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Blockade of interleukin-6 signaling inhibits the
classic pathway and promotes an alternative
pathway of macrophage activation after spinal
cord injury in mice
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Abstract

Background: Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different

pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically

activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2

phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of

IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage

activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice.

Methods: MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after

thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for

myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament

heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-g and

tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of

M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive)

macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-g and IL-4 levels

in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages

and microglia.

Results: LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and

this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale

scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of

Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the

injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2

macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the

number of IFN-g-positive neutrophils, and increased the number of microglia present and their positivity for IL-4.

Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3,

suggestive of increased phagocytic behavior.

Conclusion: The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging

inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2

macrophages.
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Background

Spinal cord injury (SCI) is followed by disruption of the

blood-brain barrier and influx of inflammatory cells, a

process facilitated by proteolytic and oxidative enzymes,

and various pro-inflammatory cytokines. The pro-inflam-

matory cytokines are produced by resident microglia,

along with infiltrating neutrophils and macrophages, and

induce a reactive process of secondary cell death in the

tissue surrounding the original site of injury [1-3]. This

secondary damage continues in the days and weeks fol-

lowing SCI, which may lead to increase in cavitation and

glial scar formation at the lesion site, exacerbating neuro-

logical dysfunction [4-6]. Evidence suggests that such

inflammation may be beneficial; for example, macro-

phages phagocytose the myelin debris present in the

injured spinal cord, which is known to inhibit axonal

regeneration [7-9], and they also release protective cyto-

kines such as basic fibroblast growth factor, nerve growth

factor and neurotropin-3, which promote neuronal

regeneration, and tissue repair [10]. Indeed, implantation

of activated macrophages after SCI is reported to pro-

mote axonal regeneration [11]. However, macrophages

can also have adverse effects on damaged neural tissues,

including excessive inflammation, axonal retraction, and

axonal die-back [12-14], and the depletion of hematogen-

ous macrophages after SCI can promote functional

recovery [15]. Such variation in the effects of macro-

phages could be the result of the presence of different

activation pathways for the locally present macrophages,

possibly generating sub-populations of cells with diver-

gent abilities [16,17].

Recent studies have indicated that different macro-

phage sub-populations can arise during the immunologi-

cal and inflammatory responses to various conditions,

based on their phenotypes [18,19]. This divergence is

referred to as macrophage polarization, and it has been

reported both in non-neural [20] and in neural tissue

[21,22], and in in vitro and in vivo experiments [23]. Two

subtypes of macrophages have attracted great interest in

the field of SC regeneration: classically activated (M1

phenotype) and alternatively activated (M2 phenotype)

macrophages [24-27]. Whereas classically activated

macrophages are the product of exposure to T helper

(Th)1 cytokines, such as interferon (IFN)-g and tumor

necrosis factor (TNF)-a, alternatively activated macro-

phages are activated via Th2 cytokines, such as interleu-

kin (IL)-4, IL-10, and IL-13, which lead to an M2

phenotype that has enhanced phagocytic behavior and

anti-inflammatory roles [21,24,28,29]. Alternatively

activated macrophages are involved in the recovery of

SCI [22,30]. Thus, modification of the SCI microenviron-

ment to increase the number of these alternatively acti-

vated macrophages may have a neuroprotective effect.

The inflammatory process itself is necessary for SC

regeneration [31,32], but it is characterized by increased

expression of various pro-inflammatory cytokines that

promote the activation of macrophages through the clas-

sic pathway [3,6]. One of these cytokines, IL-6, is an early

and key factor that triggers the inflammatory response

after SCI [33-35]. IL-6 itself can enhance the expression

of other inflammatory cytokines, including TNF-a and

IL-1b [33,36], which regulates the entrance of neutrophils

into the injured SC [18,37]. These neutrophils are the

first cells to enter the lesion after SCI [32,38], and they

form an important source of IFN-g [39], along with other

infiltrating macrophages and resident microglia [40,41].

Complete blockade of IL-6 has detrimental effects on

recovery from SCI, perhaps reflecting the requirement of

inflammation for SC regeneration [42]. However, a tem-

poral blockade of IL-6 has been shown to downregulate

the expression of other pro-inflammatory cytokines in

the acute phase of SCI, while preserving the beneficial

effects of inflammation in the later stages of recovery

[43,44]. Interestingly, IL-6 blockade increases the number

of microglia recruited to the injured SC of [45]. Microglia

are the major source of the Th2 cytokines IL-4 [46] and

IL-13 [47] in the normal central nervous system,

although neutrophils and macrophages also act as a

source of IL-4 [48,49].

Based on these previous findings, we hypothesized that

temporal blockade of IL-6 might modify the acute phase

inflammatory response after SCI to create an alternative

activating environment at the site of injury, which may

promote the generation of M2 phenotype macrophages.

The present study was thus designed to investigate the

effects of temporal blockade of IL-6/IL-6 receptor (IL-6R)

engagement (see Additional file 1) during this response,

using a rat anti-mouse IL-6R monoclonal antibody

(MR16-1) [50], focusing particularly on potential effects of

IL-6 blockade on the different pathways of macrophage

activation.

Methods

Animal model of spinal cord injury

Experiments were conducted in a total of 211 adult

male Jcl:ICR mice (Clea, Tokyo), aged 10 weeks, with a

mean body weight of 41.2 ± 3.2 g (± SD). They were

assigned to the following groups: MR16-1 treated group
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(n = 85), rat IgG control group (n = 85), saline control

group (n = 25), sham group (n = 21) and naive group

(n = 5). Mice were anesthetized with isoflurane (For-

ane®; Abbot Japan, Tokyo, Japan), and complete lami-

nectomy was performed at the level of the 10th thoracic

vertebra under a surgical microscope (VANOX-S; Olym-

pus, Tokyo, Japan), after exposing the dorsal surface of

the dura mater and taking the utmost care in avoiding

any dural tear. A contusion SCI was produced using a

commercially available SCI device (Infinite Horizons

Impactor; Precision Systems and Instrumentation LLC,

Fairfax, VA, USA) with an impact force of 60 kilodynes

[51]. Immediately after injury, the subjects in the treat-

ment group received a single intraperitoneal dose

(50 μg/g body weight) of MR16-1 antibody (Chugai,

Tokyo, Japan), and the control groups received either a

single dose of rat IgG control antibodies in the same

volume and concentration (lot number 918719; Abcam

plc, Cambridge, Cambridgeshire, UK) [43,44,52] or a

single dose of saline in the same volume [53]. Mice that

underwent only laminectomy served as the sham-

operated group.

After surgery, the mice were maintained in an isother-

mic cage until recovery. They were then transferred to a

bacteria-free biologically clean room set on a12-hour

light/dark cycle and provided with food and water ad

libitum. Each mouse received manual bladder expression

twice daily until the recovery of sphincter control. The

experimental protocol was approved by the Ethics Com-

mittee for Animal Experimentation of Fukui University.

Immunohistochemistry

Once deep anesthesia was achieved, transcardial perfu-

sion was performed (sham n = 16 mice, rat IgG control

group n = 45 mice, MR16-1 treated group n = 45 mice),

followed by fixation with 4% paraformaldehyde in

0.1 mol/l phosphate-buffered saline (PBS). The spinal

cords were dissected out and post-fixed in the same

fixative for a few hours. The tissue samples were

immersed in 10% sucrose in 0.1 mol/l PBS at 4°C for 24

hours, and 30% sucrose in 0.1 mol/l PBS for 24 hours.

Segments of the SC (cord segments T8 to T12) were

embedded in optimal cutting temperature compound

(Sakura Finetek, Torrance, CA, USA) and cut on a cryo-

stat into serial axial or sagittal frozen sections 10 μm

thick. The sections were serially mounted on glass

slides, and fixed with 2% paraformaldehyde in 0.1 mol/l

PBS for 5 minutes, rinsed in PBS, and stored at -80°C.

Luxol fast blue (LFB) staining was used to evaluate the

spared myelin and extent of demyelination.

For immunofluorescence staining with fluorescent

antibodies, frozen sections were permeabilized with

0.1 mol/l Tris-HCl buffer (pH 7.6) containing 0.3% Tri-

ton X-100. The following primary antibodies were

diluted in commercial diluent (Antibody Diluent with

Background Reducing Components; Dako Cytomation,

Carpenteria, CA, US) and applied overnight at 4°C: rab-

bit anti-integrin aM (equivalent to CD11b), 1:200 dilu-

tion; goat anti-arginase 1,1:200; rat anti-CD16/32, 1:200

and goat anti-CD206, 1:200 (all Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA); rabbit anti-inducible nitric

oxide synthase (iNOS), 1:200 (BD Pharmingen, San Jose,

CA, USA); and mouse anti-neurofilament 200 kDa (NF-

H), 1:500; and mouse anti-growth-associated protein

(GAP-43), 1:500 (both Abcam plc). The sections were

then incubated for 1 hour at room temperature with

Alexa fluor-conjugated 488 or 568 secondary antibody,

1:250 (Molecular Probes, Eugene, OR, USA). Some sec-

tions were also counterstained with the nuclear marker

DAPI (Abbott Molecular, Des Plaines, IL, USA). The

sections were then washed, wet-mounted, and examined

by epifluorescence. All images were obtained using a

fluorescence microscope (Olympus AX80; Olympus

Optical, Tokyo, Japan) or a confocal laser scanning

microscope (model TCS SP2; Leica Instruments, Nus-

sloch, Germany), where the 405, 488 and 543 nm lines

of the argon/helium-neon laser were used for fluores-

cence excitation.

Semi-quantitative analysis of tissue staining

For semi-quantitative analysis of demyelination, 10 axial

sections randomly selected at a distance up to 5 mm

cephalad and caudal to the epicenter were stained with

LFB and examined at 14 and 42 days after SCI. The

LFB-positive area in the ventrolateral funiculus was ana-

lyzed under ×400 magnification using grain counting

with the light intensity automatically set by the color

image analyzer (MacSCOPE; Mitani, Fukui, Japan). The

LFB-positive area in which the density significantly

exceeded the threshold of each background was calcu-

lated as the percentage cross-sectional area of residual

tissue, as described previously [54].

To quantify the NF-H-positive and GAP-43-positive

areas at the aforementioned time points, the following

procedure was performed; 3 mid-sagittal sections

through the injured portion of the SC were selected ran-

domly, and 20 high-magnification (×400) non-overlap-

ping photomicrographs of each injury epicenter were

selected using a confocal microscope (TCS SP2; Leica).

Using color image analyzer software (MacSCOPE;

http://www.mitani-visual.jp/en/macscope01.html), a

threshold was automatically calculated from the basal

fluorescence of samples of intact tissue. The light inten-

sity of the injured samples was calculated as grain

counting. The area with light intensity exceeding the

threshold set by the program was automatically counted

as positive, and was expressed as units of positive area

[55].
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To semi-quantify the number of CD11b-positive cells

double-immunostained with iNOS, arginase 1, CD16/32

and CD206 at 3 hours and 1, 3, 7, and 14 days post-

injury, the following procedure was performed: 5 axial

sections at the injury epicenter were selected at random,

with 20 non-overlapping high-magnification photomicro-

graphs (×400 magnification, under confocal microscope;

TCS SP2; Leica) were taken per section. The numbers of

merged and non-merged CD11b-positive cells were auto-

matically counted by MacSCOPE, and the average num-

ber of positive cells in all the microphotographs was

calculated. The basal fluorescence was obtained using the

non-injured portions of the sham-SC samples that were

incubated without primary antibodies; the procedure was

performed for each antibody (n = 20 axial sections from

each injury epicenter) using adjacent sections. The light

intensity and threshold values were maintained at con-

stant levels when collecting the digitized images in all

analysis.

Assessment of locomotor behavior

Hind-limb motor function was evaluated using the Basso

Mouse Scale (BMS) open field locomotor test, in which

the scores range from 0 points (no ankle movement) to

9 points (complete functional recovery) [56]. BMS scores

were recorded at 1, 3, 7, 14, 21, 28, 35, and 42 days after

SCI, by two independent examiners blinded to the experi-

mental conditions (HN, SW). We assessed hind-limb

motion, mainly to evaluate coordinated movement and

stepping. When differences in the BMS score between the

right and left hind limbs were detected, we took the aver-

age of the two scores.

Immunoblot analysis

Immediately after deep anesthesia, the damaged SC

around the epicenter of the lesion (5 mm in length) was

carefully dissected en bloc from the thoracic spine, and

stored immediately at -80°C in liquid nitrogen. Segments

were separated by centrifugation at 15,000 g for 30 s

using a commercial kit (BioMasher Rapid Homogeniza-

tion Kit; Funakoshi, Tokyo, Japan), then solubilized in 1×

RIPA lysis buffer (Santa Cruz Biotechnology), homoge-

nized, and stored at -80°C. The protein concentration in

the obtained samples was determined by a Lowry protein

assay using a DC protein assay kit (Bio-Rad Laboratories,

Hercules, CA, USA). Samples containing the protein

mixtures in Laemmli sodium dodecylsulfate buffer were

boiled and subjected to immunoblot analysis. Total pro-

tein (20 μg/lane) was separated on 12.5% SDS-PAGE and

transferred onto polyvinylidene difluoride membrane (PE

Applied Biosystems, Foster City, CA, USA) for 70 min

using a semi-dry blot apparatus.

The membrane was washed twice in PBS containing

0.05% Tween 20, blocked by 5% skimmed milk in PBS

for 1 hour at room temperature, and then incubated

overnight at 4°C with one of the following antibodies:

rabbit anti-TNF-a, 0.2 μg/ml; rabbit anti-IFN-g,0.2 μg/

ml (both Abcam plc); rat anti-IL-4, 1:200; or goat anti-

IL-13, dilution 1:200 (both Santa Cruz Biotechnology).

After three washes in 0.1 mol/l PBS, the membranes

were incubated for 1 hour in the respective secondary

IgG/horseradish peroxidase complex antibodies: anti-

goat 1:1000, anti-rabbit 1:5000, or anti-rat 1:1000 (all

Santa Cruz Biotechnology). After three washes in 0.1

mol/l PBS, a commercial detection kit (ECL Advance

Western Blot Detection kit; GE Healthcare, Amersham,

Buckinghamshire, UK) was used for 1 minute, and the

membrane then exposed to X-ray film for visualization

of peroxidase activity and thus determination of the

level of each specific protein. The band intensities were

normalized to b-actin 1:2000 (Abcam plc), and commer-

cial standards (Kaleidoscope Prestained Standards;

Bio-Rad Laboratories) were used as molecular weight

controls. To exclude increased inflammatory response

secondary to the use of the rat IgG control antibodies, a

second control group using saline alone was also

included in this experiment (saline control group n =

15, rat IgG control group n = 15, MR16-1 treated group

n = 15).

Flow-cytometry analysis

Immediately after deep anesthesia, the mouse (naive

group n = 5, sham group n = 5, rat IgG control group n

= 25, MR16-1 treated group n = 25) was intracardially

perfused with 200 ml of ice-cold 0.1 mol/l PBS, and the

SC was harvested. The damaged SC around the epicen-

ter of the lesion (6 mm in length) was surgically dis-

sected out with 175 U/ml collagenase (Sigma-Aldrich,

St. Louis, MO, USA) for 1 hour at 37°C. Cells were

washed in DMEM (Invitrogen Life Technologies, Carls-

bad, CA, USA) containing 10% fetal bovine serum and

filtered through a 40 μM nylon cell strainer (BD Bios-

ciences, San Jose, CA, USA) under centrifugation to

remove tissue debris and obtain a single-cell suspension,

as described previously [38].

From this point on, a cell-count was performed before

every staining in every sample to maintain a cell density

of 1.0 × 106 cells/100 μL. Cells were incubated for 1 hour

on ice with the following fluorescent antibodies: allophy-

cocyanin (APC) rat anti-CD45, 0.25 μg/1 ml; Pacific Blue

rat anti-Ly-6 G/Ly-6 C, 1.0 μg/1 ml (equivalent to Gr-1

(both BioLegend, San Diego, CA, USA) and PerCP-Cy

5.5 rat anti-CD11b, 0.25 μg/1 ml (BD Pharmigen). For

intracellular staining [32], the cells were resuspended in

commercial fixation buffer and treated with permeabili-

zation buffer (both Santa Cruz Biotechnology) followed

by resuspension in ice-cold PBS and incubation for

1 hour with goat anti-arginase 1, 1:200 conjugated to
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fluorescein isothiocyanate (FITC), 1:200 (Santa Cruz Bio-

technology), phycoerythrin (PE) conjugated rabbit anti-

iNOS, 3.0 μg/ml (Abcam plc); PE/Cy7 conjugated rat

anti-CD16/32, 1.0 μg/ml or FITC rat anti-CD206, 1.0 μg/

ml (both BioLegend). To verify the phagocytic character-

istics of the identified macrophages and microglia, we

used biotin rat anti-macrophage antigen-2 (Mac-2), 1.0

μg/ml and biotin rat anti-macrophage antigen-3 (Mac-3),

0.25 μg/mlwhich were subsequently labeled with conju-

gation to streptavidin-APC/Cy7, 0.06 μg/ml (all

BioLegend).

A parallel set of samples was incubated with the fol-

lowing intracellular markers: FITC rat anti-IFN-g, 3 μg/

ml (Abcam plc) and goat anti-IL-4, 0.25 μg/ml (Santa

Cruz Biotechnology) secondarily conjugated to PE, dilu-

tion 1:200 (Santa Cruz Biotechnology). Samples with

cells alone were used as negative controls to eliminate

background autofluorescence, and samples containing

cells incubated with a single added antibody were used

as positive control. These were used to set up the cyt-

ometer alignment and to remove any spectral overlap.

Mixed samples of cells from the spinal cords of the

naive and rat IgG control groups were used to identify

the region of interest in the light-scatter plot (see Addi-

tional file 2).

Flow cytometry was performed using a fluorescence-

activated cell sorting (FACS) device (FACS CantoTM II;

Becton Dickinson Biosciences, San Jose, CA, USA) using

forward scatter to further eliminate any cellular debris

from analysis. In each test, a minimum of 250,000 cells

were analyzed and the data processed (BD FACSDiva soft-

ware; Becton Dickinson Biosciences). The different cell

populations present in the suspension were classified

according to the expression of antigens, as stated in the

cited studies: CD45high/CD11bhigh/GR-1high neutrophils

[57]; CD45low/CD11bhigh/GR-1negative microglia [32]; and

CD45high/CD11bhigh/GR-1negative macrophages [38]. At the

aforementioned time points, the populations of neutro-

phils, microglia, and macrophages were identified, together

with their intracellular positivity for IFN-g and IL-4. The

phenotype of macrophage sub-populations was confirmed

by the expression of iNOS and CD16/32 (pro-inflamma-

tory M1 macrophages) or arginase 1 and CD206 (anti-

inflammatory M2 macrophages). The levels of Mac-2 and

Mac-3 immunopositivity in microglia and arginase 1-posi-

tive macrophages were quantified (see Additional file 3).

Statistical analysis

All statistical analyses were carried out by two indepen-

dent biostatisticians blinded to the groups (HN, SW).

All values are expressed as mean ± SD. Differences

between groups were examined for statistical signifi-

cance using either the paired-t test or one-way factorial

analysis of variance (ANOVA). P ≤ 0.05 was considered

significant (Tukey’s post hoc analysis). The above tests

were conducted using SPSS software (version 13.0;

SPSS, Chicago, IL, USA).

Results

Anti-interleukin (IL)6-receptor (MR16-1) treatment

increased the area of spared myelin, neurofilament heavy

200 kDa-positive and growth-associated protein-43-

positive nerve fibers, and locomotor function after spinal

cord injury

To examine the therapeutic effects of MR16-1 on SC

repair, we used LFB staining to evaluate the sparing of

myelin sheaths around axons, and the immunoreactivity

of both NF-H-positive and GAP-43-positive nerve fibers

at the lesion epicenter, at 14 and 42 days after SCI. The

area of spared myelin in the MR16-1 treated group was

significantly greater than that in the rat IgG control

group at 42 days (Figure 1A-C). A significantly larger

GAP-43-positive area was also seen in the MR16-1 trea-

ted group at 42 days (Figure 1D-H). Similarly, there was

a significant difference in the NF-H-positive area

between the two groups at 42 days (Figure 1I-M).

The contusive SCI resulted in immediate complete

paralysis. At 7 days post-injury, the MR16-1 treated

group showed a significant improvement in BMS loco-

motor score compared with the rat IgG control group,

and this difference continued up to 6 weeks post-injury,

at which time recovery in both groups reached a plateau

(Figure 1N). At that point, the BMS score of the MR16-

1 treated group was 5.0 ± 0.3, reflecting consistent plan-

tar stepping with some coordination, whereas that of

the control group was 2.8 ± 0.3 points, with extensive

ankle movement and dorsal stepping only at the last

time point.

MR16-1 treatment reduced protein levels of interferon

(IFN)-g and TNF-a and increased levels of interleukin (IL)-4

and IL-13 at the lesion site in the acute phase after SCI

To determine whether MR16-1 treatment affected the

inflammatory response in the acute phase after SCI, we

evaluated protein levels of IFN-g and TNF-a (Th1 cyto-

kines) and IL-4 and IL-13 (Th2 cytokines) by immuno-

blot analysis (Figure 2). IFN-g levels (28 kDa band)

increased in the control groups (rat IgG and saline alone)

from 3 hours up to 14 days post-injury, whereas this

increase was abrogated in the MR16-1-treated group,

with statistical significance up to 7 days post-injury

(Figure 2A, B). TNF-a levels (19 kDa band) were stable

during the post-injury period in the control groups, but

were markedly reduced in the MR16-1-treated group

from 1 to 14 days after injury (Figures 2C, D).

By contrast, the protein levels of IL-4 (18 kDa band)

initially seen at 3 hours post-injury disappeared rapidly

in the control groups by 1 day, and remained relatively
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Figure 1 Histological evaluation and locomotor function after anti-interleukin (IL)-6-receptor (MR16-1) treatment. (A) Compared with

the rat IgG control group, axial sections at the epicenter of the injury site obtained at 42 days post-injury and stained with luxol fast blue (LFB)

showed a remarkable reduction in the area of demyelination in (B) the MR16-1-treated group. (C) Quantification of LFB-positive spared myelin

areas in the ventrolateral funiculus at the lesion site showed a significant difference between the two groups at 42 days, but not at 14 days

post-injury. Representative images of injury epicenter mid-sagittal sections at 42 days after spinal cord injury in (D, I) the rat IgG control group

and (F, K) MR16-1-treated group: in the high-magnification photomicrographs of the respective boxed area, a greater abundance of

neurofilament heavy 200 kDa-positive and growth-associated protein nerve fibers were seen in (G, L) the MR16-1-treated group compared (E, J)

with the rat IgG control group. (H, M) Note the significant differences in the GAP-43-positive and NF-H positive areas at 42 days after injury

between the two groups. (N) Analysis of the locomotor Basso Mouse Scale (BMS) score after SCI. A significant improvement in hind-limb motor

function was seen in the MR16-1-treated group compared with the rat IgG control group from 7 days after injury. Scale bar (A, B) 200 μm, (D, F,

I, K) 500 μm, (E, G, J, L) 50 μm. (D-G) GAP-43 conjugated to Alexa fluor 568 (red); (I-J) NF-H conjugated to Alexa fluor 568 (red). Data are

expressed as mean ± SD. (C, H, M) n = 3 for each group; (N) n = 5 for each group. (C, H, M) paired t-test; (N) ANOVA test. *P <0.05, **P <0.01
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Figure 2 Immunoblot analysis of T helper (Th)1 and Th 2 cytokines after MR16-1 treatment. (A, B) Interferon (IFN)-g levels were

consistently higher in the control groups, and the difference with the MR16-1-treated group was significant up to 7 days post-injury. (C, D)

Tumor necrosis factor (TNF)-a levels were enhanced in the control groups, and were significantly different compared with the MR16-1-treated

group from 1 to 14 days post-injury. (E, F) Interleukin (IL)-4 levels remained significantly higher in the MR16-1-treated group from 1 to 7 days

post-injury compared with the controls. (G, H) IL-13 levels were increased in the MR16-1-treated group, and were significantly different to the

control groups between 1 and 4 days post-injury. No difference was found in the cytokine expression between the control groups (saline and

Rat IgG). Each graph indicates relative band intensity normalized to that of b-actin. (B, D, F, H) Data are expressed as mean ± SD, n = 3 for each

group. *P ≤ 0.05, **P ≤ 0.01 by ANOVA
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low thereafter, whereas they were also increased at 3

hours post-injury in the MR16-1-treated group and

remained high, reaching a peak at 7 days post-injury.

The differences in IL-4 levels between the control

groups and the MR16-1-treated group at 1, 3 and 7

days post-injury were significant (Figure 2E, F). IL-13

levels (13 kDa band) decreased from 1 to 14 days post-

injury in the control groups, but were persistently high

in the MR16-1-treated group during the same time per-

iod, and significantly greater than the control groups

from 1 day post-injury and thereafter (Figure 2G, H).

No further significant differences in the protein levels of

these cytokines were detected between the MR16-1-trea-

ted group and the control groups at 14 days after injury.

No differences in the protein levels of the studied cyto-

kines were noted between the two control groups, indi-

cating a lack of potentially harmful effects of rat IgG

compared with saline.

MR16-1 treatment was associated with a reduction in M1

macrophages and increased M2 macrophages at lesion

site in the acute phase after spinal cord injury

To determine whether MR16-1 treatment affects macro-

phage polarization, we quantified the populations of M1

and M2 phenotypes (Figure 3, Figure 4), and CD11b-

positive cells (both types of macrophages). CD11b

immunostaining in mid-sagittal sections at 3 days post-

injury identified relatively high numbers of positive cells

extending proximally and distally from the lesion site (in

post-traumatic hematoma) in the rat IgG control group

(Figure 3A, B), compared with a more localized distribu-

tions of positive cells immediately around the lesion site

in the MR16-1-treated group (Figure 3C, D). There was

also a greater number and similar distribution of iNOS-

positive cells at 3 days post-injury in the rat IgG control

group (Figure 3E, F), compared with the MR16-1-treated

group (Figure 3G, H). By contrast, arginase 1-positive

cells at 3 days post-injury populated the lesion site in

the MR16-1-treated group (Figure 3K, L) in higher

numbers than in the control group (Figure 3I, J). The

patterns of immunopositivity for iNOS and arginase 1 in

the rat IgG control group and MR16-1-treated groups,

respectively, matched the distribution of CD11b-positive

cells.

At 3 days post-injury, representative axial sections of

the injured spinal cords at the lesion epicenter were

double-immunostained for CD11b plus either iNOS or

CD 16/32, or for CD11b plus either arginase 1 or

CD206. The MR16-1-treated group showed decreased

numbers of iNOS-expressing macrophages (Figure 4A,

B) with increased populations of arginase 1-expressing

macrophages (Figure 4D, E), compared with the rat IgG

control group. These differences were significant from 1

to 7 days post-injury (Figure 4C, F). Similarly, the

MR16-1-treated group showed decreased numbers of

CD16/32-expressing macrophages (Figure 4G, H) and

increased numbers of CD206-expressing macrophages

(Figure 4J, K) compared with the rat IgG control group.

These differences were significant from 3 to 14 days

post-injury (Figure 4I, L). No significant differences

Figure 3 Distribution of classically activated (M1) and alternatively activated (M2) phenotype macrophages in the injured spinal cord

at 3 days after MR16-1 treatment. A common finding in the MR16-1-treated group was (C, D) a focal injury site with centralized presence of

CD11b-positive cells, whereas (A, B) in the rat IgG control group, there was a larger injury site with cephalic and distal expansion of CD11b-

positive cells. (E, F) Inducible nitric oxide synthase (iNOS)-positive cells were distributed over the same CD11b-positive area in the rat IgG control

group, whereas a weaker reaction to iNOS was seen in (G, H) the MR16-1-treated group. (K, L) Arginase 1-positive cells were localized more

specifically to the injury site in the MR16-1-treated group, whereas arginase 1-positive cells were rare in (I, J) the rat IgG control group. (A-D)

CD11b conjugated to Alexa fluor 568 (red); E-H) iNOS conjugated to Alexa fluor 488 (green);(I-L) arginase 1 conjugated to Alexa fluor 488

(green); (A-L) DAPI used for nuclear counterstaining (blue). Scale bar: (A, C, E, G, I, K) 200 μm,(B, D, F, H, J, L) 500 μm
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were detected in macrophage polarization between the

MR16-1-treated group and rat IgG control group at 14

days after injury.

MR16-1 treatment inhibited interferon (IFN)-g production

by neutrophils and increased interleukin (IL)-4 expression

in microglia and macrophages

Flow-cytometry analysis showed infiltration of large

numbers of IFN-g-positive neutrophils in the injured SC

at 1 day after injury in the rat IgG control group (Figure

5A), but a significantly lower number in the MR16-1-

treated group (Figure 5B). The decrease in neutrophil

numbers in the MR16-1-treated group versus the rat

IgG control group was significant from 1 to 7 days post-

injury (Figure 5C). Furthermore, the number of IFN-g-

expressing neutrophils was also significantly different

between the two groups throughout the same period

(Figure 5D).

Significantly larger numbers of microglia were present

in the MR16-1-treated group at 3 days after injury (Fig-

ure 5F) than in the rat IgG control group (Figure 5E).

The numbers of microglia that stained positively for

intracellular IL-4 were also increased in the MR16-1-

treated group compared with the rat IgG control group,

and this was significant from 1 to 7 days post-injury

(Figure 5G, H). The number of macrophages infiltrating

the SC after injury was reduced in the MR16-1-treated

group compared with the rat IgG control group (Figure

5I, J), which was significant from 1 to 7 days post-injury

(Figure 5K). Furthermore, within the macrophage popu-

lation, the level of intracellular IL-4 detected at days 1

and 3 after injury was higher, in the MR16-1-treated

Figure 4 Effects of MR16-1 treatment on macrophage polarization after spinal cord injury (SCI), as delineated by double

immunolocalization. (A) At 3 days post-injury, large amounts of inducible nitric oxide synthase (iNOS) colocalized with CD11b (merged)-

positive cells were found inthe rat IgG control group), whereas only a few were found in (B) the MR16-1-treated group. (C) The differences in

the presence of merged double-immunopositive cells between the two groups were significant from 1 to 7 days after injury. (D) Scarce

numbers of arginase 1 colocalized with CD11b-positive (merged) cells were found in the rat IgG control group, in contrast to (E) the MR16-1-

treated group; (F) analysis showed predominance of merged double-immunopositive cells in the MR16-1-treated group from 1 to 7 days after

injury. (G) At 7 days post-SCI, a larger number of cells immunopositive for CD16/32 and CD11b (merged) was found in the injury epicenter in

the rat IgG control group than in (H) the MR16-1-treated group, and (I) these differences were significant from 3 to 14 days after injury. (K) Cells

immunopositive for CD206 and CD11b (merged) were prevalent in the MR16-1-treated group, but barely present in (J) the rat IgG control group.

(L) The population of CD206/CD11b-immunopositive cells became significantly greater in the MR16-1-treated group compared with the control

group from 3 to 14 days after injury. CD11b conjugated to (A, B, D, E, G, H, J, K); Alexa fluor 568 (red) (A, B) iNOS, (D, E) arginase 1, (G, H)

CD16/32 and (J, K) CD206 conjugated to Alexa fluor 488 (green). Scale bar = 50 μm. (C, F, I, L) Data are expressed as mean ± SD; n = 3 for each

group. *P <0.05, **P <0.01 by paired t-test.
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Figure 5 Semi-quantitative flow-cytometry analysis of interferon (IFN)-g and interleukin (IL)-4 levels in neutrophils, microglia and

macrophages after MR16-1 treatment. Representative flow-cytometry plots at 1 day post-injury showed large numbers of neutrophils positive

for intracellular IFN-g in (A) the rat IgG control group with (B) smaller numbers in the MR16-1-treated group. (C, D) The numbers of neutrophils

and their levels of IFN-g, but not IL-4, were significantly lower in the MR16-1-treated group compared with the control group from 1 to 7 days

post-injury. (E, F) Representative data at 3 days post-injury showed that the MR16-1-treated group had larger numbers of microglia and greater

positivity for IL-4 compared with the rat IgG control group, and this difference was significant from 1 day to 7 days post-injury. (G, H) However,

there was no significant difference in IFN-g expression. (I, J, K) At 3 days post-injury, the total number of macrophages was lower in (I, J) the

MR16-1-treated group compared with (K) the control group, and this difference was significant from 1 to 7 days post-injury, with increased IL-4

expression at days 1 and 3, and (L) decreased expression of IFN-g. (C, D, G, H, K and L) Data are expressed as mean ± SD; n = 5 for each group.

(C, G, K) paired t-test; (D, H, L) ANOVA test; *P <0.05, **P <0.01.
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group compared with the rat IgG control group,

whereas intracellular IFN-g at 3 days after injury was

lower (Figure 5L). However, there were no significant

differences in the numbers of the different cell popula-

tions studied or in their cytokine protein levels after 14

days post-injury.

MR16-1 treatment changed the predominant phenotype

of macrophages in the injured spinal cord, and promoted

the phagocytic and digestive activities of macrophages

Flow-cytometry analysis showed that MR16-1 treatment

was associated with a marked shift from an iNOS-posi-

tive and CD16/32-positive to an arginase 1-positive and

CD206-positive macrophage population after injury

(Figure 6A, B), matching the results of immunostaining.

There was a significant decrease in the number of

iNOS-positive macrophages and a substantial increase in

the number of arginase 1-positive macrophages in the

MR16-1-treated group compared with the rat IgG con-

trol group, and these differences were significant from 1

to 7 days post-injury (Figure 6C, D). A similar shift in

the predominant phenotype of macrophages, from

CD16/32-positive to CD206-positive, was also seen in

the MR16-1-treated group versus rat IgG controls from

3 up to 14 days post-injury (Figure 6E, F).

Whereas microglia showed strong expression of Mac-2

and Mac-3, there was no significant difference between

the microglia populations of the MR16-1-treated and rat

IgG control groups (Figure 6G, I). However, a more

detailed analysis of the cell populations showed that the

arginase 1-positive macrophages of the MR16-1-treated

group had enhanced positivity for Mac-2 and Mac-3

compared with the rat IgG control group, and these dif-

ferences were significant from 1 up to 7 days post-injury

(Figures 6H, J). No further significant differences were

detected in macrophage polarization or antigen expres-

sion between the MR16-1-treated group and rat IgG

control group after 14 days post-injury.

Discussion

IL-6 is a multifunction cytokine crucial for T/B-cell dif-

ferentiation and proliferation, immunoglobulin secretion,

acute phase protein production, and macrophage/mono-

cyte function [58]. In the pathophysiology of SCI, IL-6 is

considered to be a pro-inflammatory cytokine that trig-

gers secondary injury [33-35]. Once IL-6 is released, it

binds to the membrane-bound IL-6R in an IL-6/IL-6R

complex that associates with gp130 to exert a signal

into cells [43]. MR16-1 is a rat anti-mouse IL-6R anti-

body that competitively inhibits the binding of IL-6 to

IL-6R dose-dependently, has a half-life of about 3 days

in mice, and exhibits anti-inflammatory properties in

rheumatoid arthritis [59] and SCI [43,44]. In the present

study of SCI, the MR16-1-treated group had smaller

injury sites with less connective-tissue formation; these

findings correlate with the blockade of reactive astro-

gliosis reported previously [44]. Increased myelin spar-

ring and an enhanced SC repair process, as shown by an

increased prevalence of NF-H-positive and GAP-43-

positive fibers at 42 days post-injury, were also seen,

and were probably the consequence of increased neuro-

nal survival in response to a diminished inflammatory

cascade, as a result of IL-6/IL-6R disengagement [52]. In

addition, MR16-1 treatment improved locomotor BMS

score from 7 days after SCI compared with the control

groups, suggesting anatomical improvement, as reported

by previous researchers [44,45,52]. We also found that

MR16-1 treatment reduced the levels of the Th1 cyto-

kines IFN-g and TNF-a, with a parallel increase in levels

of the Th2 cytokines IL-4 and IL-13 at the site of the

spinal lesion in the acute phase after SCI. Hence, we

hypothesized that a temporal blockade of IL-6 signaling

by MR16-1 treatment changed the profile of cytokines

present in the injured SC into an alternative macro-

phage-activating environment. In agreement with pre-

vious research, significant increases in IL-4 and IL-13

levels [21,24,28,29] and simultaneous reduction in IFN-g

and TNF-a levels would promote the formation of alter-

natively activated macrophages and inhibit that of the

classically activated macrophages [19].

IFN-g is mainly produced by blood-derived cells (neu-

trophils, macrophages, natural killer (NK) cells and T

cells), while microglia in the CNS have also been reported

to express IFN-g [40,60]. The access of those blood cells to

the SC after injury may be mediated by IL-6 through the

IL-6R [37]. Therefore, MR16-1 treatment may restrict the

initial access of blood cells to the injured spinal cord,

hence leading to a reduction in IFN-g level [61]. IFN-g has

been reported to have harmful effects in the CNS, includ-

ing reduced proliferation of neuronal progenitor cells and

increased apoptosis [41]. Conversely, other groups have

described beneficial effects for IFN-g administration in the

CNS mediated through reduced chondroitin sulfate pro-

teoglycan (CSPG) expression in reactive astrocytes, and

increased expression of GDNF and IGF-1 [62,63].

Although it is clear that further exploration is needed into

these different effects of IFN-g, it is possible that IL-6

blockade may have elicited beneficial effects by decreasing

IFN-g in both conditions, as MR16-1 treatment blocks

reactive astrogliosis and their CSPG expression [44], and

also increases the production of neurotrophic factors by

alternately activated macrophages [24,30]. Because this

blockade in IL-6 signaling is temporal, a second wave of

blood cells (probably NK cells and T cells) would be able

to access the site of injury, which may in turn lead to a

corresponding increased expression of IFN-g, a theory that

fits our immunoblot results. TNF-a mRNA, mainly from

astrocytes, can be detected early after SCI, with a first
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peak after 1 hour [3]. IL-6 regulates the expression and

secretion of TNF-a [64], which may explain the lower

levels of TNF-a seen in the MR16-1-treated group com-

pared with the control groups, possibly through inhibition

of TNF-a expression in astrocytes [44].

Although macrophages and neutrophils are also

thought to express IL-4 [48,49], microglia are considered

the most important source of IL-4 and IL-13 in the

acute phase after SCI [46,47], with increased expression

of these cytokines at the peak of microglia activation

Figure 6 Semi-quantitative flow-cytometry analysis of phagocytic and digestive activities of alternatively activated macrophages after

MR16-1 treatment. (A, B) Representative flow-cytometry data at 3 days post-injury identified larger numbers of iNOS-positive and CD16/32-

positive macrophages in the injured SC of the rat IgG control group, compared with a lower number of such macrophages with an increased

arginase 1-positive and CD206-positive sub-population in the MR16-1-treated group. (C, D) The differences in the relative preponderance of

iNOS-positive and arginase 1-positive macrophages between the control and treatment group were significant from 1 to 7 days post-injury,

whereas (E, F) the differences in CD16/32-positive and CD206-positive macrophages were significant from 3 days post-injury. (G, H) Microglia of

both groups showed no major change in Mac-2 and Mac-3 expression; however, the number of Mac-2 and Mac-3-positive cells within the

population of arginase 1-positive macrophages was significantly larger in the MR16-1-treated group than in the rat IgG control group. (I) There

was no major difference in Mac-2 and Mac-3 expression in microglia, whereas (J) arginase 1-positive macrophages of the MR16-1-treated group

showed enhanced expression of both antigens from 3 to 7 days post-injury. (C-F, I, J) Data are expressed as mean ± SD; n = 5 for each group;

(C, D, E, F) paired t-test; (I, J) ANOVA. *P <0.05, **P <0.01
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[7], and subsequent reduction in cytokine levels asso-

ciated with the death of these cells [6]. Our immunoblot

analysis identified increased levels of both IL-4 and IL-

13 after MR16-1 treatment compared with control

levels, which probably correlated to the increased survi-

val of microglia associated with the attenuation of the

inflammatory cascade [53].

Hematogenous macrophages and microglia are major

players in the inflammatory pathology of SCI [7,65].

Microglia are activated immediately after injury, leading to

cell recruitment to the injury site. Microglia are believed

to be relatively beneficial for SC repair, because of their

high phagocytic activity and expression of various neuro-

trophic factors [45]. However, they are also reported to be

incapable of replacing the roles of macrophages [66], and

our results showed no significant difference between the

microglia populations in the MR16-1-treated group and

the rat IgG control group, in agreement with the pre-

viously reported data [45]. In fact, there are contradictory

reports of functional recovery after SCI that correlated to

both depletion and augmentation of macrophage popula-

tions, making such a therapeutic approach controversial

[11,14,15]. Subsequent studies have correlated such diver-

gent effects to the presence of different macrophages

populations with contrasting functions [24]; classically

activated macrophages (M1 phenotype) are the predomi-

nant type after SCI and have deleterious effects on the

injured tissues, whereas alternatively activated macro-

phages (M2 phenotype) have only a short-term response,

disappearing within 3 to 7 days after injury [21]. That

sequence of events may be partially responsible for the

lack of functional recovery after SCI [25].

Identification of macrophages using immunofluores-

cence labeling of specific markers allowed a more accurate

phenotypic characterization of the different types of cells

present, with the only limitation of this method being that

it was a semi-quantitative analysis. Other researchers have

reported that classically activated macrophages, producing

pro-inflammatory cytokines and oxidative metabolites, are

predominant at the site of injury and surrounding tissue

after SCI [21]. We found a similar distribution and cyto-

kine profile of classically activated macrophages after SCI.

However, our analysis using double immunostaining

showed that MR16-1 treatment reduced the population of

iNOS-positive, CD16/32-positive cells (M1 phenotype)

and promoted the population of arginase 1-positive,

CD206-positive cells (M2 phenotype) at the site of the

lesion in the acute phase after SCI. Other studies have

reported that iNOS is the first M1 phenotypic marker

upregulated in the classic activation pathway in the acute

phase after injury, whereas arginase 1 is an early indicator

for the alternative activation pathway and M2 macro-

phages [21]. CD16/32 and CD206 expression are also

phenotypic hallmarks of M1 and M2 macrophages,

respectively, seen mainly in the sub-acute phase of SCI [6].

CD206 correlates with active endocytosis and a fully acti-

vated phagocytic phenotype [24]. Our findings are in

agreement with the reported sequences of the presence of

M1 and M2 phenotypic markers after SCI, in which iNOS

and arginase 1 were reported to reach peak values around

3 days and CD16/32 and CD206 peaked at 7 days post-

injury. One point of interest for future studies will be to

determine the source of these cell populations, which

could be either resting macrophages after activation (that

is, resident microglia in the CNS) or hematogenous

macrophages. The use of our model is limited because

both cells become morphologically indistinguishable by 1

week after activation, and there is no available cell marker

that can specify their initial origin [6,31].

The results of flow cytometry showed relatively larger

numbers of IFN-g-overexpressing neutrophils and

macrophages in the rat IgG control group compared with

the MR16-1-treated group, similar to the results of pre-

vious studies [32,38]. These results are in agreement with

previous studies that reported the important role of IL-6

in the induction of chemokines and leukocyte recruit-

ment after SCI [18,61]. MR16-1 treatment was reported

to reduce the expression of such factors [45], a finding

that might be responsible for the diminished CD11bposi-

tive population seen after MR16-1 treatment in our study,

as reported previously [44]. IFN-g expression is also upre-

gulated by TNF-a [60], which in our study was decreased

after MR16-1 treatment. Previous studies identified IL-4

as one of the most important factors to generate alterna-

tively activated macrophages in vitro and in vivo in neural

tissues [67], and identified microglia as the main source

of IL-4 in the CNS [46]. We found that MR16-1 treat-

ment significantly increased the microglial population,

with a corresponding increase in IL-4 levels by up to two-

fold. These results are in agreement with studies that

reported an increase in the levels of colony-stimulating

factors after MR16-1 treatment [45], which are responsi-

ble for the proliferation of microglia in rodents in vivo

[68]. We also saw significantly higher numbers of alterna-

tively activated macrophages in the MR16-1-treated

group compared with controls up to 14 days post-injury,

with increased functional recovery. Alternatively acti-

vated macrophages have potentially beneficial effects by

increasing nerve growth in vivo, as seen by he enhanced

growth of adult dorsal root ganglion axons and the pro-

motion of cAMP in the growing axons through enhanced

expression of brain-derived neurotrophic factor [69].

In addition, in our study we found enhanced phagocy-

tic activity for these macrophages, as identified by posi-

tivity for Mac-2 and Mac-3. A previous study reported

no change in the macrophage expression of these pro-

teins after MR16-1 treatment [45]; however, the macro-

phages were analyzed as a single population in that study,
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whereas our study was performed on sub-populations of

macrophages. Mac-2 correlates with increased phagocytic

activity and debridement of scar tissue, whereas Mac-3

typically correlates with the presence of digestive

enzyme-producing lysosomes and endosomes [70,71].

The increased phagocytic abilities of these macrophages

provide another possible mechanism for the reduced scar

tissue formation found in the MR16-1-treated group,

together with possible reduction in reactive astrogliosis,

through reduced levels of inflammatory cytokines [44]. In

fact, this is one limitation of this model, because we

could not determine whether the regeneration was due

to the direct action of the alternatively activated macro-

phages or to other effects of the blockade of IL-6.

Based on the results of this study, we considered that

administration after SCI of the IL-6 blocking antibody

MR16-1 promotes changes in the microenvironment of

the injury site, reducing TNF-a expression and its

effects, restraining the entry of neutrophils into the

injured spinal cord, reducing the levels of IFN-g (as a

result of low production of recruiting cytokines), and

augmenting IL-4-expressing and IL-13-expressing

microglia [33,60]. The high levels of these Th2 cytokines

(IL-4, IL-13) will activate hematogenous macrophages

and resident macrophages through the IL-4Ra/JAK/

STAT signaling pathway into alternatively activated M2

macrophages, whereas the low levels the of Th1 cyto-

kines (TNF-a, IFN-g) will prevent the macrophages

shifting back into an M1 phenotype associated with clas-

sic activation [17,24]. Such alternatively activated macro-

phages have increased phagocytic abilities because of the

presence of endosomes/lysosomes and pinocytic struc-

tures with digestive enzymes [21,22], efficiently remov-

ing scar tissue and growth inhibitors present in myelin

debris, and allowing axonal regeneration with subse-

quent locomotor recovery [29,30].

The use of MR16-1 antibody in vivo seems promising,

as it produced lasting effects that did not seem to be

related to the half-life of the drug itself, and exerted its

anti-inflammatory properties after a single dose. A

humanized version of MR16-1 is already available for

the treatment of rheumatoid arthritis and approved by

the US FDA and the European Union ((as Actemra®

and RoActemra®, respectively; Hoffman-La Roche, Nut-

ley, NJ, USA), thus MR16-1 treatment could be a feasi-

ble option for translational research of therapeutic

approaches for SCI in humans in the near future. It is

our opinion that quantitative evaluation of the produc-

tion of neurotrophic factors by macrophages after IL-6

blockade and analysis of the effects of the blockade of

other Th1 cytokines, such as TNF-a [54], would

enhance our understanding of the potential effects of

MR16-1 treatment.

Conclusion

A temporal blockade of IL-6 signaling by MR16-1 anti-

body could promote the generation of alternatively acti-

vated macrophages (M2 phenotype), and thus modify

the inflammatory response after SCI to promote SC

regeneration with functional recovery.

Additional material

Additional file 1: Immunoblot analysis of interleukin (IL)-6 and IL-6

receptor (IL-6R) after treatment with MR16-1. (A, B) IL-6 was

persistently upregulated in the control groups, with peak expression at 3

hours post-injury, and the difference from the MR16-1-treated group was

significant up to 7 days post-injury. (C, D) Upregulation of IL-6R in the

control groups with peak expression at 1 day, and significant difference

from the treatment group up to 7 days post-injury. There was no

difference in cytokine expression between the saline and rat IgG control

groups. (B,D) Each graph represents the band intensity relative to that of

b-actin. Data are expressed as mean ± SD, n = 3 for each group. *P

<0.05, **P <0.01 by ANOVA.

Additional file 2: Controls used in flow-cytometry analysis. (A-E)

Mixed preparations of injured and control spinal cord samples were used

as negative controls; these samples were used without added

fluorescent-conjugated antibodies to set the gates through all the scatter

plots to be used in the flow-cytometry experiment, adjusting the high

voltages (HVs) per detector, making sure that the negative population

was clearly off the axis in every channel. (F-P) Mixed preparations of the

same samples with a single added fluorescent-conjugated antibody were

used as positive controls to adjust the fluorescence compensation in

each channel, eliminating signal overlapping. Proper compensation was

considered achieved when, in every given channel, the positive controls

had the same mean of the negative controls. (Q) Light-scatter plot

(abscissa: forward scatter; ordinate: side scatter) of a mixed sample of

injured and control spinal cords was used to define the region of

interest to be studied (black triangle area). (R) Samples of representative

naive spinal cord (SC) were used to collect baseline information about

the populations of microglia (red squares: CD11bhigh, CD45low, GR-

1negative), macrophages (black squares: CD11bhigh, CD45high, GR-1negative)

and neutrophils (blue squares: CD11bhigh, CD45high, GR-1high). Few

neutrophils and macrophages were detected in the naive SC samples. (S)

Samples from a representative sham-injured sample at 3 days showed a

slight increase in the number of cells in the region of interest, with a

subsequent increase in all the populations studied. (T) Density plots of

representative SC samples at 3 days post-injury from the rat IgG control

group showed a robust increase in the number of cells present in the

region of interest, representing massive invasion of macrophages and

neutrophils, together with an increased microglial population after injury.

(U) SC samples from MR16-1-treated group at 3 days post-injury showed

a similar increase in the region of interest, and further analysis identified

an enhanced number of microglia together with fewer macrophages

and neutrophils, relative to the rat IgG control group.

Additional file 3: Cell identification by flow cytometry. (A) CD11b
positive cells from the spinal cord (SC) samples were analyzed and

fractioned in three different populations: CD11bnegative, CD11blow and

CD11bhigh. The CD11bhigh population was sub-fractioned based on the

expression of CD45 and GR-1 into three major sub-populations;

CD45high/GR-1high neutrophils, CD45high/GR-1negative macrophages and

CD45low/GR-1negative microglia. The expression of interferon (IFN)-g and

interleukin (IL)-4 was assessed in each population. (B) CD11bhigh cells in

the SC were sub-fractioned into CD45high/GR-1negative (macrophages) and

CD45low/GR-1negative (microglia). The phenotype of such macrophages

was confirmed by their expression of inducible nitric oxide synthase

(iNOS) or CD16/32 (classically activated macrophages) and arginase 1 or

CD206 (alternatively activated macrophages). (C) The expression levels of

macrophage antigen (Mac)-2 and Mac-3 were quantified in macrophages

positive for arginase 1, and in the microglia of both groups.
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