Block-structured AMR and reduced grids 4521

Lin, S.-J. 2004 A vertically Lagrangian finite-volume dynamical core for global models. Mon.
Weather Rev. 132, 2293–2307. (doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2)

Lin, S.-J. & Rood, R. B. 1996 Multidimensional flux-form semi-Lagrangian transport scheme.Mon.
Weather Rev. 124, 2046–2070. (doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2)

Lin, S.-J. & Rood, R. B. 1997 An explicit flux-form semi-Lagrangian shallow-water model on the
sphere. Q. J. R. Meteor. Soc. 123, 2477–2498. (doi:10.1002/qj.49712354416)

McDonald, A. & Bates, J. R. 1989 Semi-Lagrangian integration of a gridpoint shallow-water
model on the sphere. Mon. Weather Rev. 117, 130–137. (doi:10.1175/1520-0493(1989)117
<0130:SLIOAG>2.0.CO;2)

Nair, R. D. & Jablonowski, C. 2008 Moving vortices on the sphere: a test case for horizontal
advection problems. Mon. Weather Rev. 136, 699–711. (doi:10.1175/2007MWR2105.1)

Nair, R. D., Thomas, S. J. & Loft, R. D. 2005 A discontinuous Galerkin global shallow water
model. Mon. Weather Rev. 133, 876–888. (doi:10.1175/MWR2903.1)

Oehmke, R. C. 2004 High performance dynamic array structures. PhD thesis, University of
Michigan, Ann Arbor, MI, USA.

Oehmke, R. C. & Stout, Q. F. 2001 Parallel adaptive blocks on a sphere. In Proc. 10th SIAM Conf.
on Parallel Processing for Scientific Computing, Portsmouth, VA, 12–14 March 2001. CD-ROM.

Purser, R. J. 1988 Accurate numerical differencing near a polar singularity skipped grid. Mon.
Weather Rev. 116, 1067–1076. (doi:10.1175/1520-0493(1988)116<1067:ANDNAP>2.0.CO;2)

Rasch, P. 1994 Conservative shape-preserving two-dimensional transport on a spherical
reduced grid. Mon. Weather Rev. 122, 1337–1350. (doi:10.1175/1520-0493(1994)122<1337:
CSPTDT>2.0.CO;2)

Ringler, T., Ju, L. & Gunzburger, M. 2008 A multiresolution method for climate system
modeling: application of spherical centroidal Voronoi tessellations. Ocean Dyn. 58, 475–498.
(doi:10.1007/s10236-008-0157-2)

Ruge, J. W., McCormick, S. F. & Yee, S. Y. K. 1995 Multilevel adaptive methods for semi-implicit
solution of shallow-water equations on the sphere. Mon. Weather Rev. 123, 2197–2205.
(doi:10.1175/1520-0493(1995)123<2197:MAMFSI>2.0.CO;2)

Shapiro, R. 1970 Smoothing, filtering, and boundary effects. Rev. Geophys. Space Phys. 8, 359–387.
(doi:10.1029/RG008i002p00359)

Shuman, F. G. 1970 On certain truncation errors associated with spherical coordinates. J. Appl.
Meteor. 9, 564–570. (doi:10.1175/1520-0450(1970)009<0564:OCTEAW>2.0.CO;2)

Skamarock, W. C. & Klemp, J. B. 1993 Adaptive grid refinements for two-dimensional and three-
dimensional non-hydrostatic atmospheric flow. Mon. Weather Rev. 121, 788–804. (doi:10.1175/
1520-0493(1993)121<0788:AGRFTD>2.0.CO;2)

Skamarock, W. C., Oliger, J. & Street, R. L. 1989 Adaptive grid refinements for numerical weather
prediction. J. Comput. Phys. 80, 27–60. (doi:10.1016/0021-9991(89)90089-2)

Skamarock, W. C., Klemp J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. & Powers, J. G.
2005 A description of the advanced research WRF Version 2. National Center for Atmospheric
Research Technical Note NCAR/TN468+STR, Boulder, CO, USA.

Spotz, W. F., Taylor, M. A. & Swarztrauber, P. N. 1998 Fast shallow-water equation solvers in
latitude–longitude coordinates. J. Comput. Phys. 145, 432–444. (doi:10.1006/jcph.1998.6026)

St-Cyr, A., Jablonowski, C., Dennis, J. M., Tufo, H. M. & Thomas, S. J. 2008 A comparison
of two shallow water models with non-conforming adaptive grids. Mon. Weather Rev. 136,
1898–1922. (doi:10.1175/2007MWR2108.1)

Stout, Q. F., De Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., Marshall, H. G. & Powell, K. G.
1997 Adaptive blocks: a high performance data structure. In Proc. 1997 ACM/IEEE Conf. on
Supercomputing, San José, CA, 15–21 November 1997. CD-ROM.

Taylor, M., Tribbia, J. & Iskandarani, M. 1997 The spectral element method for the shallow water
equations on the sphere. J. Comput. Phys. 130, 92–108. (doi:10.1006/jcph.1996.5554)

Tolstykh, M. A. 2002 Vorticity-divergence semi-Lagrangian shallow-water model of the sphere based
on compact finite differences. J. Comput. Phys. 179, 180–200. (doi:10.1006/jcph.2002.7050)

Weller, H. 2009 Predicting mesh density for adaptive modelling of the global atmosphere. Phil.
Trans. R. Soc. A 367, 4523–4542. (doi:10.1098/rsta.2009.0151).

Phil. Trans. R. Soc. A (2009)

 on August 9, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2
http://dx.doi.org/doi:10.1002/qj.49712354416
http://dx.doi.org/doi:10.1175/1520-0493(1989)117<0130:SLIOAG>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1989)117<0130:SLIOAG>2.0.CO;2
http://dx.doi.org/doi:10.1175/2007MWR2105.1
http://dx.doi.org/doi:10.1175/MWR2903.1
http://dx.doi.org/doi:10.1175/1520-0493(1988)116<1067:ANDNAP>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1994)122<1337:CSPTDT>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1994)122<1337:CSPTDT>2.0.CO;2
http://dx.doi.org/doi:10.1007/s10236-008-0157-2
http://dx.doi.org/doi:10.1175/1520-0493(1995)123<2197:MAMFSI>2.0.CO;2
http://dx.doi.org/doi:10.1029/RG008i002p00359
http://dx.doi.org/doi:10.1175/1520-0450(1970)009<0564:OCTEAW>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1993)121<0788:AGRFTD>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1993)121<0788:AGRFTD>2.0.CO;2
http://dx.doi.org/doi:10.1016/0021-9991(89)90089-2
http://dx.doi.org/doi:10.1006/jcph.1998.6026
http://dx.doi.org/doi:10.1175/2007MWR2108.1
http://dx.doi.org/doi:10.1006/jcph.1996.5554
http://dx.doi.org/doi:10.1006/jcph.2002.7050
http://dx.doi.org/doi:10.1098/rsta.2009.0151
http://rsta.royalsocietypublishing.org/


4522 C. Jablonowski et al.

Weller, H. & Weller, H. 2008 A high-order arbitrarily unstructured finite-volume model of the
global atmosphere: tests solving the shallow-water equations. Int. J. Numer. Meth. Fluids 56,
1589–1596. (doi:10.1002/fld.1595)

Williamson, D. L. & Browning, G. L. 1973 Comparison of grids and difference approximations
for numerical weather prediction over the sphere. J. Appl. Meteor. 12, 264–274.
(doi:10.1175/1520-0450(1973)012<0264:COGADA>2.0.CO;2)

Williamson, D. L. & Rosinski, J. M. 2000 Accuracy of reduced grid calculations. Q. J. R. Meteor.
Soc. 126, 1619–1640. (doi:10.1256/smsqj.56604)

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. & Swarztrauber, P. N. 1992 A standard
test set for numerical approximations to the shallow water equations in spherical geometry.
J. Comput. Phys. 102, 211–224. (doi:10.1016/S0021-9991(05)80016-6)

Phil. Trans. R. Soc. A (2009)

 on August 9, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1002/fld.1595
http://dx.doi.org/doi:10.1175/1520-0450(1973)012<0264:COGADA>2.0.CO;2
http://dx.doi.org/doi:10.1256/smsqj.56604
http://dx.doi.org/doi:10.1016/S0021-9991(05)80016-6
http://rsta.royalsocietypublishing.org/

	Block-structured adaptive meshes and reduced grids for atmospheric general circulation models
	Introduction
	The adaptive finite-volume dynamical core
	Block-structured adaptive meshes and reduced grids on the sphere
	The finite-volume dynamical core

	AMR and reduced grid advection tests
	Cosine bell advection test
	Moving vortices on the sphere

	Test of the reduced grid in nonlinear shallow water simulations
	Cross-polar rotating high--low
	Steady-state geostrophic flow
	Rossby--Haurwitz wave

	Static refinements in the three-dimensional hydrostaticfinite-volume dynamical core
	Summary and conclusions
	References


