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Abstract We describe an algorithm for constructing a set of tree-like conjunctive rela-
tional features by combining smaller conjunctive blocks. Unlike traditional level-wise ap-
proaches which preserve the monotonicity of frequency, our block-wise approach preserves
monotonicity of feature reducibility and redundancy, which are important in proposition-
alization employed in the context of classification learning. With pruning based on these
properties, our block-wise approach efficiently scales to features including tens of first-order
atoms, far beyond the reach of state-of-the art propositionalization or inductive logic pro-
gramming systems.

Keywords Inductive logic programming · Relational machine learning ·

Propositionalization

1 Introduction

Propositionalization aims at converting structured descriptions of examples into attribute-
value descriptions which can be processed by most established machine learning al-
gorithms. A major stream of propositionalization approaches (Lavrač and Flach 2001;
Krogel et al. 2003; Železný and Lavrač 2006) proceeds by constructing a set of features
(first-order formulas) which follow some prescribed syntactical constraints and play the role
of Boolean attributes. Here we assume that examples are represented as first-order Herbrand
interpretations and features are conjunctions of first-order function-free atoms. Feature F

acquires value true for example I (covers the example) if I |= F , otherwise it has the false

value.
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Features may be viewed as patterns taking the form of relational queries. Thus propo-
sitionalization is similar to the framework of frequent query discovery where one seeks
queries that are frequent in that they hold true for at least a specified minimum number of
examples. This framework is represented e.g. by system WARMR (Dehaspe and Toivonen
1999). Indeed, propositionalization systems such as RSD (Železný and Lavrač 2006) also
adopt a minimum frequency condition that admissible features must comply with. As well
known, the minimum frequency condition is very practical in the popular level-wise ap-
proach to construct conjunctions. In this approach, followed also by the mentioned systems,
each conjunction in level n extends by one atom some conjunction in level n− 1. Frequency
is monotone in that if F is not frequent then F ∧ a is not frequent for any atom a. Thus
all descendants of an infrequent query may be safely pruned, substantially adding to the
efficiency of the level-wise systems.

The problem is that frequency is arguably not the ideal criterion to assess the quality
of features in the propositionalization framework when employed for classification learn-
ing. Here, rather than frequent features, one naturally prefers features that well discriminate
examples in terms of pre-defined classes. For sakes of pruning, one may want to discard re-

dundant features, i.e. those for which another feature providing better discrimination exists.
Unfortunately, redundancy is not monotone in the level-wise approach and thus cannot be
translated here into a pruning mechanism similar to the one based on frequency. Besides re-
dundancy, another important property of features is reducibility w.r.t. θ -subsumption. Given
the assumed relational representation, two queries may be semantically equivalent despite
their difference in syntax. We have good reason—if only for sakes of interpretability—to
discard all reducible features, i.e. those equivalent to an existing feature that is syntactically
simpler. Reducibility is unfortunately neither monotone in the level-wise approach. For ex-
ample p(X) is irreducible, p(X) ∧ p(Y ) is reducible, and p(X) ∧ p(Y ) ∧ q(X,Y ) is again
irreducible.

The purpose of this work is to remove these deficiencies by elaborating a novel, block-

wise approach to construct a feature set by identifying building blocks (smaller conjunc-
tions) out of which all features can be composed. The main assumption on which our al-
gorithm is built is that the features it constructs, when viewed graphically, correspond to
hypertrees while blocks correspond to their subtrees. Our feature construction strategy is
bottom-up so that the initial set of blocks corresponds to all leaves of possible features.
Blocks are then progressively combined together with further connecting atoms into larger
blocks and eventually into features.

The main advantage of this approach is that it facilitates monotonicity of the two prop-
erties of interest in that features containing a redundant (reducible) block are themselves
redundant (reducible). Such blocks are thus immediately and safely discarded. As we also
show, the assumption of tree-like features would not guarantee monotonicity of the two
properties in the more traditional level-wise approach. Thanks to the mentioned assump-
tion, we are able to decide whether a block is reducible in time only quadratic in the size of
the block despite the NP-completeness of the reducibility problem for unconstrained con-
junctions. As a last advantage, the block-wise approach also allows us to efficiently compute
extensions of features in a way similar to the well known query pack technique (Blockeel et
al. 2002). In experiments, we show our approach to result in both very fast feature construc-
tion but also in high classification accuracies.

This paper extends our initial study (Kuželka and Železný 2009) by the full elaboration
of proofs, a significantly more extensive experimental evaluation, but also by new technical
enhancements such as the quadratic-time algorithm for reducibility checking.
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The rest of the paper is organized as follows. In the next section we define the concepts
of templates and features. Templates are used to specify the syntactic bias for features. Sec-
tion 3 shows that the basic conditions we have imposed on templates and features imply
the hypertree structure of features. In Sect. 4 we introduce blocks and the graft operation
through which blocks are combined. Section 5 shows how to detect reducible blocks and
establishes that reducibility is block-wise monotone. An efficient algorithm for checking
reducibility is then described in Sect. 6. In Sect. 7 we formalize the semantics of features
through the concepts of domain and extension. Using these concepts, Sect. 8 defines redun-
dancy of features and shows how to detect blocks whose inclusion in any feature will make
that feature redundant. In Sect. 9 we synthesize the methodological ingredients into a propo-
sitionalization algorithm and show that it is complete in that it generates all useful features
complying with the given template. Section 10 subjects our algorithm to comparative exper-
imental evaluation in 9 relational classification benchmarks. In Sect. 11 we discuss related
work and Sect. 12 concludes the study. All proofs of theorems as well as all lemmas are
located in the Appendix.

2 Features

We will be working with the language of first-order predicate logic free of functions up
to constants. Learning examples and features will correspond to interpretations and existen-
tially quantified constant-free atom conjunctions, respectively. We will write first-order logic
variables in upper-cases and constants in lower-cases. As the order of atoms in conjunctions
will not be important, we will use set-notation even for conjunctions. So expressions such as
|C|, a ∈ C, C ⊆ C ′ will be interpreted as if C and C ′ were sets of atoms. A set of conjunc-
tions is said to be standardized-apart if no two conjunctions in the set share a variable. By
vars(C) we denote the set of all variables found in conjunction C. Given a set A of atoms,
we denote args(A) = {(a,n)|a ∈ A,1 ≤ n ≤ arity(a)}, i.e. args(A) is the set of all argument
places in A. For an atom a, argi(a) is its i-th argument. Atoms a1 and a2 in conjunction C

are connected in C if a1 shares a term with a2 or with some atom a3 of C that is connected
to a2. Conjunction C is said to be connected if every two atoms in C are connected in C.
Otherwise C is disconnected.

A feature construction algorithm should provide the user with suitable means of con-
straining the feature syntax. In commonplace inductive logic programming systems such as
Progol (Muggleton 1995) or Aleph, the syntax is specified through mode declarations ex-
pressed via dedicated meta-predicates. Mode declarations define the predicates which can
be used to build a clause, and assign a type and mode to each argument of these predicates.
Here we propose the notion of a feature template, which is equally expressive to mode dec-
larations, yet formally simpler. Besides simplicity, another advantage of feature templates is
that compliance therewith is verified through the standard subsumption check. A template
will be defined as a set of ground atoms of which all arguments fall in exactly one of two cat-
egories (‘input’ and ‘output’). Templates will be further subjected to two restrictions needed
to guarantee acyclicity of features that are to be derived from templates.

Definition 1 (Template) A pre-template is a pair τ = (γ,µ) where γ is a finite set of ground
atoms and µ ⊆ args(γ ). Elements of µ are called input arguments and elements of args(γ )\

µ are called output arguments. We say that τ is a template if (i) every atom in γ has at most
one input argument and (ii) there is a partial irreflexive order ≺ on constants in γ such that
c ≺ c′ if and only if there is an atom a with c in its input argument and c′ in its output
argument.
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A template τ = (γ,µ) is conveniently represented by writing γ with elements of µ

(args(γ ) \µ) marked with + (−) signs, called input (output) modes. We will use the sign ≈

to associate τ with this kind of template representation as in the following example.

Example 1 Let τ = (γ,µ) where γ = {hasCar(c),hasLoad(c, l),box(l), tri(l), circ(l)} and
µ = {(hasLoad(c, l),1), (box(l),1), (tri(l),1), (circ(l),1)}. Here, τ is a template since there
is an order c ≺ l complying with Definition 1 and no atom in γ has two input arguments. In
the simplified notation we show τ as

τ ≈ hasCar(−c),hasLoad(+c,−l),box(+l), tri(+l), circ(+l)

On the other hand, τ2 ≈ a(+x,−y), b(+y,−x) is not a template because there is no order
that would comply with Definition 1.

We will now define the type of connected conjunctions that comply with a given tem-
plate τ . The compliance will be witnessed by a substitution θ . We shall distinguish certain
roles of variables in such conjunctions; these will be determined by τ and θ .

Definition 2 (τθ -conjunction) Given a template τ = (γ,µ) a τθ -conjunction C is a con-
nected conjunction where all terms are variables and Cθ ⊆ γ . The occurrence of a variable
in the i-th argument of atom a in C is an τθ -input occurrence in C if the i-th argument of
aθ is in µ and it is an τθ -output otherwise. A variable is:

– τθ -positive in C if it has exactly one τθ -input occurrence and no τθ -output occurrence
– τθ -negative in C if it has exactly one τθ -output occurrence and no τθ -input occurrence
– τθ -neutral in C if it has at least one τθ -input and exactly one τθ -output occurrence

Example 2 Conjunction hasLoad(C,L)∧ box(L) is a τθ -conjunction for τ from Example 1
and θ = {C/c,L/l}. Variable C is τθ -positive and variable L is τθ -neutral in the conjunction.

In what follows, we will abbreviate the phrases ‘τθ -input occurrence’ and ‘τθ -output
occurrence’ by the respective words ‘input’ and ‘output.’

Through the condition Cθ ⊆ γ , the definition effectively requires that variables in τθ -
conjunction C comply with types specified by γ , specifically that each variable in C maps to
exactly one type. Features, which we define in turn, are τθ -conjunctions which additionally
comply to a condition pertaining to modes.

Definition 3 (Feature) A τθ -conjunction F is a τθ -feature if all its variables are τθ -neutral
in F . We say that F is a τ -feature if there exists a substitution θ such that F is a τθ -feature.

For example, using τ from Example 1, the following conjunction is a τ -feature

hasCar(C) ∧ hasLoad(C,L1) ∧ hasLoad(C,L2) ∧ box(L1) ∧ tri(L2)

as it is a τθ -feature for θ = {C/c,L1/l,L2/l}. In general, there can be more than one
substitution θ such that Fθ ⊆ γ , and some of them can make some of the variables non-
neutral. For example, if τ = atom(−a),bond(+a,−b),bond(−c,+b),atom(+c) and F =

atom(A),bond(A,B),bond(C,B),atom(C) then F is a τθ1 -feature for θ1 = {A/a,B/b,

C/c} but it is not τθ2 -feature for θ2 = {A/c,B/b,C/c}. In any case, F is a τ -feature because
of the existence of θ1. It would be easy to avoid the illustrated ambiguity of templates, e.g.
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by requiring that no predicate occurs twice in a template. However, we do not need this
restriction.1

Templates introduced in this section are similar to WARMR’s warmode declarations but
not the same. In a template, every atom can have at most one input argument, unlike war-
modes which do no restrict the number of input or output arguments. We do need the re-
striction to guarantee tree-like structure of features. Furthermore, variables in our features
must have both an input and an output. This requirement increases the expressiveness of
our framework (the case without the requirement can clearly be emulated by adding dummy
atoms). Further justification for the requirement is given in Lavrač and Flach (2001).

3 Tree-like structure of features

The two conditions we imposed on templates in Definition 1 and the neutrality condition
we stipulated on variables in features in Definition 3 guarantee a constrained structure of
features when viewed graphically. For precise characterization, we shall define tree-likeness
of conjunctions which is a special case of acyclicity. We follow the established definition
from Fagin (1983) that relates to hypergraphs. While we translate the notions into the context
of conjunctions, the definition also shows the original hypergraph concepts in parentheses
since hypergraphs offer easier intuitive understanding.

Definition 4 (Tree-like conjunction) A conjunction (hypergraph) C is tree-like if the itera-
tion of the following rules on C produces the empty conjunction (hypergraph):

1. Remove an atom (hyperedge) which contains fewer than 2 terms (vertices).
2. Remove a term (vertex) which is contained in at most one atom (hyperedge).

The right-most panel in Fig. 1 illustrates the concept of tree-likeness. A few remarks
are needed to fully clarify the correspondence between conjunctions and hypergraphs. Ver-
tices correspond to terms and hyperedges correspond to atoms that contain the terms as
arguments. In general, multiple atoms in a conjunction may contain the same set of terms.
Therefore conjunctions correspond in fact to multi-hypergraphs. This fact is not important
when applying the iterative reduction above and thus for brevity we maintain the shorter

Fig. 1 Examples of cyclic, acyclic and tree-like hypergraphs that represent first-order conjunctions

1In fact, with certain abstraction, this ambiguity is analogical to that present in inductive logic programming
systems where different sequences of refinements may result in the same first-order expression.
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term hypergraph. In Definition 4, removing a term from C means removing all its occur-
rences from C. That is, the arity of each atom in C will be decreased by the number of
occurrences of the term in the atom.

Obviously, general τθ -conjunctions may be non-tree-like. For example, C = a(A,B) ∧

a(C,B) ∧ a(C,D) ∧ a(A,D) is a τθ -conjunction for τ = (γ,µ), γ = {a(a, b)}, θ =

{A/a,B/b,C/a, D/b} and any µ ⊆ args(γ ). C is not tree-like as may be verified by ap-
plying Definition 4 (clearly, none of the two reduction rules can be applied on C) or by pro-
jecting C onto the left-most example in Fig. 1. However, as the following theorem (proven
in the Appendix) asserts, features are indeed tree-like.

Theorem 1 Every τ -feature F is tree-like.

A convenient consequence is that the decision problem I |= F can be computed in time
polynomial in |F |. In contrast, for a general conjunction C, I |= C corresponds to the NP-
complete θ -subsumption test. Polynomial-time solubility of tree-like queries is well known
in database literature (Yannakakis 1981) and in the field of constraint satisfaction where this
problem is efficiently tackled by the directional-arc-consistency algorithm (Dechter 2003).

4 Blocks

Here we first define blocks used to build a feature through the graft operation.2 Before we
do so formally, we motivate the concepts through an example. Given a template

τ ≈ hasCar(−c),hasLoad(+c,−l),has2Loads(+c,−l,−l),box(+l), tri(+l)

an exemplary τθ -feature for θ = {C/c,L1/l,L2/l,L3/l}

hasCar(C)∧ (1)

hasLoad(C,L1) ∧ box(L1)∧ (2)

has2Loads(C,L2,L3) ∧ box(L2) ∧ box(L3) (3)

is graphically shown left-most in Fig. 2 as a hypertree containing two subtrees corresponding
to lines 2 and 3 above. The latter subtree is also shown separately in the middle of Fig. 2.

Fig. 2 A feature, a pos block and a neg block displayed as hypergraphs

2Not to be confused with grafting as introduced in Perkins and Theiler (2003).
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Conjunctions corresponding to such subtrees will be called pos τθ -blocks to abbreviate the
fact that they contain exactly one τθ -positive variable (here C). This is the only variable that
the block shares with the rest of the feature. The share of only one variable has a convenient
consequence towards monotonicity, as we will also formally show: if the block is redundant
(reducible), the containing feature is also redundant (reducible).

The second kind of block we shall define corresponds to what is left of a τθ -feature
when a pos τθ -block is removed. Such a block, called a neg τθ -block contains exactly one
τθ -negative variable. An example of a neg τθ -block is shown right-most in Fig. 2.

Definition 5 (Blocks) Let B be a τθ -conjunction. If there is exactly one τθ -positive (τθ -
negative) variable in B , it will be denoted p(B) (n(B)). B is a pos τθ -block if it has p(B)

(n(B)) and all other variables in B are τθ -neutral. We say that B is a pos (neg) τ -block if
there exists a substitution θ such that B is a pos (neg) τθ -block.

Of course, a pos τθ -block can itself in general contain smaller pos τθ -blocks. To exploit
the above commented monotonicity observed on blocks, our strategy to assemble features
will be bottom-up, starting with the smallest pos τθ -blocks (e.g. tri(L3) in the current ex-
ample) and safely discarding those deemed redundant or reducible. Larger pos τθ -blocks re-
sult from conjoining a number of smaller τθ -blocks (e.g. box(L2) and tri(L3)) with further
atoms needed to make the conjunction a pos τθ -block (in this case has2Loads(C,L2,L3))
or a τθ -feature. This operation, which we call a graft, is formalized below.

Definition 6 (Graft) Let C be a τθ -conjunction, v a variable in C, and φ+ = {B+
i } a

standardized-apart set of pos τ -blocks. We define C ⊕v φ+ = C ∧i Biθi where θi =

{p(B+
i )/v}. In the special case when C is a neg τ -block, we denote C ⊕ φ+ = C ⊕n(C) φ+.

In the mentioned special case when C is a neg τ -block, C⊕φ+ is a τθ -feature. Otherwise,
for generality, the definition does not require that the graft results in a pos τ -block. Speak-
ing in terms conventional for inductive logic programming, graft is an operator yielding a
common specialization of its operands. However, in comparison with well known operators
such as Plotkin’s least general generalization (Nienhuys-Cheng and de Wolf 1997), graft is
defined in a highly constrained context of tree-like function-free conjunctions rather than
general first-order clauses.

5 Reducibility

In this section, we elaborate properties of features and pos blocks regarding their reductions.
Let C and D be conjunctions of atoms and let there be a substitution θ such that Cθ ⊆

D. Then we say that C subsumes D (written C 
 D). If C 
 D and D 
 C then C and
D are said to be equivalent, written C ≈θ D. We say that C is reducible if there exists a
conjunction C ′ such that C ≈θ C ′ and |C| > |C ′|; C ′ is called a reduction of C. An example
of a reducible conjunction of atoms is hasCar(C) ∧ hasLoad(C,L1) ∧ hasLoad(C,L2) ∧

box(L1) equivalent to the shorter conjunction hasCar(C) ∧ hasLoad(C,L1) ∧ box(L1).
In this work we cannot rely directly on the established notion of reducibility as defined

above. This is because a reduction of a τ -feature may not be a τ -feature itself. For example,
for τ ≈ {car(−c1),hasLoad(+c1,−l),hasLoad(−c2,+l), hasCar(+c2)}, the conjunction
car(C1) ∧ hasLoad(C1,L1) ∧ hasLoad(C2,L1) ∧ car(C2) is a correct τ -feature but its re-
duction hasCar(C1)∧hasLoad(C1,L1) is not. The fact that reduction does not preserve cor-
rectness of feature syntax may represent a problem because we would like to work only with
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Fig. 3 The feature F from
Example 3 (left) and its
H -reduction (right); arrows

indicate the substitution θ1

reduced features, if only for sakes of improved interpretability. Relying on the acyclicity of
features and the implied acyclicity of pos blocks, we are going to introduce H -subsumption
and H -reduction such that H -reduction of a τθ -feature is always a τθ -feature. The two con-
cepts differ from their classical counterparts by requiring that substitutions involved in the
subsumption relations preserve variable depths. We define the notion of depth in turn.

Definition 7 (Depth) Let C be a τθ -feature or a pos τ -block and a its atom. If a contains no
inputs or if it contains the variable p(C) then its depth in C, denoted dC(a) is 1. Otherwise
dC(a) = n such that a1, a2, . . . , an is the shortest sequence of atoms such that dC(a1) = 1,
an = a and for each 1 ≤ i < n, there is a variable having an output in ai and an input in ai+1.
The depth of variable v in C is dC(v) = min{dC(a)|a contains v}.

Definition 8 (H -subsumption) We say that τθ1 -feature (pos τ -block, respectively) F H -

subsumes τθ2 -feature (pos τ -block, respectively) G (written F 
H G) if and only if there is
a substitution ϑ such that Fϑ ⊆ G and for every atom a ∈ F it holds dF (a) = dG(aϑ); such
a ϑ is called a H -substitution.

Definition 9 (H -reduction) If F 
H G and G 
H F , we call F and G H -equivalent (writ-
ten F ≈H G). We say that τθ1 -feature (pos τ -block, respectively) F is H -reducible if there is
a τθ2 -feature (pos τ -block, respectively) F ′ such that F ≈H F ′ and |F | > |F ′|. A τθ -feature
(pos τ -block) F ′ is said to be an H -reduction of F if F ≈H F ′ and F ′ is not H -reducible.
A τ -feature F is said to be H -reducible if there is a substitution θ such that F is an H -
reducible τθ -feature.

Example 3 Continuing with τ from Example 1, the τ -feature

F1 = hasCar(C) ∧ hasLoad(C,L1) ∧ box(L1) ∧ hasLoad(C,L2) ∧ box(L2) ∧ tri(L2)

is H -reducible because there is feature F2 = hasCar(C) ∧ hasLoad(C,L) ∧ box(L) ∧

tri(L) for which it holds F1 ≈H F2, as F1θ1 ⊆ F2 and F2θ2 ⊆ F1 for substitutions θ1 =

{C/C,L1/L,L2/L}, θ2 = {C/C,L/L2}, which map variables in depth d in one feature to
variables in the same depth in the other feature (cf. Fig. 3), and it holds |F2| < |F1|.

Since H -reducibility is the only concept of reducibility we will work with, we will occa-
sionally afford to omit the H -prefix. The next theorem provides a way to detect reducibility
of pos blocks and also asserts that reducibility is monotone.

Theorem 2 Let B be a pos τ -block and let B− be a neg τ -block. Then the following holds:
(i) B is H -reducible if and only if B contains pos τ -blocks B1,B2 such that B1 �= B2,
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p(B1) = p(B2) and B1 
H B2. (ii) If B is H -reducible, then B− ⊕ ({B} ∪ S) is also H -

reducible for any set of pos τ -blocks S.

Monotonicity of reducibility is an important property enabling pruning during feature
construction. It is essential to realize that this property does not simply follow from the
tree-like structure of features. Indeed, if we constructed tree-like features in the usual level-
wise manner as e.g. the systems WARMR or RSD would proceed, it would not be possible
to prune on reducibility. For example, extending hasCar(C) ∧ hasLoad(C,L) ∧ box(L)

by atom hasLoad(C,L2) yields a reducible conjunction. If we however pruned it along
with all of its descendants, we would also prune the irreducible feature hasCar(C) ∧

hasLoad(C,L) ∧ box(L) ∧ hasLoad(C,L2) ∧ tri(L2).
Lastly, thanks to the reducibility concept, we can state the following theorem which is

important since we aim at constructing complete feature sets.

Theorem 3 Let τ be a template. There is only a finite number of τ -features, which are not

H -reducible.

This holds despite that there is an infinite number of τ -features for a sufficiently rich
template τ .

Example 4 Let us work again with τ from Example 1. There is an infinite number of τ -
features but there are only 19 irreducible τ -features. An example of a reducible τ -feature
is

Fr = hasCar(C) ∧ hasLoad(C,L) ∧ box(L) ∧ hasLoad(C,L2) ∧ box(L2) ∧ circ(L2)

This τ -feature is indeed reducible, which according to Theorem 2 follows from the presence
of the two pos blocks below in it.

hasLoad(C,L) ∧ box(L) 
H hasLoad(C,L2) ∧ box(L2) ∧ circ(L2)

As may be routinely checked, there are exactly eighteen further irreducible τ -features.

6 A fast algorithm for H -reduction

We now describe an algorithm for checking H -reducibility of features (Algorithm 1) that
runs in time quadratic in the number of atoms in the tested feature. We need to introduce
some additional notation which will be constrained to this section. Let F be a τθ -feature or
a pos τθ -block and PF , IF , JF , functions defined as follows. If two atoms a, b ∈ F share a
variable, which has an output in the i-th argument of a and an input in the j -th argument
of b we define PF (b) = a, IF (b) = i, JF (b) = j . Lastly, for an atom b in F we define
CF (b) = {a ∈ F |PF (a) = b}. That is, PF (a) denotes the ‘parent’ atom of a, which, due to
the tree-like structure of features and pos blocks, is unique if it exists. Inversely, CF (b) is the
set of all ‘children’ atoms of b. Functions IF and JF index the arguments in the respective
literals where the ‘connecting variable’ occurs.

The algorithm is based on Theorem 2, namely on the fact that a τθ -feature F is H -
reducible if and only if it contains two pos τ -blocks B1 and B2 such that p(B1) = p(B2) and
B1 
H B2. The main idea exploited by the algorithm is to maintain an array called Subsumed
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Algorithm 1 H-Reducibility(F )

1: Input: τθ -feature (pos τ -block) F ;

2: Subsumed ← a two-dimensional array indexed by atoms. All elements are initialized to
0. /* Subsumed(A,B) is the number of child-blocks of A, which have been found to
H -subsume some child-blocks of B */

3: Open ← {} /* A stack data-structure */
4: for d = 1 . . . dF do
5: Open ← Open ∪ {(ai, aj )} where ai, aj (ai �= aj ) are literals in depth d with no out-

puts and such that predicate(ai) = predicate(aj ) and IF (ai) = IF (aj )

6: end for
7: while Open �= ∅ do
8: (ai, aj ) ← Pop(Open)

9: if PF (ai) = PF (aj ) then
10: return H-Reducible
11: else
12: Subsumed(PF (ai),PF (aj )) = Subsumed(PF (ai),PF (aj )) + 1
13: if Subsumed(PF (ai),PF (aj )) = |CF (PF (ai))| and predicate(PF (ai)) =

predicate(PF (aj )) and IF (PF (ai)) = IF (PF (aj )) and JF (PF (ai)) = JF (PF (aj ))

then
14: Open ← Open ∪ {(PF (ai),PF (aj ))}

15: end if
16: end if
17: end while
18: return Not H-Reducible

indexed by pairs (ai, aj ) in which we store the number of child-blocks (i.e. pos τ -blocks) of
the atom ai , which H -subsume some child-blocks of the atom aj such that IF (ai) = IF (aj ).
If this number equals the number of children of ai and if ai and aj share a common parent,
then the tested τ -feature F is H -reducible. It is easiest to see how this algorithm works
through an example.

Example 5 Consider template τ ≈ a(−x), b(+x,−y), c(+y), d(+y) and the following fea-
ture

F = a(A) ∧ b(A,B) ∧ c(B) ∧ d(B) ∧ b(A,C), c(C)

Let us go through the steps Algorithm 1 performs to detect that F is H -reducible. It starts
by filling the Open list: Open ← {(c(B), c(C)), (c(C), c(B))}. In the next step, the first pair
(c(B), c(C)) is extracted from the list and we check whether PF (c(B)) = PF (c(C)). As the
answer is negative, the algorithm continues by incrementing Subsumed(b(A,B), b(A,C)),
i.e. we have Subsumed(b(A,B), b(A,C)) = 1. However, Subsumed(b(A,B), b(A,C)) �=

|CF (b(A,B))| = 2, so we continue with the next iteration. We extract (c(C), c(B)) from
the list Open. Again PF (c(B)) �= PF (c(C)), therefore we increment Subsumed(b(A,C),

b(A,B)). We have Subsumed(b(A,C), b(A,B)) = |CF (b(A,C))| = 1, therefore we add
(b(A,C), b(A,B)) to the Open list. In the next iteration, we extract (b(A,C), b(A,B))

from the list Open and check that PF (b(A,C)) = PF (b(A,B)). From this, we may conclude
that F is H -reducible.



Mach Learn (2011) 83: 163–192 173

Theorem 4 Algorithm 1 correctly decides whether a τθ -feature (pos τ -block) F is H -

reducible in time O(|F |2).

Algorithm 1, which only decides whether a τ -feature F is H -reducible, can be easily
converted to an algorithm that also computes the H -reduction3 of F . It suffices to replace
line 10 in Algorithm 1 by ‘Remove pos τ -block with root ai ’.

7 Extensions and domains

So far we have been only concerned with the syntax of τ -features. Now we will also establish
their semantics. We do this through the concepts of domain and extension. Extension of a
τ -feature is simply the set of examples covered by the τ -feature. Domain is defined in a
finer manner for both τ -features and pos τ -blocks, with respect to a single example. The
method for computing domains and extensions will be based on a combination of a well-
known algorithm for conjunctive acyclic query answering (Yannakakis 1981) and a variation
of the query-pack method (Blockeel et al. 2002), integrated into our block-wise feature
construction procedure.

Definition 10 (Domain, Extension) Let I be an interpretation, i.e. a set of ground atoms,
and τ a template. For a pos τ -block B , domain domI (B) contains all terms t such that I |=

Bθ , where θ = {p(B)/t}. For a τ -feature F , domI (F ) = {yes} if I |= F and domI (F ) = ∅

otherwise. For a set E of interpretations, the extension of a τ -feature F on E is defined as
extE(F ) = {I ∈ E I |= F }.

Domain, as defined in Definition 10, assigns to each pos τ -block B a set of terms {ti},
for which there is a substitution θ of B such that p(Bθ) = ti and Bθ is true in I . Note
that template τ is not indicated in the subscript of either dom or ext as both of them are
independent of τ . This is instantly clear for features. For a pos τ -block B , we must recall
from Sect. 2 that p(B) is identified uniquely as it is the only variable with a single occurrence
in B . The domain of B may be computed by Algorithm 2 which runs in time polynomial
in the size of B . This algorithm is not novel, it corresponds to the algorithm known as
conjunctive acyclic query answering algorithm in database theory (Yannakakis 1981) and
also to directed-arc-consistency algorithm in the field of CSP (Dechter 2003).

Algorithm 2 domI (B)

1: Input: Pos τ -block B , Interpretation I ;
2: atomsDom ← {a ∈ I |pred(a) = pred(root(B)) ∧ (I |= a)}

3: for ∀ output variables outi of B’s root do
4: Children ← all pos blocks B such that outi = p(B) (i.e. children of B’s root hanging

on its i-th output)
5: argDomi ←

⋂
c∈Children domI (c)

6: atomsDom ← atomsDom ∩ {a ∈ I |argi(a) ∈ argDomi}

7: end for
8: return {t |t is term at input of an atom a and a ∈ atomsDom}

3The basic principles of the algorithm can be also used to easily obtain an O(|F | · |G|) algorithm for deciding
F 
H G.
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Fig. 4 Left: The set of all four non-H -reducible τ -features for τ ≈ hasCar(−c),hasLoad(+c,−l),

box(+l), tri(+l). Right: the structure of domain reusing when computing domains of these features. The
arrows indicate the flow of domain information. If domains are reused, only 9 domains need to be computed,
whereas, if features were treated in isolation from each other, 15 domains would need to be computed

Example 6 Consider feature F and interpretation I

F = hasCar(C) ∧ hasLoad(C,L) ∧ tri(L) ∧ box(L),

I = {hasCar(c),hasLoad(c, l1),hasLoad(c, l2), tri(l1),

circ(l1), tri(l2),box(l2),hasLoad(c, l3),box(l4)}.

We may proceed as follows: (i) We compute domains of pos τ -block box(L) and tri(L),
i.e. domI (box(L)) = {l2, l4}, domI (tri(L)) = {l1, l2}. (ii) Then we compute domain of
pos τ -block with root hasLoad(C,L), i.e. domI (hasLoad(C,L) ∧ tri(L) ∧ box(L)) =

{l1, l2, l3} ∩ {l2, l4} ∩ {l1, l2} = {l2}. The first set in the intersection comes from the fact
that the predicate symbol is hasLoad/2. The second set is due to pos τ -block box(L) and
the third set is due to pos τ -block tri(L). (iii) Since no domain is empty so far, we proceed
further and compute domain of the feature with root hasCar(C), which becomes {yes}. So,
we see that I |= F .

The example makes it clear that computation of domains can be combined with the earlier
described block grafting in a way resembling query packs (Blockeel et al. 2002). When a
pos block is constructed grafting an already constructed block c, the domain previously
computed for c is reused as domI (c) in line 5 of Algorithm 2. This principle is further
illustrated in Fig. 4. To prevent excessive memory demands possibly resulting from the
storing of domains, our implementation uses a Java mechanism enabling it to automatically
discard computed domains when a memory limit is reached.

8 Redundancy

We shall now define when a feature is redundant. We do so in the spirit of Lavrač et al. (1999)
where redundancy was termed irrelevancy. Redundancy of a feature will be defined with
respect to a feature set F and two sets of examples (interpretations) E+ and E− although,
for brevity, we will not explicitly say ‘with respect to F , E+ and E−’ when speaking of
redundancy concepts. Adopting these concepts, our approach becomes limited to binary



Mach Learn (2011) 83: 163–192 175

Table 1 An example set with
five features used to illustrate the
concept of redundancy in
Example 7

F1 F2 F3 F4 F5 Class

Example 1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Example 2 ⊕ ⊕ ⊖ ⊖ ⊕ ⊕

Example 3 ⊖ ⊕ ⊕ ⊖ ⊖ ⊖

Example 4 ⊕ ⊖ ⊕ ⊕ ⊕ ⊖

classification problems, including of course the case where a single target class is to be
discriminated from a number of other classes.

Definition 11 (Redundancy) Let F be a set of τ -features for some template τ . Let E+ and
E− be two sets of interpretations (the positive and negative examples, respectively). F is
E+-redundant (E−-redundant) if there is F ′ ∈ F , F �= F ′ such that extE+(F ) ⊆ extE+(F ′)

and extE−(F ′) ⊆ extE−(F ) (extE−(F ) ⊆ extE−(F ′) and extE+(F ′) ⊆ extE+(F ). If one of
the inclusions, for at least one example, is strict, F is said to be strictly E+-redundant

(E−-redundant). F is called redundant if it is both E+-redundant and E−-redundant. It
is called strictly redundant if it is (i) redundant, and (ii) strictly E+-redundant or strictly
E−-redundant.

Example 7 Consider the set of examples and features as displayed in Table 1. F4 is strictly
E+-redundant because it covers the same negative examples as F1 but the set of positive
examples covered by it is a strict subset of the set of positive examples covered by F1.
Feature F4 is also E−-redundant because it covers the same set of positive examples as F3

but the set of negative examples covered by F4 is a strict subset of those covered by F3.
Therefore F4 is also strictly redundant. F1 and F5 are non-strictly redundant because they
cover the same set of examples.

In Lavrač et al. (1999), redundancy was introduced for attribute-valued learning and for
learning of constrained Horn clauses, which are equivalent in their expressive power to
attribute-valued representations. Applied to our setting, it is obvious that when features are
constructed, they can be filtered in a post-processing step, i.e. strictly redundant features can
be discarded and from each non-strictly redundant set of features with equal extensions, one
feature can be preserved discarding the rest. What is however less obvious is that a form of
redundancy can be detected already for pos blocks and that it implies redundancy of features
that contain them. This is formalized in turn.

Theorem 5 Let E+ (E−) be a set of positive (negative) examples. Let F be a set of pos

τ -blocks with equal types of input arguments and let B = {Bi}
n
i=1 ⊆ F . Let domI (B1) ⊆⋂n

i=2 domI (Bi) for all I ∈ E+ (I ∈ E−) and let
⋂n

i=2 domI (Bi) ⊆ domI (B1) be true for

all I ∈ E− (I ∈ E+). Then for any neg τ -block B−: B− ⊕ ({B1} ∪ S) is E+-redundant

(E−-redundant), where S ⊆ F .

During the generation of features, we will discard pos τ -blocks such as B1 characterized
by the above theorem, i.e. those pos τ -blocks giving rise to redundant features. Let us use the
adjective redundant also for such pos τ -blocks. We use the term monotonicity of redundancy

to denote that once a pos block B is redundant, any block or feature constructed using B

is redundant as well. Again, this kind of pruning is enabled by our block-wise strategy and
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Fig. 5 Domains of pos blocks from Example 8. Ovals marked by I1, I2 correspond to the positive ex-
amples (but not to their hypergraph representation) and ovals marked by I3, I4 correspond to the nega-
tive examples. The dashed/dotted/dash-dotted ovals correspond to domains of the blocks. The left panel

displays domains of blocks box(L), tri(L) and circ(L) and the right panel displays domains of blocks
B1 = hasLoad(C,L),box(L),B2 = hasLoad(C,L),box(L), tri(L) and B3 = hasLoad(C,L), tri(L)

there is no direct analogue to it in the traditional level-wise approach, as was illustrated in
Sect. 5 in the context of reducibility.

Example 8 Let us continue with Example 3, considering a set of two positive examples E+

and a set of two negative examples E−.

E+ = {{hasCar(c1),hasLoad(c1, l1), circ(l1),box(l1),hasLoad(c1, l2), tri(l2)},

{hasCar(c2),hasLoad(c2, l3),box(l3), tri(l3)}}

E− = {{hasCar(c3),hasLoad(c3, l4),box(l4), circ(l4)},

{hasCar(c4),hasLoad(c4, l5), tri(l5), circ(l5)}}

We will construct the E+-non-redundant τ -features by block grafting. First, we gener-
ate and filter the following three pos τ -blocks: box(L), tri(L), circ(L). We may check
that circ(L) is E+-redundant (due to box(L)), so we may safely discard it. The next
pos τ -blocks created by composing box(L) and tri(L) with hasLoad(C ′,L′) are pos τ -
blocks B1 = hasLoad(C,L) ∧ box(L), B2 = hasLoad(C,L) ∧ box(L) ∧ tri(L) and B3 =

hasLoad(C,L) ∧ tri(L). Notice that if we had not removed circ(L), there would have been
seven such pos τ -blocks.

We can now filter also B1,B2,B3 in exactly the same manner as we filtered box(L),
tri(L), circ(L). In this case, B2 is E+-redundant because

domI1(B2) = ∅ ⊆ domI1(B1) ∩ domI1(B3) = {c1},

domI2(B2) = {c2} ⊆ domI2(B1) ∩ domI2(B3) = {c2},

domI3(B1) ∩ domI3(B3) = ∅ ⊆ domI3(B2) = ∅,

domI4(B1) ∩ domI4(B3) = ∅ ⊆ domI4(B2) = ∅.

Finally, we may compose these pos τ -blocks with car(C ′) to obtain the resulting set of
neutral features.
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In principle, it could happen that by removing some redundant pos τ -blocks from F ,
another redundant pos τ -block could become irredundant. While it indeed happens for non-
strictly redundant blocks (if we have only two blocks with equal domains and we remove
one of them, the second one will become irredundant), it does not happen if we filter the
non-strictly redundant blocks before we start the process of discarding the strictly redundant
ones. This is expressed more formally by the next theorem.

Theorem 6 Let F = {Bi}
n
i=1 be a set of pos τ -blocks with equal types of input arguments

such that no two pos τ -blocks in the set F have equal domains for all examples. Let F ′ be a

set of pos τ -blocks obtained from F by repeatedly removing redundant pos τ -blocks. Set F ′

is unique.

9 Feature construction algorithm RELF

In this section, we combine the ideas from the previous sections and present a descrip-
tion of the algorithm RELF (Algorithm 3). The described algorithm constructs features us-
ing the graft operator and it filters reducible and redundant features using the rules pre-
sented in previous sections. An implementation of this algorithm is publicly available at
http://ida.felk.cvut.cz/RELF. The next theorem asserts the completeness of the algorithm.
In the subsequent comments, we address some details of the algorithm and also provide the
intuition as to why the completeness property holds.

Theorem 7 Let τ = (γ,µ) be a template and let E = E+ ∪ E− be the set of examples.
Further, let Fτ be the set of all non-H -reducible τ -features and let FRelF be the set of con-

junction of atoms constructed by RELF. Then FRelF ⊆ Fτ and for every τ -feature Fτ ∈ Fτ ,
which is not strictly redundant, there is a feature FRelF such that extE(FRelF) = extE(Fτ ).

Let τ = (γ,µ) be a template. Let us tackle a simplified task first and let us construct
all non-H -reducible τ -features.The algorithm takes pos blocks and grafts them with atoms
and other pos blocks in order to produce bigger blocks and continues with this process

Algorithm 3 RELF: Given a template and a set of examples, RELF computes the proposi-
tionalized table

1: Input: template τ , examples E;

2: PosBlocks ← {}

3: OrderedAtoms ← topologically ordered (w.r.t. ≺ from Def. 1) predicate definitions
computed from τ

4: for ∀Atom ∈ OrderedAtoms do
5: NewPosBlocks ← Combine(Atom,PosBlocks,E) // See procedure Combine in Algo-

rithm 4
6: Filter pos τ -blocks with equal domains for all examples from (keep the short ones

and if they have equal sizes, select them arbitrarily) NewPosBlocks

7: Filter redundant pos τ -blocks from NewPosBlocks

8: Add NewPosBlocks to PosBlocks

9: end for
10: Save all correct features from PosBlocks

http://ida.felk.cvut.cz/RELF
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until it produces the whole set of features. We have not explained yet how the order of
atoms from τ should be determined. It is obvious that we could always start with the atoms
that are declared in τ without output arguments (e.g. box(+l) or tri(+l)). Next, we would
like to graft these one-atom blocks with other atoms from τ . At any point of the feature
construction process, only the atoms with types of output arguments equal to the types of
positive variables of the already generated blocks are usable. The question is whether we
can expect that such atoms always exist. The answer is that if the set of features is non-
empty and if it has not been constructed yet then such atoms must always exist, which is a
consequence of the partial order ≺ on constants (i.e. types) given in Definition 1.

Example 9 Consider the template

τ ≈ a(−a), a(+b), a(+c),bond(+a,−b,−t),bond(+b,−c,−t), single(+t),double(+t).

RELF starts by building blocks corresponding to a(+b), a(+c), single(+t) or double(+t).
Assume it has already built blocks corresponding to all these four atoms. Next, the only
possibility is to take the atom bond(+b,−c,−t) because if bond(+a,−b,−t) were taken
before bond(+b,−c,−t), it would not be possible to construct all features. For example

a(A),bond(A,B,T 1),bond(B,C,T 2), a(C), single(T 1),double(T 2)

could not be constructed as can be easily seen. So it must take bond(+b,−c,−t) and only
after that it can take bond(+a,−b,−t). In the end it can build features by grafting the
already generated blocks with a(−a).

When we have a procedure capable of constructing the whole set of non-H-reducible
features, we will be able to enrich it by detection of redundant blocks. Due to monotonicity
of redundancy we will still be able to obtain one feature for each set of irredundant features
with equal extensions.

Consider now the step in which blocks are composed to yield bigger blocks. It is quite
straightforward to construct the set of all pos blocks with an atom a as root when we already
have the set of all legal combinations of the pos τ -blocks that were already generated (cf.
Algorithm 4). Legal combinations of pos τ -blocks are those combinations where all pos
blocks Bi have equal type of the variable p(Bi) (if τ is ambiguous and if we denote by p̂(Bi)

the set of all possible types of the positive variable of Bi then we require the intersection⋂
i p̂(Bi) to be non-empty) and for i �= j , we require Bi �
H Bj (i.e. we require that no

combination gives rise to H -reducible blocks). Finding the legal combinations is a rather
straightforward task, which can be also combined with redundancy filtering.

10 Experiments

In this section we evaluate the speed of RELF and the accuracy of classifiers constructed
with RELF’s features.4 Our first intention is to compare the runtimes of feature construction
conducted by RELF to those achieved by the existing propositionalization system RSD. In
Krogel et al. (2003) RSD has been shown to be competitive w.r.t. predictive accuracy with

4The version of RELF evaluated in this paper differs from the one evaluated in Kuželka and Železný (2009)
in that it puts more effort into constructing short features.
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Algorithm 4 Combine: Given a set of already generated pos τ -blocks, an atom A ∈ γ and
a set of examples, this procedure generates τ -features or pos τ -blocks with their roots built
upon the predicate symbol of A

1: Input: Atom A ∈ γ , Set of pos τ -blocks PosBlocks, Set of examples Examples = E+ ∪

E−;

2: Generated0 ← {a}, where a is an atom built upon the predicate symbol of A

3: for i = 1, . . . , arity(A) do
4: if i-th argument of A is an output then
5: Generatedi ← {}

6: /* Procedure BuildCombinations(PosBlocks,Type,Examples) constructs the set of
all legal combinations of pos blocks with the type of positive variables equal to
Type */

7: Combinations ← BuildCombinations(PosBlocks,Type,Examples), where Type is
the term appearing as i-th argument of A

8: for ∀B− ∈ Generatedi−1 do
9: Let V be the i-th argument of a

10: for ∀S ∈ Combinations such that ∃I ∈ E+ : domI (B
− ⊕V S) �= ∅ do

11: /* S is a set of pos blocks */
12: F ← B− ⊕V S

13: Generatedi ← Generatedi ∪ {F }

14: end for
15: end for
16: Filter E+-redundant pos τ -blocks from Generatedi

17: else
18: Generatedi ← Generatedi−1

19: end if
20: end for
21: return Generatedi

propositionalization system SINUS (Krogel et al. 2003) and RELAGGS (Krogel and Wro-
bel 2001) in typical ILP tasks such as predicting mutagenicity or learning legal positions
of chess-end-games, therefore we chose RSD for comparison with RELF. Our second goal
is to assess the classification accuracies obtained with RELF’s features in nine relational
classification benchmarks. Nine different methods for classification combined from propo-
sitionalization and learning algorithms (RELF, RSD, Support Vector Machines, Logistic Re-
gression, One Rule, kFoil, nFoil and a RELF’s variation entitled NRELF) are tested in this
study. Lastly, we aim at tracing the effects of reducibility and redundancy based pruning on
RELF’s performance. The experimental material is available at http://ida.felk.cvut.cz/RELF.

In the experiments described in this section we use l2-regularized logistic regression
from LIBLINEAR package (Fan et al. 2008) and support vector machines (Vapnik 1995)
with RBF kernel from WEKA (Witten and Frank 2005) for all datasets except for the NCI
dataset where we use linear SVM from LIBLINEAR package which is a faster alternative
to the RBF kernel SVM. We follow suggestions given in Scheffer and Herbrich (1997) to
obtain an unbiased estimate of quality of learned classifiers. All accuracies presented in this
section are estimates obtained by 10-fold cross-validation except the accuracies for the NCI
786 dataset for which a train-test split was used. For each fold, the parameters (maximum
depth of features for RELF, maximum feature length for RSD and the cost parameter for

http://ida.felk.cvut.cz/RELF
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Table 2 Properties of
Mutagenesis dataset, Predictive
Toxicology Challenge dataset
(P-FM, P-MM, P-FR, P-MR),
CAD dataset (CAD), Mesh
dataset (Mesh), Carcinogenesis
+ PTC + Mutagenesis dataset
(CPM) and NCI 786 dataset (NCI
786)

Dataset Classes Examples Facts Acc. of majority

class

Mutagenesis 2 188 21024 66.5%

CAD 2 96 16674 57.2%

Mesh 13 278 2387 26.4%

CPM 2 830 67309 52.9%

P-FM 2 349 27762 59.0%

P-MM 2 336 25482 61.6%

P-FR 2 351 27762 65.5%

P-MR 2 344 26986 55.8%

NCI 786 2 3506 254380 52.3%

SVM and logistic regression) are optimized by 3-fold cross-validation on the remaining nine
training folds. We perform experiments both with RSD having the same feature declaration
bias as RELF and with RSD allowing cyclic features.

10.1 Datasets

We performed experiments with four molecular datasets and two datasets related to en-
gineering problems listed in Table 2. The first experiment was done with the regression-
friendly part of the well-known Mutagenesis dataset (Lodhi and Muggleton 2005), which
consists of 188 organic molecules marked according to their mutagenicity. The next set
of experiments was done with data from the Predictive Toxicology Challenge (Helma et al.
2001) which consists of more than three hundreds of organic molecules marked according to
their carcinogenicity on male and female mice and rats. We also performed experiments with
a dataset that we created by merging the Carcinogenesis dataset (Srinivasan et al. 1997), the
PTC dataset and the Mutagenesis dataset. The task in this slightly artificial learning problem
was to distinguish the generally toxic compounds from the remaining control compounds.
The largest of the four molecular datasets that we use in this paper is the NCI 786 (Swami-
dass et al. 2005) dataset which contains 3506 molecules labeled according to their ability
to inhibit growth of renal tumors. In all of these four experiments, we used only atom-bond
descriptions and only the crude resolution with atom types like carbon, hydrogen and not
the finer resolution with atom types like aliphatic hydrogen or aromatic hydrogen.

Next, we performed experiments in a domain describing CAD documents (product struc-
tures) (Žáková et al. 2007). The CAD dataset is interesting in that relatively long features
are needed to obtain reasonable classification accuracy. An example of a feature from this
dataset is

F = cadFile(A) ∧ hasCADEntity(A,B) ∧ hasBody(B,C) ∧ hasFeature(C,D)

∧ hasSecondLimit(D,E) ∧ limitType(E,offset) ∧ next(D,F ) ∧ · · ·18 more atoms.

Finally, we performed experiments with the well-known Mesh dataset (Dolsak and Mug-
gleton 1992). The task in this problem is to predict, for each edge of a geometrical model, the
best number of finite elements that should be placed on the edge in order to introduce small
approximation errors to finite element modeling while keeping the complexity of the model
as low as possible. The examples in the Mesh dataset are not in the form of isolated inter-
pretations, but they form several interconnected networks corresponding to particular finite
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element models. The current implementation of RELF copes with this problem by reading
the networks and converting them to single interpretations according to a given template τ .
The conversion process accepts a network N together with classification of the nodes and
a template τ = (γ,µ) where the declared predicates with no input arguments are supposed
to refer to nodes in the network. An interpretation corresponding to a node n ∈ N is then
In =

⋃
A,θ Aθ where A ranges over all connected subsets of γ which contain a declared

predicate with no input arguments and θ ranges over all substitutions such that Aθ ⊆ N .
The interpretations can be computed efficiently e.g. using breadth-first-search, essentially
resembling the way bottom clauses are computed in Progol (Muggleton 1995).

10.2 Feature construction

Here we present feature construction runtimes of RELF and RSD on the six datasets. Since
RELF does not restrict size of features, we performed experiments using templates with
varying complexity (depth). For RSD we used templates corresponding to the most complex
templates used by RELF but we limited their maximum size. Figure 6 displays runtimes of
RELF and RSD. For the molecular datasets, we report the number of bond-atoms in the
longest features since this is a more intuitive measure of their complexity than the number
of logical atoms. For the remaining two datasets, we report numbers of logical atoms in the
longest features.

In all of the experiments, RELF was able to construct significantly larger features than
RSD. The longest features discovered by RELF for the molecular datasets contained more
than twenty bond atoms. This contrasts with results obtained by RSD, which was able to find
features with at most four bond atoms. Only, in the experiment with the NCI 786 dataset
using the most complex template, we also needed to set minimum frequency of RELF’s
features to 1%. A consequence of this was that even if we had not restricted RSD’s bias to
tree-like features, RSD did not find any cyclic features (only, it took longer to generate the
tree-like ones). For the remaining two datasets, CAD and Mesh, RELF was again able to
construct far larger features than RSD but in the case of the CAD data, RSD was also able
to construct cyclic features. However, the predictive accuracy for the cyclic features was
lower than for the acyclic case. We also measured memory consumption of RELF. Since our
current implementation of RELF exploits properties of Java garbage collection mechanism,
maximum memory consumption measured with a loose memory limit can be higher than
memory consumption measured with some lower memory limit. Therefore we used RELF
with maximum memory set to 128 MB, 256 MB etc. and we report the minimum memory
that enabled RELF to finish its execution. RELF needed 256 MB for all four PTC datasets
and for Mutagenesis. It needed 768 MB for the CPM dataset. On the CAD dataset, RELF
was able to run with maximum memory set to just 64 MB and with 128 MB on the Mesh
dataset. For the NCI 786 dataset, RELF needed 4 GB of memory on a 64-bit machine.

We also performed several experiments in order to assess the effect of the pruning meth-
ods implemented in RELF on its performance. First, we disabled filtering of redundant fea-
tures. A result of this was that RELF was only able to construct features corresponding to the
templates with lowest complexity (cf. Fig. 6) on molecular datasets. With turned off filter-
ing of redundant features, RELF was unable to construct features on the CAD dataset. This
clearly illustrates that filtering of redundant features is an essential part of RELF. To evaluate
the effect of filtering of H -reducible blocks, we turned off explicit tests for H -subsumption
in the phase where combinations are built. This resulted in about 40% slow-down on CAD
dataset and negligible slow-downs on the rest of the datasets. When judging the impact of
H -subsumption filtering integrated in RelF, it is important to appreciate that this method
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Fig. 6 Runtimes of RELF and RSD on Mutagenesis (top left), PTC-MR (top right), CAD (middle left) Mesh
(middle right), CPM (bottom left) and NCI 786 (bottom right). The syntactical bias of RSD allows to specify
the maximum allowed length of features. RELF only allows to specify a template and, implicitly, also the
maximum depth of the features. Therefore RSD is used with template corresponding to the template of RELF
with the greatest complexity and limited maximum length and RELF is used with several templates with
increasing complexity

serves not only to perform these explicit tests but also to make RELF able to consider only
combinations of blocks without repetitions.

The systems kFOIL and nFOIL do not resort to exhaustive search, instead, they are based
on beam search. This means that by setting beam size and maximum size of searched clauses
sufficiently low, these algorithms can find reasonably accurate classifiers in a short time. In
order to test kFOIL and nFOIL, we set these parameters so that their running times would
be in the same orders as the running time of RELF and then compare the obtained predictive
accuracies. nFOIL was used with maximum clause length set to 20 for all datasets and with
beam size set to 100 for Mutagenesis, 30 for CAD and PTC, 10 for Mesh and NCI 786
dataset and 20 for CPM. Parameter settings for kFOIL were as follows. Beam size was set
to 100 for CAD, to 200 for Mutagenesis, to 10 for PTC and CPM and to 7 for NCI 786.
Maximum clause length was set to 30 for Mutagenesis and CAD datasets, to 5 for P-MR
P-FM, P-MM, P-FR, CPM and NCI 786. It is interesting to note that kFOIL’s runtime varied
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significantly even for very similar datasets. For example, while it took kFOIL just several
minutes to finish on the P-FM dataset, it needed tens of hours to finish on the P-MR dataset.

10.3 Classification

Here we present classification accuracies obtained using RELF’s or RSD’s output in con-
junction with propositional learners and accuracies obtained by kFOIL and nFOIL. Table 3
displays predictive 10-fold cross-validated accuracies obtained using one best rule, sup-
port vector machines and l2-regularized logistic regression acting on features constructed by
RELF and RSD. An exception was the NCI 786 dataset for which accuracy was assessed
using a train-test split. RELF obtained highest accuracy on six out of nine datasets. RELF in
conjunction with SVM or logistic regression also obtained higher predictive accuracy than
nFOIL and kFOIL.

The higher accuracies achieved by RELF could have been attributed to the fact that RELF
creates classifiers using several thousands of features whereas kFOIL and nFOIL try to build
classifiers using only a small set of informative features. Thus, in the experiments with SVM
and logistic regression, we were essentially trading interpretability for predictive accuracy.
In order to assess whether RELF’s ability to construct large features is beneficial also for the
task of finding interpretable classifiers we performed an additional experiment. We followed
the approach introduced in SAYU (Davis et al. 2005) with features generated by RELF. We
started with an empty set of features and we greedily added features that improved accuracy
of a naive Bayes classifier.5 This method, marked as NRELF in Table 4, obtained higher
predictive accuracy than kFOIL and nFOIL on seven out of nine datasets which shows that
RELF’s ability to construct large features is beneficial also for the task of finding small
interpretable classifiers.

Table 3 Accuracies of RELF and RSD on Mutagenesis dataset (Muta), Predictive Toxicology Challenge
datasets (P-FM, P-MM, P-FR, P-MR), CAD dataset (CAD), Mesh dataset (Mesh), Carcinogenesis + PTC +
Mutagenesis dataset (CPM) and NCI 786 dataset (N 786))

RelF RSD

SVM LR OneR SVM LR OneR

Muta 87.4 ± 6.9 81.1 ± 8.9 70.3 ± 4.8 79.9 ± 4.6 82.6 ± 6.8 72.3 ± 4.8

CAD 96.8 ± 5.2 96.8 ± 5.2 85.5 ± 8.6 94.9 ± 7.2 95.1 ± 9.7 81.4 ± 9.3

Mesh 62.6 ± 6.9 60.7 ± 10.3 40.9 ± 5.4 61.4 ± 7.3 58.9 ± 6.2 40.7 ± 4.2

CPM 73.6 ± 4.5 71.2 ± 4.5 56.9 ± 5.2 71.3 ± 3.7 68.7 ± 3.9 56.5 ± 1.7

P-FM 62.2 ± 5.7 57.9 ± 6.3 64.4 ± 6.0 59.3 ± 6.9 58.7 ± 5.3 64.5 ± 3.6

P-MM 59.9 ± 8.3 63.4 ± 10.5 64.9 ± 5.8 62.2 ± 4.9 59.1 ± 6.8 61.3 ± 9.6

P-FR 66.4 ± 3.0 65.5 ± 4.5 68.6 ± 3.4 65.3 ± 6.0 67.3 ± 6.0 68.7 ± 4.1

P-MR 62.0 ± 6.9 66.0 ± 5.6 57.8 ± 5.3 65.1 ± 6.1 69.2 ± 6.0 56.2 ± 5.8

N 786 68.3 69.6 56.0 69.3 69.3 55.2

5This was implemented using WEKA (Witten and Frank 2005) using its AttributeSelectedClassifier with
feature selection method ClassifierSubsetEval and with search procedure GreedyStepwise. Since this turned
out to be very time-consuming, we used only the features from the NCI 786 dataset that had frequency higher
than 1%.
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Table 4 Accuracies of RELF, kFOIL and nFOIL on Mutagenesis dataset (Muta), Predictive Toxicology
Challenge datasets (P-FM, P-MM, P-FR, P-MR), CAD dataset (CAD), Mesh dataset (Mesh), Carcinogenesis
+ PTC + Mutagenesis dataset (CPM) and NCI 786 dataset (N 786). The numbers in parentheses denote
average number of features in the respective classifiers

NRELF nFOIL kFOIL

Muta 80.6 ± 9.8 (9.7) 76.6 ± 9.6 (4.6) 76.0 ± 5.6 (7.1)

CAD 94.1 ± 6.7 (3) 92.7 ± 6.9 (3.6) 89.8 ± 10.6 (2)

Mesh 59.4 ± 4.2 (16.2) 57.9 ± 11.6 (18.5) n.a.

CPM 65.1 ± 2.8 (65.3) 58.3 ± 5.8 (9) 62.2 ± 4.7 (16.9)

P-FM 61.5 ± 9.3 (22.5) 60.2 ± 8.7 (5) 57.3 ± 5.6 (3.1)

P-MM 61.0 ± 6.9 (26.6) 63.1 ± 8.8 (6.8) 62.2 ± 7.4 (4.6)

P-FR 70.7 ± 5.6 (21.9) 67.0 ± 6.5 (9.1) 63.4 ± 8.3 (6.7)

P-MR 53.9 ± 10.0 (28.6) 57.3 ± 7.1 (6.7) 59.3 ± 7.0 (7.2)

N 786 64.4 (41) 63.7 (16) 63.1 (5)

11 Related work

The primary aim of the algorithm RELF presented in this paper is to enable exhaustive gen-
eration of large numbers of features in a limited subset of first order logic. Several pattern
mining algorithms have been proposed for this task or for more or less similar tasks. A
well-known algorithm working in the logical setting is the frequent pattern miner WARMR
(Dehaspe and Toivonen 1999), which greatly exploits monotonicity of frequency to prune
uninteresting patterns. Monotonicity of frequency can be easily exploited also in our al-
gorithm by discarding infrequent pos blocks.6 If a minimum frequency threshold is set in
RELF, however, one has to refine the statement about RELF’s completeness as only the ir-
redundant features with frequency above the specified threshold are guaranteed to be found.
Another algorithm for pattern discovery is the RSD algorithm (Železný and Lavrač 2006).
RSD does not prune patterns using the minimum frequency constraint as WARMR does,
instead, RSD relies on its expressive user-definable syntactical bias, which is also somewhat
similar to WARMR’s warmode declarations. RSD’s language bias is also used by RELF
which puts further requirements on syntax of correct features ensuring their tree-like struc-
ture. A common principle of RSD and WARMR is the level-wise approach to feature con-
struction, which means that features are built by adding one logical atom at time. Unlike the
block-wise approach presented in this paper, the level-wise approach to feature construction
cannot be easily combined with filtering of reducible and redundant features, which we have
already discussed in the respective sections about redundancy and relevancy.

A recent line of research, represented by algorithms nFOIL (Landwehr et al. 2007),
kFOIL (Landwehr et al. 2006) and SAYU (Davis et al. 2005), tries to refrain from explicitly
constructing the set of all interesting features (frequent, non-redundant etc.) by construct-
ing only features that improve classification accuracy or some related scoring criterion when
combined with a propositional learner such as Naive Bayes or SVM. Both nFOIL and kFOIL
used in experiments in this paper are based on FOIL’s (Quinlan 1990) search, although, in
principle, any strategy for hypothesis search could be used instead of FOIL. A potential re-
placement for FOIL could be e.g. Progol (Muggleton 1995) or even some procedure search-
ing over features generated by a propositionalization algorithm. An advantage of systems

6It is possible to set minimum frequency in the current implementation of RELF.
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like nFOIL and kFOIL is that they can produce relatively accurate models within reason-
ably short runtimes. On the other hand, in our experiments, giving these algorithms more
time did not increase their predictive accuracy sufficiently to enable them to outperform
classifiers constructed from the whole set of RELF’s features.

Frequent graph mining algorithms are also related to RELF. They are very well suited
for molecular databases, however, they have limitations in other domains. For example, the
currently fastest graph mining algorithm Gaston (Nijssen and Kok 2005) is able to mine
frequent molecular structures from larger databases than RELF, but it cannot easily handle
oriented graphs or even hypergraphs (Wörlein et al. 2005). The covering relation adopted by
graph mining algorithms, which corresponds to subgraph isomorphism, differs significantly
from the one used by RELF and other related algorithms such as nFOIL or kFOIL, whose
covering relation corresponds to hypergraph homomorphism. As a consequence, number of
frequent patterns in the respective frameworks may differ significantly as, for example, some
patterns are expressible only with homomorphism. Conversely, there are tree patterns that
can be represented with the graph mining approach but cannot be represented by tree-like
features with their covering relation. Another notable system geared towards discovery of
patterns in molecular databases is MolFea (Kramer and De Raedt 2001), which restricts the
patterns to linear molecular fragments.

Recently, there has been a growing interest in removing various forms of redundancy

from frequent pattern sets. The form of redundancy exploited by RELF was introduced
in Lavrač et al. (1999) where it was defined for propositional data and for constrained
Horn clauses, which are equivalent to propositional representation in their expressive power.
RELF extends this framework to tree-like features by establishing monotonicity of redun-

dancy w.r.t. grafting. There are also other forms of redundancy considered in literature.
For example, a system called Krimp was introduced in Koopman and Siebes (2009), Van
Leeuwen et al. (2006) which searches for a representative set of features that would allow
for a lossless compression of a given set of examples, i.e. it relies on the minimum descrip-
tion length principle. Mining of closed frequent patterns is another approach that minimizes
the number of discovered patterns by considering only representative candidates from cer-
tain equivalence classes. Finally, in Bringmann et al. (2006), it has been shown that simple
patterns (e.g. linear fragments) work well when employed in classification of chemical com-
pounds, which is directly related to our work as we also use only tree-like patterns.

12 Conclusions

We have introduced RELF, an algorithm for construction of acyclic relational features. We
have shown that blockwise construction of acyclic features enables RELF to remove H -
reducible and redundant pos features. In experiments, we have shown that RELF is able
to construct relevant features with sizes far beyond the reach of state-of-the-art proposi-
tionalization systems. Of importance, we have also shown that, for nine relational learning
benchmarks, restriction to acyclic features was not detrimental with respect to predictive
accuracy. In fact, the results obtained with acyclic features were, in most cases, higher than
predictive accuracies of state-of-the-art systems nFOIL and kFOIL. Importantly, the fea-
tures constructed by the other tested algorithms were often also acyclic. Although there are
definitely datasets where cyclic features could provide better predictive accuracies, one can
always merge results from different propositionalization algorithms and feed the proposi-
tional learners with such merged propositionalized tables. An algorithm for construction of
a limited class of features such as RELF would be useful also in such cases.
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Appendix: Theorems and proofs

For sakes of the following proofs we first need to define a few concepts we did not need in
the main text. The notation used in this section is summarized in Table 5.

Definition 12 (pos-neg τθ -block) Let B be a τθ -conjunction. If there is exactly one τθ -
positive variable (p(B)) and exactly one τθ -negative variable (n(B)), we say that B is a
pos-neg τθ -block.

Definition 13 (Descendant, Induced pos τ -block) Let F be a (γ,µ)θ -feature or a pos τ -
block and let a ∈ F be an atom. We say that an atom b ∈ F is a descendant of a (denoted
by a ≺d b) if there is a sequence of atoms a1, . . . , an such that a1 = a, an = b and every two
consecutive atoms ai , ai+1 share a variable which has an output in aiθ and an input in ai+1θ .
Then InducedF (a) = {a} ∪ {b|a ≺d b} is called a pos τ -block induced in F by a.

Definition 14 (Parent, Child) Let F be a (γ,µ)θ -feature or a pos τ -block. If two atoms
a, b ∈ F share a variable V , which has an output in aθ and an input in bθ , we call a parent

of b (denoted by PF (a)) and b child of a (denoted by CF (a)).

Lemma 1 Let F ′ be the result of the reduction from Definition 4 applied on a τ -feature F .
Then the number of atoms in F ′ is the same as the number of variables in F ′. Futhermore,
each atom in F ′ contains an output and exactly one input.

Proof Denote A (V ) the number of atoms (variables) in F ′. Every variable in F ′ must
have at least two occurrences (otherwise it would have been removed by rule 2) and one
of them must be input as each variable has at most one output in F (due to the neutrality
requirement) and thus also in F ′. Each atom in F , and thus in F ′, contains at most one
input due to condition (i) in Definition 1, so A ≥ V . Furthermore, each atom in F ′ contains
more than one term (otherwise it would have been removed by rule 1) and, as we have seen
already, contains at most one input. So each atom in F ′ contains an output. Again realize
there is at most one output per variable in F ′, therefore V ≥ A. We have seen that A ≥ V ,
so indeed A = V as the lemma says. We have also seen that each atom contains an output
which was to be shown. Lastly, we have seen that each of the A = V atoms contains at most

Table 5 Summary of notation introduced in Definitions 13, 14

Notation Meaning Note

b ∈ CF (a) b is a child of a a and b are atoms

b = PF (a) b is a parent of a a and b are atoms

a ≺d b a is a descendant of b a and b are atoms

B = InducedF (a) B is an induced pos block of a in F a is an atom, B, F are blocks/features
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one input and each of the A = V variables must have one input in F ′ so each atom has
exactly one input. �

Theorem 1 Every τ -feature F is tree-like.

Proof Since F is a τ -feature, τ = (γ,µ), there must be a substitution θ such that
Fθ ⊆ γ . By Definition 1 there is a partial order ≺ on {viθ vi ∈ vars(F )} such that vjθ ≺ vkθ

whenever vj (vk) has an input (output) in an atom a ∈ F . Let F ′ be the result of the reduc-
tion from Definition 4 applied on F . Denote ≺′ the suborder of ≺ on vars(F ′) ⊆ vars(F ).
Since ≺′ is also a partial order, we can sort variables in F ′ topologically as v1, v2, . . . , vn

(n = |vars(F ′)|) such that

vjθ ≺′ vkθ ⇒ j < k (4)

According to Lemma 1 there are exactly n atoms in F ′ each containing exactly one input.
Assume for contradition that F is not tree-like and thus n > 0. We sort atoms in F ′ by their
single inputs, i.e. atom ai has vi as input. Atom an that has vn as input must, by Lemma 1,
have another variable vm (1 ≤ m ≤ n) as output. Since vn (vm) has an input (output) in
atom an, it must be that vn ≺′ vm. This however contradicts implication 4 above as m ≤ n.
Therefore F is tree-like. �

Lemma 2 Let A,B be (γ,µ)θ -features or pos (γ,µ)-blocks, let ϑ be an H -substitution

such that Aϑ ⊆ B (i.e. A 
H B). If b /∈ Aϑ and b′ ∈ InducedB(b), then b′ /∈ Aϑ .

Proof Since an application of a substitution on A preserves its connectedness, there are two
possible cases: (i) Aϑ ⊆ B \ InducedB(b) or (ii) Aϑ ⊆ InducedB(b) \ {b}. The latter case is
not possible because in the definition of H -subsumption, the substitutions were required to
respect depth of variables and every variable contained in InducedB(b) \ {b} has depth w.r.t.
B greater than 1. Therefore the only possibility is Aϑ ⊆ B \ InducedB(b). �

Lemma 3 Let A,B be (γ,µ)θ -features or pos (γ,µ)-blocks and let ϑ be an H -substitution

such that Aϑ ⊆ B . Then if for some a ∈ A, b ∈ B it holds aϑ = b then InducedA(a)ϑ ⊆

InducedB(b).

Proof Suppose for contradiction that there is some a′ ∈ InducedA(a) such that a′ϑ /∈

InducedB(b). There is then some longest sequence of atoms a1, . . . , a, . . . , a′ (ai ∈ A)
such that every two consecutive atoms share a variable, which is an output in the first
one and an input in the second one. It follows from definition of depth and from defin-
ition of H -subsumption that ϑ maps atoms from this sequence to atoms from sequence
b1, . . . , b, . . . , b′, where every two consecutive atoms share a variable, which is an input in
the first one and an output in the second one, and b′ is an atom in the same depth as a′.
One such sequence must obviously exist. If there were more such sequences then B would
not be tree-like. This is a contradiction with the assumption that a′ϑ /∈ InducedB(b) because
b′ ∈ InducedB(b). �

Lemma 4 Let F be a τθ -feature or a pos τ -block. If there is an H -substitution ϑ such that

Fϑ ⊆ F and there are atoms a, b ∈ F and their respective induced pos τ -blocks A,B ⊆ F

such that Aϑ ⊆ B then either p(A) = p(B) or there are pos τ blocks A′,B ′ ⊆ F such that

A � A′ and B � B ′ and A′ϑ ⊆ B ′.
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Proof If Aϑ ⊆ B then P(b) ∈ Fϑ by application of Lemma 2, from which P(a)ϑ = P(b).
If p(P(a)) = p(P(b)), we are done. Otherwise, since Fϑ ⊆ F we have InducedF (P(a))ϑ ⊆

F therefore InducedF (P(a))ϑ ⊆ InducedF (P(b)) by application of Lemma 3 because
P(a)ϑ = P(b). �

Theorem 2 Let B be a pos τ -block and let B− be a neg τ -block. Then the following holds:

(i) B is H -reducible if and only if B contains pos τ -blocks B1,B2 such that B1 �= B2,

p(B1) = p(B2) and B1 
H B2. (ii) If B is H -reducible, then B− ⊕ (S ∪ {B}) is also

H -reducible for any set of pos blocks S.

Proof (i ⇒) Let Br be H -reduction of B and let θ1, θ2 be H -substitutions such that Brθ1 ⊆

B and Bθ2 ⊆ Br . Substitution θ3 = θ2θ1 is a mapping θ3 : vars(B) → vars(B). Since Bθ2 ⊆

Br , |Bθ2| ≤ |Br | and consequently |Bθ3| ≤ |Br | < |B|, because applying a substitution to
a τ -conjunction cannot increase its size. Therefore there is an atom a ∈ B \ Bθ3 and, by
Lemma 2, also a whole pos τ -block B1 ⊆ B \ Bθ3. Thus, there is a pos τ -block B2 (B2 �=

B1) such that B1θ3 ⊆ B2. It remains to show that for some such B1,B2, p(B1) = p(B2). If
p(B1) �= p(B2), then there must be pos τ -blocks G1,G2 such that B1 � G1, B2 � G2 and
G1θ3 ⊆ G2 (by Lemma 4). For such G1,G2 with maximum size, p(G1) = p(G2). (i ⇐) Let
θ be a H -substitution such that B\Bθ = B1, then Bθ ≈H B and |Bθ | = |B| − |B1| < |B|.
(ii) This follows directly from (i). �

Lemma 5 Let F be a (γ,µ)-feature. Then dF ≤ |γ |.

Proof Assume dF > |γ |. Let θ be a substitution such that Fθ ⊆ γ and a1, . . . , adF
be a

sequence of F ’s atoms such that for 1 ≤ i < dF , ai contains variable vi as output and ai+1

contains vi as input. By transitivity of the partial order ≺ assumed by Definition 1, it must
hold viθ ≺ vjθ for 1 ≤ i < j ≤ dF . Since dF > |γ |, the sequence must contain two atoms ak

and al , such that k < l, akθ = alθ and thus vkθ = vlθ . Since k < l, vkθ ≺ vlθ . But given that
vkθ = vlθ , this contradicts the assumption of irreflexivity of the order ≺. �

Theorem 3 Let τ = (γ,µ) be a template. Then there is only a finite number of τ -features,

which are not H -reducible.

Proof First, we show that for any template, the set Pd of pos blocks with depth at most d is
finite. (i) For d = 1, there is at most |γ | pos τ -blocks because any pos τ -block with depth
1 is just a single atom. Therefore P1 is finite. (ii) Let us suppose that we have proved the
theorem for maximum depth at most d . We need to show that then it holds also for d + 1.
We can take all atoms a ∈ γ and for each of them create the set of τ -conjunctions

P a
d+1 = {aθa ∧

arity(a)

i=1 Ciθi |Ci ∈ 2Pd } ∪ Pd ,

where θa is only meant as variabilization of a (i.e. as substitution that replaces constants by
suitable variables) and θi maps p(S) of every pos τ -block S ∈ Ci to i-th output argument
of aθa . Not all elements of sets P a

d+1 are correct pos τ -blocks, but it is easy to check that
all pos τ -blocks with depth at most d + 1 are contained in

⋃
a∈γ P a

d+1. To see this, it is
important to notice that it suffices to create combinations of pos τ -blocks without repetition
since any combination with repetitions would necessarily lead to H -reducible pos τ -blocks
(Theorem 2). Now, validity of the theorem follows from the fact that Pd =

⋃
a∈γ P a

d is finite
for any d and that for any template there is a maximum depth of τ -features (Theorem 5). �
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Theorem 4 Algorithm 1 correctly decides whether a τθ -feature (pos τ -block) F is H -

reducible in time O(|F |2).

Proof First, we show, using an induction argument, that (ai, aj ) gets to the list Open if and
only if InducedF (ai) 
H InducedF (aj ). (i) This is trivial for pos features with depth 1.
(ii) We suppose that the claim holds for depth d . The induction argument implies that
Subsumed(PF (ad+1

i ),PF (ad+1
j )) = |CF (ld+1

i )| if and only if every child c of ad+1
i can

be mapped by H -substitution to some child c′ of ad+1
j while preserving IF (c) = IF (c′).

Validity of the induction step then follows from this together with predicate(ad+1
i ) =

predicate(ad+1
j ). Now, from Theorem 2 we know that existence of two pos τ -blocks B1,

B2 with p(B1) = p(B2) contained in a feature F such that B1 
H B2 is equivalent to H -
reducibility of F , which finishes the proof of correctness of the algorithm.

Clearly, each pair of atoms can be added only once to the list Open because it happens
only once that Subsumed(PF (ai),PF (aj )) = |CF (ai)| (because Subsumed(PF (ai),PF (aj ))

is only incremented and |CF (ai)| is a constant). It follows that the repeat-until-loop will run
for at most |F |2 steps. Since all the other operations can be performed in O(1) time (in the
unit-cost RAM model), we have the bound O(|F |2). �

Lemma 6 Let I be an interpretation, τ a template and let S1 = {B1, . . . ,Bm} and

S2 = {C1, . . . ,Cn} be standardized-apart sets of pos τ -blocks such that
⋂m

i=1 domI (Bi) ⊆⋂n

i=1 domI (Ci), then for any pos-neg τθ -block or neg τθ -block B− domI (B
− ⊕ S1) ⊆

domI (B
− ⊕ S2)

Proof Let us first consider the case when dB−(n(B−)) = 1. The only place, where domains
of Bi ∈ S1 (Ci ∈ S2 respectively) are used, is line 5 in Algorithm 2. Clearly argDom

S1
=⋂m

i=1 domI (Bi) ⊆ argDom
S2

=
⋂n

i=1 domI (Ci) and consequently also atomsDomS1 ⊆

atomsDomS2 and therefore also domI (B
− ⊕ S1) ⊆ domI (B

− ⊕ S2). The general case of
lemma may be proved by induction on depth of n(F−). (i) The case for depth 1 has been
already proved. (ii) Let us suppose that the lemma holds for depth d . Now, we may take
the pos-neg τθ -block T ⊆ B− which contains n(B−) such that (B− \ T ) ⊕ {T } = B− and
dT (n(B−)) = 1, and graft it with S1 (S2, respectively). We have domI (T ⊕ S1) ⊆ domI (T ⊕

S2) and by induction argument finally also domI (B
− ⊕ S1) = domI ((B

−\T )⊕{T ⊕ S1}) ⊆

domI ((B
−\T ) ⊕ {T ⊕ S2}) = domI (B

− ⊕ S2). �

Theorem 5 Let E+ (E−) be a set of positive (negative) examples. Let F be a set of pos

τ -blocks with equal types of input arguments and let B = {Bi}
n
i=1 ⊆ F . Let domI (B1) ⊆⋂n

i=2 domI (Bi) for all I ∈ E+ (I ∈ E−) and let
⋂n

i=2 domI (Bi) ⊆ domI (B1) be true for

all I ∈ E− (I ∈ E+). Then for any neg τ -block B−: B− ⊕ ({B1} ∪ S) is E+-redundant

(E−-redundant), where S ⊆ F .

Proof We will prove only the case for E+-redundancy because the proof for E−-redundancy
is analogous. Let us first ignore the set S . Let B− be a neg τ -block. By application
of Lemma 6, if domI (B1) ⊆

⋂n

i=2 domI (Bi) for all I ∈ E+, then domI (F
− ⊕ {B1}) ⊆

domI (F
− ⊕ {B2, . . . ,Bn}) for all I ∈ E+. Similarly, if

⋂n

i=2 domI (Bi) ⊆ domI (B1) for
all I ∈ E−, then domI (B

− ⊕ {B2, . . . ,Bn}) ⊆ domI (B
− ⊕ {B1}) for all I ∈ E−. There-

fore if I |= F− ⊕ {B1}, then I |= F− ⊕ {B2, . . . ,Bn} for all I ∈ E+ and similarly if
I |= B− ⊕ {B2, . . . ,Bn}, then I |= B− ⊕ {B1} for all I ∈ E−. This means that B− ⊕ {B1}

must be E+-redundant. Now, we consider also the set S = {H1, . . . ,Ho}. Notice that
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domI (B1)
⋂o

i=1 domI (Hi) ⊆
⋂n

i=2 domI (Bi)
⋂o

i=1 domI (Hi) must hold for all positive ex-
amples and

⋂n

i=2 domI (Bi)
⋂o

i=1 domI (Hi) ⊆ domI (B1)
⋂o

i=1 domI (Hi) must hold for all
negative examples. The rest of the proof is obvious; it is an analogy of the argument used to
prove the first part of the theorem. �

Theorem 6 Let F = {Bi}
n
i=1 be a set of pos τ -blocks with equal types of input arguments

such that no two pos τ -blocks in the set F have equal domains for all examples. Let F ′ be a

set of pos τ -blocks obtained from F by repeatedly removing redundant pos τ -blocks. Set F ′

is unique.

Proof Let ≺R be a relation defined as follows: B ≺R C if and only if domI (B) ⊆
⋂

k∈A domI (Bk) ∩domI (C) for all I ∈ E+ and
⋂

k∈A domI (B) ∩ domI (C) ⊆ domI (B) for
all I ∈ E− and B �= C and ∀i : B �= Bi . It is not hard to check that ≺R is a partial order
(also due to the fact that no two elements of F have identical domains). Set F ′ contains all
maximum elements w.r.t. ≺R and is therefore unique. �

Theorem 7 Let τ = (γ,µ) be a template and let E = E+ ∪ E− be the set of examples.

Further, let Fτ be the set of all non-H -reducible τ -features and let FRelF be the set of con-

junction of atoms constructed by RELF. Then FRelF ⊆ Fτ and for every τ -feature Fτ ∈ Fτ ,

which is not strictly redundant, there is a feature FRelF such that extE(FRelF) = extE(Fτ ).

Proof (Sketch) It is not hard to see that FRelF ⊆ Fτ . For each conjunction of atoms F ∈

FRelF , we just construct a substitution θ such that θ maps each atom a ∈ F to an atom from
γ that was used when a was created in line 2 in Algorithm 4. Then it is not hard to show
that such a substitution is consistent (i.e. there are no two conflicting substitutions of one
variable) and that Fθ ⊆ γ and that also the conditions on input and output arguments stated
in Definition 3 are satisfied.

In order to justify the theorem, we need to show that if RELF did not remove redundant
pos τ -blocks or pos τ -blocks that do not cover any positive example, it would construct all
τ -features contained in Fτ . The case with filtering of redundant pos τ -blocks will follow
from Theorems 2 and 5. First, recall that from earlier theorems we know that all features are
tree-like and |Fτ | is finite. For contradiction, let us assume that there is a substitution θ and
a non-H -reducible τθ -feature F ∈ Fτ such that F /∈ FRelF . Let B be a shortest pos τθ -block
such that F = B− ⊕ {B} and such that B was not constructed by RELF (i.e. the shortest
block which caused that F could not be constructed). If no such block exists, let us set
B = F . Further, let a ∈ γ be an atom that corresponds to B’s root. By a brief analysis of the
algorithm RELF, we may conclude that if all pos τθ -blocks, which can be composed with a

using the graft operator, had been generated, then procedure Combine(Atom,PosBlocks,E)

would have also generated B on line 5 of Algorithm 4. Since the necessary blocks must be
generated at some point in the feature construction process (because otherwise we would
have a contradiction with the minimality of B), the only possibility is that they were gen-
erated only after the atom a had been processed. This possibility is, however, ruled out by
the requirement on the partial irreflexive order on constants in γ given in Definition 1 (re-
call that Fθ ⊆ γ ) and by the fact that RELF sorts the atoms from γ according to this order
before it starts the feature construction process. Thus we see that B and consequently also
F had to be constructed by RELF, which finishes the proof. �
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