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Block Wavelet Transforms for Image Coding 
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Abstract-In this paper, a new class of block transforms is presented. 
These transforms are constructed from subband decomposition filter 
banks corresponding to regular wavelets. New transforms are compared 
to the discrete cosine transform (DCT). Image coding schemes that 
employ the block wavelet transform (BWT) are developed. BWT's can be 
implemented by fast ( O ( N  log N ) )  algorithms. 

I. INTRODUCTION 

Frequency domain waveform coding methods- subband and 
block transform coding-are widely used in practice [l] ,  [2]. In 
these methods one takes advantage of nonuniform distribution 
of bits to frequency components. In almost all transform coding 
methods [ l ] ,  [3] the signal is first divided into blocks or vectors 
that are linearly transformed into another domain. The resultant 
set of transform domain coefficients is then quantized for trans- 
mission or storage. The efficiency of the transform coding sys- 
tem depends on the type of linear transform and the nature of 
bit allocation to the transform domain coefficients. 

Recently, the relation between wavelet theory and subband 
decomposition has been established [4],  [ S I ,  and it is shown that 
the wavelet orthonormal bases serve to provide a useful mul- 
tiresolution signal representation. Corresponding to each wavelet 
orthonormal basis there exists a subband decomposition filter 
bank realizing the multiresolution signal representation. In this 
paper, it is shown that a new class of linear block transforms, 
block wavelet transforms (BWT's), can be obtained from sub- 
band based multiresolution signal decomposition. BWTs are 
constructed from subband filter banks corresponding to regular 
[4]-[7] wavelets. Image coding schemes that employ the BWT's 
are described. 

11. BLOCK WAVELET TRANSFORM (BWT) 

Let H , ( w )  and H , ( w )  be the low-pass and high-pass filters, 
respectively, of a perfect reconstruction filter bank. In a two-band 
partition, the input signal x [ n ]  is filtered by h,,[n] and h l [ n ]  and 
the resultant signals are downsampled by a factor of two. In this 
way two subsignals, x , [ n ]  = C k h j [ k ] x [ 2 n  - k ] ,  i = 0,1 ,  are ob- 
tained. The subsignal x,,[ n ] ( x l [  n ] )  contains the low-pass (high- 
pass) information of the original signal x [ n ] .  In many signal and 
image coding methods this signal decomposition operation is 
repeated in a tree-like structure, and the resultant subsignals are 
compressed by various coding schemes [ I ] ,  [2]. 

Let us first construct a BWT for a vector of size N = 2. We 
assume that the filters h,[n]  and h , [ n ]  are FIR perfect recon- 
struction filter pairs [4]-[7] corresponding to regular wavelets. 
Let x [ n ]  be a finite extent signal of duration N = 2. The signals 
x [ n ] *  h,[n]  and x [ n ] *  h l [ n ]  have durations K + N - 1 = K + 1 
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if the durations of the filters, h,[n] and h , [ n ] ,  are K. In spite of 
downsampling by two, x,[n]  and x , [ n ]  contain more than two 
nonzero samples in order to achieve perfect reconstruction for 
practical filter banks. Let us define the periodic sequence i [ n ]  as 
a periodic extension of x [ n ] ,  i.e., i [ n ]  = C,x[n  + Nm].  The 
signals 2 [ n ] *  h,[n] and i [ n ] *  h , [ n ]  are also periodic, with pe- 
riod N = 2. Therefore, the subsignals i o [ n ]  and i l [ n ]  are also 
periodic signals, with period N / 2  = 1. We define i , [ O ]  and i , [ O ]  
as BWT coefficients of the vector x = [x[O] x[1]IT. Since convo- 
lution and downsampling operations are linear, the BWT is also 
a linear transform. Let A ,  = [a,,],, ,  be the transform matrix. 
The entries of the 2 X 2 BWT matrix A ,  can be determined by 
using the basis vectors e ,  = [l 0IT and e 2  = [0 1IT. This is 
equivalent to applying the periodicsignals E,[n] = C,S[n + 2ml 
and E2[n] = C,S[n - 1 + 2 m ]  to the subband decomposition 
filter bank. If the input is E,, then the output of the low-pass 
(high-pass) branch is a1,(a,,). Similarly, u12 and a,, are also 
obtained by using E,. 

Let us now construct the BWT matrix for N = 2' where 1 is a 
positive integer. Let x [ n ]  be a finite extent signal of length N 
and x = [x[O] x [ l ]  ... x [ N  - 1]IT be a vector of size N .  We 
consider an N band partition of the frequency domain. In order 
to achieve such a partition one can use an 1 stage subband 
decomposition, as shown in Fig. 1. If the finite signal x [ n ]  is 
applied to the structure of Fig. 1, then the subsignals 
x,[nI, x ,[n]; . . ,x ,_ ,[n]  contain more than N samples due to 
filtering in spite of downsampling by N. Let i [ n ]  = _,x[n 
+ Nm]. Since 2 [ n ]  is a periodic signal with period N, the 
subsignals i, are also periodic with period 1. As in the case of 
N = 2, we define the BW transform vector 0 = [e,, 0, ... 0,- , I T  
as follows: 

The j t h  column of the N X N transform matrix A ,  = [a,,],,, 
can be obtained by applying Z,[n] = C,S[n - ( j  - 1) + Nm] as 
the input to the N-band subband decomposition structure of Fig. 
1. In this case, the branch outputs are periodic signals with 
period 1 and the value at the ith branch is the (i , j) th entry a,, 
of the matrix A,. 

BWTs obtained as shown above are orthogonal transforms, 
i.e., ANAT, = I, .  Fast implementation of the transform can be 
carried out in f stages by using the structure of Fig. 1. Since at 
each stage half of the samples are dropped, and 1 = log N, one 
can develop a fast algorithm to implement a BWT. It requires 
Order(N log N )  (if the FIR filters, h,,  i = 0 , l  are Kth order 
filters, then min ( K ,  N )  X N log N in the most general case) 
multiplications to get N BWT coefficients. In most filter banks, 
filters h,, and h ,  are related to each other. By taking advantage 
of this fact computational complexity can further be reduced. 

We now present two BWTs constructed from the Haar or- 
thogonal basis [5] and perfect reconstruction (PR) filter banks of 
Daubechies wavelets [4], [6]. 

Haar BWT: This transform is constructed from the PR filter 
bank: h,[OI = h,[lI = 1 /2 ,  h,[nI = 0 for n # 1,2, and h,[nl  = 
( -  l)"h, ,[n].  This filter bank structure produces the Haar (wave- 
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let) basis of L2(R)  [5]. The 1 stage operation performed in every 
branch of Fig. 1 is equivalent to a single stage operation consist- 
ing of filtering the input by h'[ n ]  whose frequency response is 

H k ( o )  = H,o(w)H,1(2~) . . .  H I ,  1(2'-'6~), 

k = 0, l;.., N - 1. ' I  i = 0 ' 1 (2) 

where k = z02'-' + i ,2'-2 + ... +i,,-' and downsampling by 
N = 2'. Since the filters h,, and h,  are second-order FIR filters, 
the filters hk[n], 1 = 0, l;.., N - 1 are Nth order filters. Be- 
cause of this, the rows of the N X N transform matrix A ,  are 
the impulse responses of the filters hk[n] and the transform 
matrix is nothing but the well-known Hadamard transform ma- 
trix [I]. 

Daubechies B W :  Daubechies filter banks [5] correspond to 
regular wavelets. For the filter pair 

h Jn ]  = ( ... , O ,  .230378, .714847, .630881, - .279838, - ,187035, 
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,0308414, .0328830, - .0105974,0, ... } Fig. 2 .  (a) Distribution of variances of the transform coefficients (in 
decreasing order) of an AR(1) process with p = 0.95. (b) Performance 
of various transforms with respect to basis restriction error, J(m) = 

and hl[nl = (-l)"hO-n + the BWT matrix 
follows: with p = 0.95. 

is given as ~ ~ : ~ c ~ / ~ ~ ~ d g ~ ,  versus the number of basis for an AR(1) process 
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Note that the BWT matrix A ,  is orthogonal. One can also 
obtain block transforms from Smith and Barnwell (SB) filters [7] 
and from the Buttenvorth-IIR filter banks [SI. 

Two-dimensional BWTs are simply obtained in a separable 
manner. The transform U of the N X N matrix C is given as 
follows 

U = A,CA;. (4) 

BWT-based image (video) coders are developed just like the 
JPEG (MPEG) [3] image (video) coding standards. BWT coders 
are obtained by replacing the DCT unit of the JPEG coder with 
a BWT unit. 
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111. SIMULATION EXAMPLES AND CONCLUSIONS 
Consider an AR(1) random process with p = 0.95. Fig. 2(a) 

[Fig. 2(b)] shows the distribution of variances (basis restriction 
error [l]) of the transform coefficients for DCT, DlT, BWT's 
obtained from Butterworth-IIR, Daubechies, and SB filter banks. 
In this case, it is well known that the performance of DCT is 
very close to KL transform [l]. It can be observed from Fig. 2 
that the performance of Daubechies BWT is the second best. 
Comparable performance can be obtained for the regular wavelet 
and subband filter-based decompositions. 



Fig. 3. The test image Barbara (672 X 560 with 8 b/pel). 
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A 1-D DCT (Butterworth-IIR-BWT) [Daubechies-BWT] {SB- 
BWT} of size N = 8 can be implemented by performing 12 (8) 
[22] {62} multiplications. 

In many image coding applications, scalability of the coded bit 
stream is a desirable property [9]. If a low-resolution signal can 
be recovered from the bit stream, it can be displayed in low-res- 
olution display. The low-resolution images (336 X 280) recov- 
ered from the first 4 x 4 BWT coefficients are compared to the 
low-resolution signal that can be extracted from a DCT-based 
scheme. In Fig. 4 the low-resolution images are shown. It is clear 
that the low-resolution image obtained from BWT [Fig. 4(a)] is 
better than the one obtained from DCT [Fig. 4(b)]. Aliasing 
effects are more disturbing in Fig. 4(b). If a scalable coded bit 
stream is desired, then the BWT is more suitable than DCT. 
One can extract better quality low-resolution images in BWT- 
coded bit streams than in DCT-coded ones. 

From any given PR filter bank one can construct a linear 
block transform. Since the class of PR filter banks is quite large, 
the corresponding BWT class is also large. The choice of BWT 
for a given application remains as an interesting problem. 
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Fig. 4. (a) Details of the low-resolution image recovered from the first 
4 X 4 DCT coefficients of the 8 X 8 BW transformed Barbara. (b) 
Details of the low-resolution image recovered from the first 4 X 4 DCT 
coefficients of the 8 X 8 discrete cosine transformed Barbara. Aliasing 
effects are more disturbing than Figure 4(a) (see the scarf of Barbara). 

Consider the test image Barbara (672 X 560 with 8 b/pel) 
shown in Fig. 3. The Barbara image is coded by both an 
implementation of the JPEG standard and a BWT coder. The 
BWT coder is actually the JPEG coder, which employs a BWT 
instead of the DCT. In both coding schemes, 8 X 8 image 
subblocks and the default weighting matrix of the JPEG stan- 
dard [3] are used. The JPEG (IIR-BWT) [Daubechies-BWT] 
coder compressed the image to 1.349 (1.44) [1.487] b/pel. All of 
the coded images are visually indistinguishable from the original 
one (figures are omitted). 

Vector Quantization of Images Using 
Input-Dependent Weighted Square Error Distortion 

Anamitra Makur 

I. INTRODUCTION 
The measure of quantization distortion in a vector quantiza- 

tion (VQ) [l] coder for image is vital to the perceptual coder 
performance. The distortion function should ideally quantify 
human visual discomfort towards quantization errors. Mean 
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