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Abstract

We consider multivariate regression problems involving high-dimensional predic-
tor and response spaces. To efficiently address such problems, we propose a vari-
able selection method, Multivariate Group Orthogonal Matching Pursuit, which
extends the standard Orthogonal Matching Pursuit technique. This extension ac-
counts for arbitrary sparsity patterns induced by domain-specific groupings over
both input and output variables, while also taking advantage of the correlation that
may exist between the multiple outputs. Within this framework, we then formulate
the problem of inferring causal relationships over a collection of high-dimensional
time series variables. When applied to time-evolving social media content, our
models yield a new family of causality-based influence measures that may be seen
as an alternative to the classic PageRank algorithm traditionally applied to hyper-
link graphs. Theoretical guarantees, extensive simulations and empirical studies
confirm the generality and value of our framework.

1 Introduction

The broad goal of supervised learning is to effectively learn unknown functional dependencies be-
tween a set of input variables and a set of output variables, given a finite collection of training
examples. This paper is at the intersection of two key topics that arise in this context.

The first topic is Multivariate Regression [4, 2, 24] which generalizes basic single-output regression
to settings involving multiple output variables with potentially significant correlations between them.
Applications of multivariate regression models include chemometrics, econometrics and computa-
tional biology. Multivariate Regression may be viewed as the classical precursor to many modern
techniques in machine learning such as multi-task learning [15, 16, 1] and structured output pre-
diction [18, 10, 22]. These techniques are output-centric in the sense that they attempt to exploit
dependencies between output variables to learn joint models that generalize better than those that
treat outputs independently.

The second topic is that of sparsity [3], variable selection and the broader notion of regulariza-
tion [20]. The view here is input-centric in the following specific sense. In very high dimensional
problems where the number of input variables may exceed the number of examples, the only hope
for avoiding overfitting is via some form of aggressive capacity control over the family of dependen-
cies being explored by the learning algorithm. This capacity control may be implemented in various
ways, e.g., via dimensionality reduction, input variable selection or regularized risk minimization.
Estimation of sparse models that are supported on a small set of input variables is a highly active
and very successful strand of research in machine learning. It encompasses l1 regularization (e.g.,
Lasso [19]) and matching pursuit techniques [13] which come with theoretical guarantees on the
recovery of the exact support under certain conditions. Particularly pertinent to this paper is the
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notion of group sparsity. In many problems involving very high-dimensional datasets, it is natural
to enforce the prior knowledge that the support of the model should be a union over domain-specific
groups of features. For instance, Group Lasso [23] extends Lasso, and Group-OMP [12, 9] extends
matching pursuit techniques to this setting.

In view of these two topics, we consider here very high dimensional problems involving a large
number of output variables. We address the problem of enforcing sparsity via variable selection
in multivariate linear models where regularization becomes crucial since the number of parameters
grows not only with the data dimensionality but also the number of outputs. Our approach is guided
by the following desiderata: (a) performing variable selection for each output in isolation may be
highly suboptimal since the input variables which are relevant to (a subset of) the outputs may only
exhibit weak correlation with each individual output. It is also desirable to leverage information
on the relatedness between outputs, so as to guide the decision on the relevance of a certain input
variable to a certain output, using additional evidence based on the relevance to related outputs. (b)
It is desirable to take into account any grouping structure that may exist between input and output
variables. In the presence of noisy data, inclusion decisions made at the group level may be more
robust than those at the level of individual variables.

To efficiently satisfy the above desiderata, we propose Multivariate Group Orthogonal Matching
Pursuit (MGOMP) for enforcing arbitrary block sparsity patterns in multivariate regression coef-
ficients. These patterns are specified by groups defined over both input and output variables. In
particular, MGOMP can handle cases where the set of relevant features may differ from one re-
sponse (group) to another, and is thus more general than simultaneous variable selection procedures
(e.g. S-OMP of [21]), as simultaneity of the selection in MGOMP is enforced within groups of
related output variables rather than the entire set of outputs. MGOMP also generalizes the Group-
OMP algorithm of [12] to the multivariate regression case. We provide theoretical guarantees on the
quality of the model in terms of correctness of group variable selection and regression coefficient
estimation. We present empirical results on simulated datasets that illustrate the strength of our
technique.

We then focus on applying MGOMP to high-dimensional multivariate time series analysis prob-
lems. Specifically, we propose a novel application of multivariate regression methods with variable
selection, namely that of inferring key influencers in online social communities, a problem of in-
creasing importance with the rise of planetary scale web 2.0 platforms such as Facebook, Twitter,
and innumerable discussion forums and blog sites. We rigorously map this problem to that of infer-
ring causal influence relationships. Using special cases of MGOMP, we extend the classical notion
of Granger Causality [7] which provides an operational notion of causality in time series analysis,
to apply to a collection of multivariate time series variables representing the evolving textual con-
tent of a community of bloggers. The sparsity structure of the resulting model induces a weighted
causal graph that encodes influence relationships. While we use blog communities to concretize
the application of our models, our ideas hold more generally to a wider class of spatio temporal
causal modeling problems. In particular, our formulation gives rise to a new class of influence mea-
sures that we call GrangerRanks, that may be seen as causality-based alternatives to hyperlink-based
ranking techniques like the PageRank [17], popularized by Google in the early days of the internet.
Empirical results on a diverse collection of real-world key influencer problems clearly show the
value of our models.

2 Variable Group Selection in Multivariate Regression

Let us begin by recalling the multivariate regression model, Y = XĀ + E, where Y ∈ R
n×K

is the output matrix formed by n training examples on K output variables, X ∈ R
n×p is the data

matrix whose rows are p-dimensional feature vectors for the n training examples, Ā is the p × K
matrix formed by the true regression coefficients one wishes to estimate, and E is the n × K error
matrix. The row vectors of E, are assumed to be independently sampled from N(0,Σ) where Σ is
the K ×K error covariance matrix. For simplicity of notation we assume without loss of generality
that the columns of X and Y have been centered so we need not deal with intercept terms.

The negative log-likelihood function (up to a constant) corresponding to the aforementioned model
can be expressed as

− l(A,Σ) = tr
(

(Y − XA)T (Y − XA)Σ−1
)

− n log
∣

∣Σ
−1

∣

∣ , (1)
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where A is any estimate of Ā, and | · | denotes the determinant of a matrix. The maximum likelihood

estimator is the Ordinary Least Squares (OLS) estimator Â
OLS = (XT

X)−1
X

T
Y, namely, the

concatenation of the OLS estimates for each of the K outputs taken separately, irrespective of Σ.
This suggests its suboptimality as the relatedness of the responses is disregarded. Also the OLS
estimator is known to perform poorly in the case of high dimensional predictors and/or when the
predictors are highly correlated. To alleviate these issues, several methods have been proposed
that are based on dimension reduction. Among those, variable selection methods are most popular
as they lead to parsimonious and interpretable models, which is desirable in many applications.
Clearly, however, variable selection in multiple output regression is particularly challenging in the
presence of high dimensional feature vectors as well as possibly a large number of responses.

In many applications, including high-dimensional time series analysis and causal modeling set-
tings showcased later in this paper, it is possible to provide domain specific guidance for vari-
able selection by imposing a sparsity structure on A. Let I = {I1 . . . IL} denote the set formed
by L (possibly overlapping) groups of input variables where Ik ⊂ {1 . . . p}, k = 1, . . . L. Let
O = {O1 . . .OM} denote the set formed by M (possibly overlapping) groups of output vari-
ables where Ok ⊂ {1 . . .K}, k = 1, . . . , M . Note that if certain variables do not belong to any
group, they may be considered to be groups of size 1. These group definitions specify a block
sparsity/support pattern on A. Without loss of generality, we assume that column indices are per-
muted so that groups go over contiguous indices. We now outline a novel algorithm, Multivariate
Group Orthogonal Matching Pursuit (MGOMP), that seeks to minimize the negative log-likelihood
associated with the multivariate regression model subject to the constraint that the support (set of
non-zeros) of the regression coefficient matrix, A, is a union of blocks formed by input and output
variable groupings1.

2.1 Multivariate Group Orthogonal Matching Pursuit

The MGOMP procedure performs greedy pursuit with respect to the loss function

LC(A) = tr
(

(Y − XA)T (Y − XA)C
)

, (2)

where C is an estimate of the precision matrix Σ
−1, given as input. Possible estimates include

the sample estimate using residual error obtained from running univariate Group-OMP for each
response individually. In addition to leveraging the grouping information via block sparsity con-
straints, MGOMP is able to incorporate additional information on the relatedness among output
variables as implicitly encoded in the error covariance matrix Σ, noting that the latter is also the co-
variance matrix of the response Y conditioned on the predictor matrix X. Existing variable selection
methods often ignore this information and deal instead with (regularized versions of) the simplified
objective tr

(

(Y − XA)T (Y − XA)
)

, thereby implicitly assuming that Σ = I.

Before outlining the details of MGOMP, we first need to introduce some notation. For any set of
output variables O ⊂ {1, . . . , K}, denote by CO the restriction of the K × K precision matrix
C to columns corresponding to the output variables in O, and by CO,O similar restriction to both
columns and rows. For any set of input variables I ⊂ {1, . . . , p}, denote by XI the restriction of
X to columns corresponding to the input variables in I. Furthermore, to simplify the exposition,
we assume in the remainder of the paper that for each group of input variables Is ∈ I, XIs is

orthonormalized, i.e., XIs

T
XIs = I. Denote by A

(m) the estimate of the regression coefficient

matrix at iteration m, and by R
(m) the corresponding matrix of residuals, i.e. R

(m) = Y−XA
(m).

The MGOMP procedure iterates between two steps : (a) Block Variable Selection and (b) Coefficient
matrix re-estimation with selected block. We now outline the details of these two steps.

Block Variable Selection: In this step, each block, (Ir , Os), is evaluated with respect to how much
its introduction into A

m−1 can reduce residual loss. Namely, at round m, the procedure selects the
block (Ir , Os) that minimizes

arg min
1≤r≤L,1≤s≤M

min
A:Av,w=0,v 6∈Ir ,w 6∈Os

(LC(A(m−1) + A) − LC(A(m−1))).

1We note that we could easily generalize this setting and MGOMP to deal with the more general case where
there may be a different grouping structure for each output group, namely for each Ok , we could consider a
different set IOk of input variable groups.
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Note that when the minimum attained falls below ǫ, the algorithm is stopped. Using standard Linear
Algebra, the block variable selection criteria simplifies to

(r(m), s(m)) = argmax
r,s

tr
(

(XT
Ir

R
(m−1)COs)

T (XT
Ir

R
(m−1)COs)(C

−1
Os ,Os

)
)

. (3)

From the above equation, it is clear that the relatedness between output variables is taken into ac-
count in the block selection process.

Coefficient Re-estimation:

Let M(m−1) be the set of blocks selected up to iteration m − 1 . The set is now updated to include

the selected block of variables (Ir(m) , Os(m)), i.e., M(m) = M(m−1) ∪ {(Ir(m) , Os(m))}. The

regression coefficient matrix is then re-estimated as A
(m) = ÂX(M(m),Y), where

ÂX(M(m),Y) = arg min
A∈Rp×K

LC(A) subject to supp(A) ⊆ M(m). (4)

Since certain features are only relevant to a subset of responses, here the precision matrix estimate
C comes into play, and the problem can not be decoupled. However, a closed form solution for (4)
can be derived by recalling the following matrix identities [8],

tr(MT
1 M2M3M

T
4 ) = vec(M1)

T (M4 ⊗ M2)vec(M3), (5)

vec(M1M2) = (I ⊗ M1)vec(M2), (6)

where vec denotes the matrix vectorization, ⊗ the Kronecker product, and I the identity matrix.
From (5), we have

tr
(

(Y − XA)T (Y − XA)C
)

= (vec(Y − XA))T (C⊗ In)(vec(Y − XA)). (7)

For a set of selected blocks, say M, denote by O(M) the union of the output groups in M. Let

C̃ = CO(M),O(M) ⊗ In and Ỹ = vec(YO(M)). For each output group Os in M, let I(Os) =

∪(Ir ,Os)∈MIr. Finally define X̃ such that X̃ = diag
{

I|Os| ⊗ XI(Os), Os ∈ O(M)
}

. Using (7)

and (6) one can show that the non-zero entries of vec(ÂX(M,Y)), namely those corresponding to

the support induced by M, are given by α̂ =
(

X̃
T
C̃X̃

)−1 (

X̃
T
C̃

)

Ỹ , thus providing a closed-

form formula for the coefficient re-estimation step.

To conclude this section, we note that we could also consider preforming alternate optimization of
the objective in (1) over A and Σ, using MGOMP to optimize over A for a fixed estimate of Σ, and
using a covariance estimation algorithm (e.g. Graphical Lasso [5]) to estimate Σ with fixed A.

2.2 Theoretical Performance Guarantees for MGOMP

In this section we show that under certain conditions MGOMP can identify the correct blocks of
variables and provide an upperbound on the maximum absolute difference between the estimated
and true regression coefficients. We assume that the estimate of the error precision matrix, C, is in
agreement with the specification of the output groups, namely that Ci,j = 0 if i and j belong to
different output groups.

For each output variable group Ok, denote by Ggood(k) the set formed by the input groups included
in the true model for the regressions in Ok, and let Gbad(k) be the set formed by all the pairs that are
not included. Similarly denote by Mgood the set formed by the pairs of input and output variable
groups included in the true model, and Mbad be the set formed by all the pairs that are not included.

Before we can state the theorem, we need to define the parameters that are key in the conditions
for consistency. Let ρX(Mgood) = mink∈{1,...,M} infα

{

‖Xα‖2
2/‖α‖2

2 : supp(α) ⊆ Ggood(k)
}

,
namely ρX(Mgood) is the minimum over the output groups Ok of the smallest eigenvalue of

X
T
Ggood(k)XGgood(k).

For each output group Ok, define generally for any u = {u1, . . . , u|Ggood(k)|} and v =
{v1, . . . , v|Gbad(k)|},

‖u‖good(k)
(2,1) =

∑

Gi∈Ggood(k)

√

∑

j∈Gi

u2
j , and ‖v‖bad(k)

(2,1) =
∑

Gi∈Gbad(k)

√

∑

j∈Gi

v2
j .
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For any matrix M ∈ R
|Ggood(k)|×|Gbad(k)|, let ‖M‖good/bad(k)

(2,1) = sup
‖v‖

bad(k)

(2,1)
=1

‖Mv‖good(k)
(2,1) .

Then we define µX(Mgood) = maxk∈{1,...,M} ‖X+
Ggood(k)XGbad(k)‖good/bad(k)

(2,1) , where X
+ de-

notes the Moore-Penrose pseudoinverse of X. We are now able to state the consistency theorem.

Theorem 1. Assume that µX(Mgood) < 1 and 0 < ρX(Mgood) ≤ 1. For any
η ∈ (0, 1/2), with probability at least 1 − 2η, if the stopping criterion of MGOMP is

such that ǫ > 1
1−µX (Mgood)

√

2pK ln(2pK/η) and mink∈{1,...,M},Ij∈Ggood(k) ‖ĀIj ,Ok
‖F ≥√

8ǫρX(Mgood)−1 then when the algorithm stops M(m−1) = Mgood and ‖A(m−1) − Ā‖max ≤
√

(2 ln(2|Mgood|/η))/ρX(Mgood).

Proof. The multivariate regression model Y = XĀ + E can be rewritten in an equiva-

lent univariate form with white noise: Ỹ = (IK ⊗ X)ᾱ + η, where ᾱ = vec(Ā), Ỹ =

diag

{

1

C
1/2
k,k

In

}K

k=1

vec(YC
1/2), and η is formed by i.i.d samples from N(0, 1). We can see that

applying the MGOMP procedure is equivalent to applying the Group-OMP procedure [12] to the
above vectorized regression model, using as grouping structure that naturally induced by the input-
output groups originally considered for MGOMP. The theorem then follows from Theorem 3 in [12]
and translating the univariate conditions for consistency into their multivariate counterparts via
µX(Mgood) and ρX(Mgood). Since C is such that Ci,j = 0 for any i, j belonging to distinct

groups, the entries in Ỹ do not mix components of Y from different output groups and hence the
error covariance matrix does not appear in the consistency conditions.

Note that the theorem can also be re-stated with an alternative condition on the amplitude of the true

regression coefficient: mink∈{1,...,M},Ij∈Ggood(k) mins∈Ok
‖ĀIj ,k‖2 ≥

√
8ǫρX(Mgood)−1/

√

|Ok|
which suggests that the amplitude of the true regression coefficients is allowed to be smaller in
MGOMP compared to Group-OMP on individual regressions. Intuitively, through MGOMP we
are combining information from multiple regressions, thus improving our capability to identify the
correct groups.

2.3 Simulation Results

We empirically evaluate the performance of our method against representative variable selection
methods, in terms of accuracy of prediction and variable (group) selection. As a measure of variable
selection accuracy we use the F1 measure, which is defined as F1 = 2PR

P+R , where P denotes the

precision and R denotes the recall. To compute the variable group F1 of a variable selection method,
we consider a group to be selected if any of the variables in the group is selected. As a measure of
prediction accuracy we use the average squared error on a test set. For all the greedy pursuit meth-
ods, we consider the “holdout validated” estimates. Namely, we select the iteration number that
minimizes the average squared error on a validation set. For univariate methods, we consider indi-
vidual selection of the iteration number for each univariate regression (joint selection of a common
iteration number across the univariate regressions led to worse results in the setting considered). For
each setting, we ran 50 runs, each with 50 observations for training, 50 for validation and 50 for
testing.

We consider an n × p predictor matrix X, where the rows are generated independently accord-

ing to Np(0,S), with Si,j = 0.7|i−j|. The n × K error matrix E is generated according to

NK(0,Σ), with Σi,j = ρ|i−j|, where ρ ∈ {0, 0.5, 0.7, 0/9}. We consider a model with 3rd or-

der polynomial expansion: [YT1 , . . . ,YTM ] = X[A1,T1 , . . . ,A1,TM ] + X
2[A2,T1 , . . . ,A2,TM ] +

X
3[A3,T1 , . . . ,A3,TM ] + E. Here we abuse notation to denote by X

q the matrix such that X
q
i,j =

(Xi,j)
q. T1, . . . , TM are the target groups. For each k, each row of [A1,Tk

, . . . ,A3,Tk
] is either all

non-zero or all zero, according to Bernoulli draws with success probability 0.1. Then for each non-
zero entry of Ai,Tk

, independently, we set its value according to N(0, 1). The number of features
for X is set to 20. Hence we consider 60 variables grouped into 20 groups corresponding the the 3rd
degree polynomial expansion. The number of regressions is set to 60. We consider 20 regression
groups (T1, . . . T20), each of size 3.
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Parallel runs (p,L) (K, M) Precision matrix estimate Method

K (p, p) (1, 1) Not applicable OMP [13]
K (p, L) (1, 1) Not applicable Group-OMP [12]
1 (p, p) (K, 1) Identity matrix S-OMP [21]

1 (p, L) (K, M) Identity matrix MGOMP(Id)
1 (p, L) (K, M) Estimate from univariate OMP fits MGOMP(C)

M (p, L) (M ′, 1) Identity matrix MGOMP(Parallel)

Table 1: Various matching pursuit methods and their corresponding parameters.

ρ MGOMP (C) MGOMP (Id) MGOMP(Parallel) Group-OMP OMP

0.9 0.863 ± 0.003 0.818 ± 0.003 0.762 ± 0.003 0.646 ± 0.007 0.517 ± 0.006

0.7 0.850 ± 0.002 0.806 ± 0.003 0.757 ± 0.003 0.631 ± 0.008 0.517 ± 0.007

0.5 0.850 ± 0.003 0.802 ± 0.004 0.766 ± 0.004 0.641 ± 0.006 0.525 ± 0.007

0 0.847 ± 0.004 0.848 ± 0.004 0.783 ± 0.004 0.651 ± 0.007 0.525 ± 0.007

ρ MGOMP (C) MGOMP (Id) MGOMP(Parallel) Group-OMP OMP

0.9 3.009 ± 0.234 3.324 ± 0.273 4.086 ± 0.169 6.165 ± 0.317 6.978 ± 0.206

0.7 3.114 ± 0.252 3.555 ± 0.287 4.461 ± 0.159 8.170 ± 0.328 8.14 ± 0.390

0.5 3.117 ± 0.234 3.630 ± 0.281 4.499 ± 0.288 7.305 ± 0.331 8.098 ± 0.323

0 3.124 ± 0.256 3.123 ± 0.262 3.852 ± 0.185 6.137 ± 0.330 7.414 ± 0.331

Table 2: Average F1 score (top) and average test set squared error (bottom) for the models output
by variants of MGOMP, Group-OMP and OMP under the settings of Table 1.

A dictionary of various matching pursuit methods and their corresponding parameters is provided in
Table 1. In the table, note that MGOMP(Parallel) consists in running MGOMP separately for each
regression group and C set to identity (Using C estimated from univariate OMP fits has negligible
impact on performance and hence is omitted for conciseness.). The results are presented in Table 2.

Overall, in all the settings considered, MGOMP is superior both in terms of prediction and vari-
able selection accuracy, and more so when the correlation between responses increases. Note that
MGOMP is stable with respect to the choice of the precision matrix estimate. Indeed the advantage
of MGOMP persists under imperfect estimates (Identity and sample estimate from univariate OMP
fits) and varying degrees of error correlation. In addition, model selection appears to be more robust
for MGOMP, which has only one stopping point (MGOMP has one path interleaving input variables
for various regressions, while GOMP and OMP have K paths, one path per univariate regression).

3 Granger Causality with Block Sparsity in Vector Autoregressive Models

3.1 Model Formulation

We begin by motivating our main application. The emergence of the web2.0 phenomenon has set in
place a planetary-scale infrastructure for rapid proliferation of information and ideas. Social media
platforms such as blogs, twitter accounts and online discussion sites are large-scale forums where
every individual can voice a potentially influential public opinion. This unprecedented scale of un-
structured user-generated web content presents new challenges to both consumers and companies
alike. Which blogs or twitter accounts should a consumer follow in order to get a gist of the com-
munity opinion as a whole? How can a company identify bloggers whose commentary can change
brand perceptions across this universe, so that marketing interventions can be effectively strategized?
The problem of finding key influencers and authorities in online communities is central to any vi-
able information triage solution, and is therefore attracting increasing attention [14, 6]. A traditional
approach to this problem would treat it no different from the problem of ranking web-pages in a
hyperlinked environment. Seminal ideas such as the PageRank [17] and Hubs-and-Authorities [11]
were developed in this context, and in fact even celebrated as bringing a semblance of order to the
web. However, the mechanics of opinion exchange and adoption makes the problem of inferring
authority and influence in social media settings somewhat different from the problem of ranking
generic web-pages. Consider the following example that typifies the process of opinion adoption. A
consumer is looking to buy a laptop. She initiates a web search for the laptop model and browses
several discussion and blog sites where that model has been reviewed. The reviews bring to her
attention that among other nice features, the laptop also has excellent speaker quality. Next she buys
the laptop and in a few days herself blogs about it. Arguably, conditional on being made aware of
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speaker quality in the reviews she had read, she is more likely to herself comment on that aspect
without necessarily attempting to find those sites again in order to link to them in her blog. In other
words, the actual post content is the only trace that the opinion was implicitly absorbed. Moreover,
the temporal order of events in this interaction is indicative of the direction of causal influence.

We formulate these intuitions rigorously in terms of the notion of Granger Causality [7] and then
employ MGOMP for its implementation. For scalability, we work with MGOMP (Parallel), see
table 1. Introduced by the Nobel prize winning economist, Clive Granger, this notion has proven
useful as an operational notion of causality in time series analysis. It is based on the intuition that
a cause should necessarily precede its effect, and in particular if a time series variable X causally
affects another Y , then the past values of X should be helpful in predicting the future values of Y ,
beyond what can be predicted based on the past values of Y alone.

Let B1 . . . BG denote a community of G bloggers. With each blogger, we associate content vari-
ables, which consist of frequencies of words relevant to a topic across time. Specifically, given a

dictionary of K words and the time-stamp of each blog post, we record wk,t
i , the frequency of the

kth word for blogger Bi at time t. Then, the content of blogger Bi at time t can be represented as

Bt
i = [w1,t

i , . . . , wK,t
i ]. The input to our model is a collection of multivariate time series, {Bt

i}T
t=1

(1 ≤ i ≤ G), where T is the timespan of our analysis. Our key intuition is that authorities and
influencers are causal drivers of future discussions and opinions in the community. This may be
phrased in the following terms:

Granger Causality: A collection of bloggers is said to influence Blogger Bi if their collective past
content (blog posts) is predictive of the future content of Blogger Bi, with statistical significance,
and more so than the past content of Blogger Bi alone.

The influence problem can thus be mapped to a variable group selection problem in
a vector autoregressive model, i.e., in multivariate regression with G × K responses

{Bt
j, j = 1, 2 . . .G} in terms of variable groups

{

{Bt−l
j }d

l=1, j = 1, 2 . . .G
}

: [Bt
1, . . . ,B

t
G] =

[Bt−1
1 , . . . ,Bt−d

1 , . . . ,Bt−1
G , . . . ,Bt−d

G ]A + E. We can then conclude that a certain blogger Bi

influences blogger Bj , if the variable group {Bt−l
i }l∈{1,...,d} is selected by the variable selection

method for the responses concerning blogger Bj . For each blogger Bj , this can be viewed as an ap-
plication of a Granger test on Bj against bloggers B1, B2, . . . , BG. This induces a directed weighted
graph over bloggers, which we call causal graph, where edge weights are derived from the underly-
ing regression coefficients. We refer to influence measures on causal graphs as GrangerRanks. For
example, GrangerPageRank refers to applying pagerank on the causal graph while GrangerOutDe-
gree refers to computing out-degrees of nodes as a measure of causal influence.

3.2 Application: Causal Influence in Online Social Communities

Proof of concept: Key Influencers in Theoretical Physics: Drawn from a KDD Cup 2003 task,
this dataset is publically available at: http://www.cs.cornell.edu/projects/kddcup/datasets.html. It
consists of the latex sources of all papers in the hep-th portion of the arXiv (http://arxiv.org) In
consultation with a theoretical physicist we did our analysis at a time granularity of 1 month. In
total, the data spans 137 months. We created document term matrices using standard text processing
techniques, over a vocabulary of 463 words chosen by running an unsupervised topic model. For
each of the 9200 authors, we created a word-time matrix of size 463x137, which is the usage of the
topic-specific key words across time. We considered one year, i.e., d = 12 months as maximum
time lag. Our model produces the causal graph shown in Figure 1 showing influence relationships
amongst high energy physicists. The table on the right side of Figure 1 lists the top 20 authors ac-
cording to GrangerOutDegree (also marked on the graph), GrangerPagerRank and Citation Count.
The model correctly identifies several leading figures such as Edward Witten, Cumrun Vafa as au-
thorities in theoretical physics. In this domain, number of citations is commonly viewed as a valid
measure of authority given disciplined scholarly practice of citing prior related work. Thus, we
consider citation-count based ranking as the “ground truth”. We also find that GrangerPageRank
and GrangerOutDegree have high positive rank correlation with citation counts (0.728 and 0.384
respectively). This experiment confirms that our model agrees with how this community recognizes
its authorities.
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 Per Kraus E.Witten

 S.Theisen

 R.J.Szabo

 Jacob Sonnenschein

 Igor Klebanov

 P.K.Townsend

 C.S.Chu

 C.Vafa

 J.L.F.Barbon
 G.Moore

 S.Ferrara

 Arkady Tseytlin

 S.Gukov

 Alex Kehagias

 Ian Kogan

 M.Berkooz

 R.Tatar  I.Antoniadis

 Michael Douglas

GrangerOutdegree GrangerPageRank Citation Count

E.Witten E.Witten E.Witten

C.Vafa C.Vafa N.Seiberg

Alex Kehagias Alex Kehagias C.Vafa

Arkady Tseytlin Arkady Tseytlin J.M.Maldacena

P.K.Townsend P.K.Townsend A.A.Sen

Jacob Sonnenschein Jacob Sonnenschein Andrew Strominger

Igor Klebanov R.J.Szabo Igor Klebanov

R.J.Szabo G.Moore Michael Douglas

G.Moore Igor Klebanov Arkady Tseytlin

Michael Douglas Ian Kogan L.Susskind

Figure 1: Causal Graph and top authors in High-Energy Physics according to various measures.

(a) Causal Graph (b) Hyperlink Graph

Figure 2: Causal and hyperlink graphs for the lotus blog dataset.

Real application: IBM Lotus Bloggers: We crawled blogs pertaining to the IBM Lotus software
brand. Our crawl process ran in conjunction with a relevance classifier that continuously filtered out
posts irrelevant to Lotus discussions. Due to lack of space we omit preprocessing details that are
similar to the previous application. In all, this dataset represents a Lotus blogging community of
684 bloggers, each associated with multiple time series describing the frequency of 96 words over a
time period of 376 days. We considered one week i.e., d = 7 days as maximum time lag in this ap-
plication. Figure 2 shows the causal graph learnt by our models on the left, and the hyperlink graph
on the right. We notice that the causal graph is sparser than the hyperlink graph. By identifying the
most significant causal relationships between bloggers, our causal graphs allow clearer inspection
of the authorities and also appear to better expose striking sub-community structures in this blog
community. We also computed the correlation between PageRank and Outdegrees computed over
our causal graph and the hyperlink graph (0.44 and 0.65 respectively). We observe positive corre-
lations indicating that measures computed on either graph partially capture related latent rankings,
but at the same time are also sufficiently different from each other. Our results were also validated
by domain experts.

4 Conclusion and Perspectives

We have provided a framework for learning sparse multivariate regression models, where the sparsity
structure is induced by groupings defined over both input and output variables. We have shown that
extended notions of Granger Causality for causal inference over high-dimensional time series can
naturally be cast in this framework. This allows us to develop a causality-based perspective on the
problem of identifying key influencers in online communities, leading to a new family of influence
measures called GrangerRanks. We list several directions of interest for future work: optimizing
time-lag selection; considering hierarchical group selection to identify pertinent causal relationships
not only between bloggers but also between communities of bloggers; incorporating the hyperlink
graph in the causal modeling; adapting our approach to produce topic specific rankings; developing
online learning versions; and conducting further empirical studies on the properties of the causal
graph in various applications of multivariate regression.
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