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Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and 

infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, 
it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant 

progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial 

cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma 

strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) 

receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-
like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 
and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of 
intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib 
diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type 
plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR 
small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these 
findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further  

in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial 
approaches in GBM.

Gliomas are the most common primary brain tumours with more than 20000 new cases each year in the United 
States. According to World Health Organization (WHO) prognostic grading system, glial tumours are classi�ed 
into four grades (grade I–IV), with the most aggressive tumours being grade 4 astrocytomas (also known as 
glioblastoma; GBM)1. GBM has a poor median survival due to its rapid growth, angiogenesis, invasiveness and 
therapeutic resistance. Treatment of GBM includes maximal surgical resection followed by radiotherapy with 
concurrent and adjuvant chemotherapy. Regardless of initial response, virtually all patients experience disease 
relapse2. �erefore, there is a pressing need to develop improved therapeutic options for GBM patients.
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Angiogenesis, a multi-step process by which tumours develop new vasculature, is a fundamental driver for 
tumour growth and malignant progression3,4. �e vascular endothelial growth factor (VEGF) pathway is the most 
promising angiogenic target due to its key roles in angiogenesis and tumour growth. �e VEGF family consists of 
seven ligands including VEGFA, VEGFB, VEGFC, VEGFD, VEGFE, placenta growth factor (PlGF) 1 and PlGF2. 
�e tyrosine kinase receptors in this family include VEGF receptor type 1 (VEGFR1), VEGFR2 and VEGFR35.

�ere is evidence that enhanced expression of the VEGF family promotes malignant progression and cor-
relates with poor prognosis in GBM6,7. Extensive endothelial proliferation and vascular permeability leading to 
vasogenic brain oedema, a major cause of neurologic morbidity, are hallmarks of GBM. �is is mainly due to ele-
vated expression of VEGFA and signalling through endothelial VEGFR28,9. �e degree of VEGFA expression and 
microvascular density correlate with malignant potential and aggressive behaviour of GBM cells as re�ected in 
disease relapse and overall survival rate9,10. Consistent with this, blockade of the VEGF pathway has been shown 
to normalise tumour vessels, improve radiotherapy outcome and extend survival in murine orthotopic models 
of GBM11.

Anti-angiogenic strategies are promising approaches for the treatment of GBM due to the highly vascular 
nature of these tumours and evidence has determined dependence of glioma growth on tumour-associated angio-
genesis12–14. GBM patients treated with bevacizumab (anti-VEGFA mAb) alone or in combination with irinotecan 
chemotherapy have demonstrated improvement in progression-free survival15–17. However, lack of improvement 
in overall survival, frequent development of resistance and incomplete VEGF pathway blockade emphasize the 
need for more e�cacious anti-angiogenic therapies12,18,19. In this regard, an agent with the ability to block all the 
three VEGF receptors is thought to have improved anti-tumour activity20.

Tivozanib (AV-951; AVEO pharmaceuticals) is a pan-VEGFR inhibitor with potential anti-angiogenic and 
anti-neoplastic activities21. Tivozanib has shown anti-tumour activity in xenogra� models of prostate, breast, 
lung, pancreas, glioblastoma and renal cell carcinoma. In both phase I and II clinical trials, it has been found to 
be well tolerable with manageable side e�ects and durable clinical activity22,23. Tivozanib is currently under inves-
tigation in a phase II study in patients with recurrent GBM (NCT01846871)12. In the present study, we examined 
the mechanistic activity of tivozanib in human GBM cell lines.

Results
Tivozanib inhibits proliferation, clonal growth and anoikis resistance. MTT assay was carried out 
to determine the e�ects of tivozanib on proliferation of the GBM cells. Treatment of these cells with tivozanib 
inhibited their growth (Fig. 1A,B). Moreover, the results of a colony formation assay demonstrate that tivozanib 
reduced their clonogenic survival (Fig. 1C,D).

Detachment of adherent cells from the extracellular matrix induces anoikis, a special type of apoptosis. 
Acquisition of resistance to anoikis is a prerequisite for tumour cell survival and spread24. Tivozanib diminished 

Figure 1. Tivozanib inhibits proliferation, clonal growth and anoikis resistance. (A) MTT assay was applied 
to estimate cell viability a�er 48 h of treatment with tivozanib. (B) �e GBM cells were treated with tivozanib for 
48 h, stained with crystal violet and imaged by an inverted microscope (images acquired at 10x magni�cation). 
(C,D) Clonogenic assay was conducted to evaluate the e�ects of tivozanib on clonal proliferation. (E) 
Anoikis resistance assay was performed with cell culture on poly-HEMA–coated culture dishes for 48 h 
and the proportion of viable cells was measured by MTT assay. Data are given as mean ±  SD, normalized 
to the untreated control group. Statistically signi�cant values of *p <  0.05, **p <  0.01, and ***p <  0.001 were 
determined compared with the control.
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anoikis resistance in the GBM cells (Fig. 1E). Taken together, these data illustrate that tivozanib decreased prolif-
eration, clonal growth and anoikis resistance in the GBM cells.

Tivozanib induces G2/M cell cycle arrest. Due to the anti-proliferative e�ects of tivozanib, we sought if it 
inhibits cell cycle progression or a�ects apoptosis. In A172 and T98G cells, tivozanib increased the percentage of 
cells in G2/M phase while decreasing the G1/S fraction. Moreover, a small number of cells underwent cell death, 
as indicated by appearance of a sub-G0/G1 population. Tivozanib-treated U87MG cells displayed an increase in 
the G2/M population (Fig. 2A).

We next determined the e�ects of tivozanib on expression of genes and proteins that regulate the G2/M transi-
tion. Activation of CDK1/cyclin B complex is a pivotal step in mitotic initiation. WEE1 and myelin transcription 
factor 1 (MYT1) block mitotic entry via phosphorylation of CDK1, a process reversed by CDC25C25,26. �e 
phosphatase activity of CDC25C is pre-empted by checkpoint kinase 1 (CHEK1)27. Moreover, polo-like kinase 1 
(PLK1) drives entry into mitosis via phosphorylation of CDC25C as well as inactivation of WEE1 and MYT128. 
Both serine/threonine kinases Aurora A and B activate PLK129. Forkhead box protein M1 (encoded by FOXM1) 
is a member of the FOX family of transcription factors that regulates expression of a large array of G2/M-speci�c 
genes such as PLK1, cyclin B2 (encoded by CCNB2), NIMA related kinase 2 (encoded by NEK2) and centromere 
protein F (encoded by CENPF)30.

Tivozanib inhibited p-PLK1 and decreased expression of Aurora A, Aurora B, CDC25C and cyclin B1 
(Fig. 2C, Supplementary Fig. 1). Both mRNA and protein levels of the G2/M checkpoint regulator p21 (encoded 
by CDKN1A) were increased by tivozanib treatment (Fig. 2B,C, Supplementary Fig. 1). In addition, tivozanib 
reduced the mRNA levels of FOXM1, CCNB2, NEK2, CENPF, CDK1 and CDK2 (Fig. 2B). �ese data suggest that 
tivozanib inhibited proliferation of the GBM cells through a G2/M cell cycle arrest.

Figure 2. Tivozanib induces G2/M cell cycle arrest. (A) Following treatment with tivozanib for 48 h, the cell 
pellets were �xed and incubated with PI to analyse the cell cycle distribution on a �ow cytometer. �e graphs are 
representative of three independent experiments with similar results. (B) �e cells were treated with tivozanib 
for 48 h then total RNA was harvested for qRT-PCR analysis. (C) Protein lysates from tivozanib-treated cells 
were subjected to Western blotting and probed with the indicated antibodies. β -actin was used as the loading 
control. �e blots are representative of three independent experiments with similar outcomes. Data are given as 
mean ±  SD. Statistically signi�cant values of *p <  0.05, **p <  0.01, and ***p <  0.001 were determined compared 
with the control. AURK, aurora kinase; FOXM1, forkhead box M1; CCNB, cyclin B; NEK2, NIMA related 
kinase 2; CENPF, centromere protein F; IL, interleukin; CDKN1A, cyclin-dependent kinase inhibitor 1 A; CDK, 
cyclin-dependent kinase; CCNA2, cyclin A2; GADD45A, growth arrest and DNA damage inducible alpha; 
CHEK, checkpoint kinase; CDC25, cell division cycle 25; MYT1, myelin transcription factor 1; SFN, strati�n.
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Tivozanib reduces adhesive and invasive abilities of the GBM cells. Adhesion of GBM cells to 
extracellular matrix (ECM) followed by migration along the ECM and invasion into the adjacent brain tissue is 
a hallmark of GBM and represents the major obstacle to successful chemo- and surgical therapy31. Cell adhesion 
molecules such as ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) 
play key roles in adhesion of GBM cells to the ECM32. To investigate whether tivozanib impairs adhesive proper-
ties of the GBM cells, we assayed adhesion of tivozanib-treated cells to collagen I which is a substrate for a range of 
cell adhesion molecules. Tivozanib decreased cell adhesion to collagen I, concomitant with signi�cant reduction 
of ICAM-1 and VCAM-1 (Fig. 3A–C, Supplementary Fig. 2).

GBM cells secrete proteinases such as cysteine proteinase cathepsin B, serine proteinase urokinase-type plas-
minogen activator (uPA) and matrix metalloproteinases (MMPs) to remodel the ECM and drive tumour inva-
sion. Cathepsin B stimulates pro-uPA, which leads to proteolytic activation of pro-MMPs and dissolution of the 
ECM. In this regard, the proteolytic cascade of cathepsin B/uPA/MMP is a potential therapeutic target to restrain 
GBM invasion33. Tivozanib reduced the enzymatic levels of cathepsin B, uPA and MMP-2 (Fig. 3D–F). Moreover, 
our data demonstrate that tivozanib-mediated inhibition of the proteases was associated with attenuation of cell 
migration and invasion (Fig. 3G,H).

Tivozanib enhances sensitivity to gefitinib. Emerging evidence indicates that the VEGF ligands act 
as survival factors for tumour cells that express the receptors34–36. In leukaemia cells, the VEGF family opposes 

Figure 3. Tivozanib inhibits adhesive and invasive potential of the GBM cells. (A) Tivozanib-treated cells 
were seeded into collagen I-coated culture dishes then the adhesive cells were stained, lysed and the optical 
densitometry was read. (B,C) �e e�ects of tivozanib on mRNA and protein levels of ICAM-1 and VCAM-1 
were measured by qRT-PCR and Western blot analysis. β -actin was used as the loading control. �e blots 
are representative of three independent experiments with similar results. (D) Equal amounts of secreted 
protein from treated cells were incubated with a synthetic substrate labelled with amino-4-tri�uoromethyl 
coumarin (AFC). �e substrate is cleaved by cathepsin B to release AFC, which is �uorometrically detected. 
(E) �e conditioned media from each sample was subjected to a chromogenic substrate, which is cleaved by 
active uPA and produces a colorimetrically detectable product. (F) �e conditioned media was collected and 
separated on a non-reducing polyacrylamide gel containing gelatin A. Gelatinolytic activities are visualized 
as clear bands against the blue background of stained gelatin. �e zymograms are representative of three 
independent experiments with similar results. �e gels were cropped and the full-length gels are presented in 
Supplementary Fig. 3. (G) �e cells were placed into 8-µ m porous culture inserts, treated with tivozanib and 
allowed to migrate for 48 h. �e migrated cells on the lower surface of the inserts were �xed with methanol, 
stained with crystal violet, lysed with 30% acetic acid and the optical densitometry was measured at 590 nm. 
(H) For invasion assay, the cells were placed into matrigel-coated inserts and allowed to invade through the 
matrigel layer for 48 h. Data are given as mean ±  SD. Statistically signi�cant values of *p <  0.05, **p <  0.01, and 
***p <  0.001 were determined compared with the control.
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apoptosis via induction of the anti-apoptotic protein Bcl-2 and blockade of VEGFR3 induces chemosensitisation 
in ovarian cancer cells37,38. �ese studies suggest that the VEGF family plays important roles in therapy resistance.

We thus determined the e�ects of tivozanib on proliferative response of T98G (temozolomide-resistant) 
and U87MG (radio- and temozolomide-resistant) cells to gefitinib, irinotecan and temozolomide. The 
tivozanib-gefitinib combination therapy had synergistic effects on growth inhibition and activation of 
caspase-3, an indicator of apoptosis (Fig. 4A–C, Table 1). Moreover, tivozanib synergistically increased 
irinotecan anti-tumour activity in T98G and sensitivity to temozolomide in U87MG cells (Fig. 4D–G, 
Supplementary Table 1,2). �ese data suggest that VEGFR blockade by tivozanib enhances chemosensitivity in 
the GBM cells.

Discussion
Angiogenesis blockade is considered the most e�ective targeted therapy for GBM39. �e anti-glioma e�ects 
of anti-angiogenics include inhibition of tumour-associated neoangiogenesis, disruption of tumour stem cell 
microvascular niche and tumour vascular normalisation40,41. VEGF pathway inhibitors may also sensitise 
glioma-associated endothelial cells to cytotoxic therapies42,43. Moreover, these agents reduce VEGFA-induced 
brain oedema and thereby, improve chemotherapy delivery to tumour cells44–46. Despite this, the direct anti-glial 
e�ects of angiogenic inhibitors on VEGFR-expressing GBM cells are largely unknown47. In the present study, we 
investigated the e�ects of the pan-VEGFR inhibitor tivozanib on the GBM cells.

�ere is evidence that aberration in cell cycle regulatory network is a frequent event in the pathogenesis of 
GBM48. Alteration of mitotic regulatory proteins such as Aurora kinases A and B, survivin and PLK1 correlates 
with a dismal survival in GBM49–51. Depletion of AURKA and AURKB, blocking PLK1 and shRNA suppression 
of CCNB1 retards tumour growth and increases chemosensitivity52–55. For instance, inhibition of PLK1 in GBM 
cells inhibits cell proliferation and enhances radiosensitisation56. Altogether, these �ndings imply that the cell 
cycle regulatory machinery is a potential therapeutic target in GBM in order to interrupt tumour growth57,58. In 
agreement, our �ndings reveal that tivozanib diminished proliferation of the GBM cells through a G2/M cell cycle 

Figure 4. Synergistic activity of tivozanib and ge�tinib on cell growth and induction of apoptosis.  
(A) �e e�ect of tivozanib-ge�tinib combination therapy on cell proliferation was investigated by MTT assay and 
shown by EC50 shi� analysis. (B) Normalised isobolograms of combination of tivozanib (10 µ M) and ge�tinib 
(1, 2, 5, 10, 20 and 50 µ M). �e data were analysed using the CalcuSyn so�ware. �e connecting line represents 
additivity. Data points located below the line indicate a synergistic drug-drug interaction and data points above 
the line indicate an antagonistic drug-drug interaction. (C) �e e�ect of combined tivozanib-ge�tinib treatment 
on activation of caspase 3 was measured by a colorimetric caspase 3 activity assay. (D) �e e�ect of tivozanib-
irinotecan combination therapy on cell proliferation was investigated by MTT assay and shown by EC50 shi� 
analysis. (E) Normalised isobolograms of combination of tivozanib (10 µ M) and irinotecan (0.1, 0.5, 1, 2.5, 
5, 10 and 25 µ g/mL). (F) �e e�ect of tivozanib-temozolomide combination therapy on cell proliferation was 
investigated by MTT assay and shown by EC50 shi� analysis. (G) Normalised isobolograms of combination 
of tivozanib (10 µ M) and temozolomide (50, 100, 200, 500, 1000 and 2500 µ M). Data are given as mean ±  SD. 
Statistically signi�cant values of *p <  0.05 and **p <  0.01 were determined compared with the control.
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arrest via up-regulation of p21 and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C as well 
as inhibition of p-PLK1.

�e initiation, progression and therapeutic resistance of GBM are associated with a subset of tumour cells 
called glioma-initiating cells (GICs) with an extensive self-renewal capacity59,60. �ese glioma stem-like cells 
(GSCs) have the ability to transdi�erentiate into tumour endothelium and contribute to neoangiogenesis and 
resistance to anti-angiogenics61,62. Targeted inhibition of signalling networks that drive the self-renewal of GICs is 
a novel therapeutic strategy in GBM63. An autocrine VEGF/VEGFR2 axis is thought to promote the self-renewal 
capacity and viability of GSCs and its abrogation reduces their survival and tumorigenicity64. In addition, the 
survival of GSCs is strongly dependent on the mitotic regulatory proteins and these cells have been shown to be 
sensitive to Aurora kinase A and PLK1 inhibitors65. Aurora kinase A regulates tumorigenicity of GICs by activat-
ing Wnt signalling pathway and its knockdown inhibits their “stemness”, the self-renewal capacity and tumori-
genicity66. Our present results reveal that tivozanib inhibits p-PLK1 and decreases Aurora kinase A in the GBM 
cells, suggesting that tivozanib might have anti-tumour activity in GICs cells.

Di�use in�ltration into the normal brain tissue and metastasis throughout the cerebrospinal �uid and lep-
tomeninges are major reasons for tumour recurrence and treatment failure in GBM67. �e extracellular pro-
teases cathepsin B, uPA and MMP-2 allow the aggressive in�ltration by degradation of the ECM components 
and promoting GBM cell invasion68. Elevated expression of cathepsin B correlates with a poor patient survival 
and increased invasiveness of GBM cells and its depletion interrupts GBM growth, invasion and angiogene-
sis69–71. uPA transcript, protein and enzymatic levels correlate with tumour grade and its inhibition decreases 
GBM growth and invasion in vitro and tumorigenicity in vivo72–74. In addition, MMP-2 activity is augmented in 
GBM tumours compared to normal brain and its expression levels is associated with malignant progression75. 
Inhibition of MMP-2 activity or its knockdown reduces GBM invasion76,77. In ovarian carcinoma cells, the 
VEGF/VEGFR loop promotes tumour invasion through induction of uPA and MMP-2, suggesting that blockade 
of the VEGF family might hinder tumour invasiveness78. In concert with this, the results of the current study 
demonstrate that tivozanib decreased invasive potential of the GBM cells via inhibition of the enzymatic levels of 
cathepsin B, uPA and MMP-2. �ese �nding further suggest that tivozanib could be applied in combination with 
radio- and chemotherapies in order to halt intrinsic and post-treatment invasion of GBM.

Amplification and overexpression of EGFR are observed in 50% of gliomas and associate with a worse 
prognosis79. Despite this, clinical trials with EGFR-targeted therapies have not shown marked activity in GBM 
patients80,81. Evidence indicates that increased tumour angiogenesis drives resistance to anti-EGFR therapies82,83. 
Elevated expression of VEGFA contributes to development of ge�tinib-resistant colon cancer cells, which was 
abrogated by treatment with a VEGFR2 inhibitor84. Our �ndings suggest that tivozanib potentiates anti-tumour 
activity of ge�tinib in the GBM cells.

Members of the Bcl-2 family of proteins play central roles in treatment response in GBM patients85. High 
levels of BAX correlate with better clinical outcome86. ABT737, a Bcl-2 family inhibitor, sensitises GBM cells to 
both anti-cancer drugs and the death ligand TRAIL87. In addition, the inhibitor of apoptosis protein survivin 
(encoded by BIRC5) has been shown to mediate radioresistance in GBM cells88. �ese �ndings suggest that tar-
geting the apoptotic machinery enhances GBM responsiveness to pro-apoptotic agents89. Consistent with this, 
our data demonstrate that tivozanib-induced sensitisation to ge�tinib might be through down-regulation of the 
anti-apoptotic proteins survivin and Bcl-2.

Taken together, our data demonstrate that inhibition of VEGF receptors by tivozanib reduced proliferative 
and invasive characteristics of the GBM cells and provide new insight into the mechanistic activity of tivozanib 
(Fig. 5). Combination of tivozanib with ge�tinib synergistically increased the anti-tumour activity of ge�tinib 

Concentrations (µM)

fa T98G CI

DRI

Tivozanib Ge�tinib Tivozanib Ge�tinib

10 1 0.64 0.43 2.38 212.76

10 2 0.65 0.41 2.45 113.87

10 5 0.68 0.37 2.84 54.38

10 10 0.7 0.35 3.18 31.78

10 20 0.72 0.35 3.43 17.68

10 50 0.78 0.31 4.69 10.86

U87MG

10 1 0.43 0.72 1.49 21.99

10 2 0.47 0.67 1.65 12.4

10 5 0.49 0.75 1.76 5.35

10 10 0.57 0.74 2.2 3.44

10 20 0.66 0.76 2.95 2.4

10 50 0.86 0.55 6.73 2.47

Table 1. Combination index (CI) and dose reduction index (DRI) of tivozanib and ge�tinib combination 
in T98G and U87MG cells. DRI represents the order of magnitude of dose reduction that is allowed in 
combination for a given degree of e�ect as compared with the dose of each drug alone. “fa” denotes fraction 
a�ected.
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on cell growth and induction of apoptosis. These findings suggest that tivozanib has potential anti-glioma 
e�ects. Further in vivo studies are warranted to elucidate the anti-tumour activity of tivozanib in combinatorial 
approaches in GBM.

Materials and Methods
Antibodies and chemicals. Antibodies were obtained as follows: p-PLK1 (Thr210) (Cell Signalling 
Technology); Aurora A (Millipore); Aurora B (Abcam); PLK1 (clone F-8), VCAM-1 (clone H-276), ICAM-1 
(clone H-108), Bcl-2 (clone N-19), Bax (clone N-20), survivin (clone FL-142), p21 (clone C-19), cyclin B1 (clone 
GNS1), Wee1 (clone C-20), CDC25 (clone C-20), c-Myc (clone 9E10) and β -actin (Santa Cruz Biotechnology).

Tivozanib was purchased from AdooQ BioScience (Irvine, CA, USA). Ge�tinib (EGFR small molecule inhib-
itor) and temozolomide (a DNA alkylating agent) were obtained from ChemieTek (Indianapolis, IN, USA). 
Irinotecan (a topoisomerase I inhibitor) was purchased from pharmacy of Shariati hospital (Tehran, Iran). 
Poly-hydroxyethylmethacrylate polymer (poly-HEMA) was obtained from Santa Cruz Biotechnology.

Human glioblastoma cell lines. Human glioblastoma cell lines A172, T98G and U87MG were obtained 
from National Cell Bank of Iran (NCBI, Tehran, Iran). All the cell lines were authenticated by STR pro�ling using 
Cell IDTM system (Promega) and were routinely checked for mycoplasma infection. Cell cultures were maintained 
at 37 °C in 5% CO2 in a humidi�ed incubator and cultured according to NCBI recommendations.

Cell proliferation. �e cells in logarithmic growth phase were plated in 96-well plates. A�er incubation at 
37 °C for 24 h, the cultures were exposed to desired concentrations of the drugs for 48 h and the proportion of 
viable cells was determined by MTT assay. Synergism was determined by calculation of combination index (CI) 
according to Chou and Talalay90 using CalcuSyn so�ware (Bioso�, Cambridge, UK). CI <  1, CI =  1, and CI >  1 
represent synergism, additive e�ects and antagonism of two drugs, respectively.

Figure 5. A schematic representation of the anti-tumour e�ects of tivozanib on the GBM cells. Tivozanib 
induced a G2/M cell cycle arrest through up-regulation of p21 and suppression of Aurora kinase A, Aurora 
kinase B, p-PLK1, cyclin B1 and CDC25C. Tivozanib decreased adhesive and invasive potential of the GBM 
cells via inhibition of ICAM-1, VCAM-1 and enzymatic levels of MMP-2. Furthermore, tivozanib increased 
anti-tumour activity of ge�tinib on cell growth and induction of apoptosis through down-regulation of the anti-
apoptotic proteins survivin and Bcl-2.



www.nature.com/scientificreports/

8SCIenTIfIC REpoRTS | 7:44075 | DOI: 10.1038/srep44075

Crystal violet staining. �e cells were plated at a density of 6 ×  104 cells in 6-well plates and treated with 
tivozanib for 48 h. �e cultures were �xed with ice-cold methanol and stained with crystal violet (0.5% w/v). �e 
images were acquired with an inverted microscope.

Colony formation assay. Cells were seeded onto 6-well plates with a density of 1000–2000 cell/well. A�er 
12 h, the cells were treated with tivozanib for 48 h. �e media was then changed to drug-free media and the cells 
were incubated at 37 °C in 5% CO2 for 10 d. �e cultures were �xed in ice-cold methanol and stained with crystal 
violet solution (1% w/v). �e colonies were counted and surviving fraction (SF) was estimated as: (mean col-
ony counts)/(cells plated) ×  (plating e�ciency), where plating e�ciency (PE) was determined as (mean colony 
counts)/(cells plated for untreated controls)91.

Anoikis resistance assay. To mimic anchorage-independent growth conditions, culture dishes were 
coated with poly-HEMA, as described by Sher et al.92. Approximately 5 ×  103 cells were seeded under 
anchorage-independent conditions with tivozanib treatment for 48 h. Cell viability was determined by MTT 
assay.

Analysis of gene expression by quantitative reverse transcription-PCR. �e quantitative reverse 
transcription-PCR (qRT-PCR) analysis was performed on a LightCycler®  96 instrument (Roche Molecular 
Diagnostics) using RealQ SYBR Green PCR reagents (Ampliqon, Copenhagen, Denmark). �e primers used are 
listed in Table 2. Expression of target mRNA was normalized to the expression of beta-2-microglobulin (B2M) 
for generation of ∆ CT values and relative mRNA expression was quanti�ed using the ∆ ∆ CT method, where CT 
is cycle threshold93.

Western blot analysis. �e cells were lysed for 30 min in ice-cold RIPA bu�er (50 mM Tris-HCl, pH 8.0, 
150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate and 0.1% SDS) containing protease and phosphatase 
inhibitors (Roche Molecular Biochemicals). Equal amounts of protein (50 µ g) were separated on SDS-PAGE, 
transferred to PVDF membrane (Membrane Solutions, TX, USA) then probed with primary and horseradish 
peroxidase (HRP)-conjugated secondary antibodies (Sigma). β -actin was used as the loading control and proteins 
were detected using a BM chemiluminescence detection kit (Roche Molecular Biochemicals).

Cell cycle analysis. Cell cycle analysis was performed using propidium iodide (PI) staining. Harvested cells 
were washed in ice-cold PBS, �xed in 70% ethanol and stored at − 20 °C overnight. �e cell pellets were then 
incubated with RNase A (100 µ g/mL) (Sigma), PI (50 µ g/mL) (Sigma) and 0.05% Triton X-100. Cellular DNA 
content was analysed on a FACSCalibur (BD Bioscience) �ow cytometer equipped with CellQuest Pro so�ware.

Gene Accession Forward Primer Reverse Primer Amplicon

B2M NM_004048 GATGAGTATGCCTGCCGTGT CTGCTTACATGTCTCGATCCCA 79

CDKN1A NM_000389 CCTGTCACTGTCTTGTACCCT GCGTTTGGAGTGGTAGAAATCT 130

c-MYC NM_002467 GTCAAGAGGCGAACACACAAC TTGGACGGACAGGATGTATGC 162

BIRC5 NM_001168 CCAGATGACGACCCCATAGAG TTGTTGGTTTCCTTTGCAATTTT 152

IL6 NM_000600 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG 149

IL8 NM_000584 GCTCTGTGTGAAGGTGCAGTT ACCCAGTTTTCCTTGGGGTC 203

CCNB1 NM_031966 AATAAGGCGAAGATCAACATGGC TTTGTTACCAATGTCCCCAAGAG 111

CDK1 NM_001786 AAACTACAGGTCAAGTGGTAGCC TCCTGCATAAGCACATCCTGA 148

CDK2 NM_001798 CCAGGAGTTACTTCTATGCCTGA TTCATCCAGGGGAGGTACAAC 90

CCNA2 NM_001237 TGGAAAGCAAACAGTAAACAGCC GGGCATCTTCACGCTCTATTT 109

WEE1 NM_003390 AGGGAATTTGATGTGCGACAG CTTCAAGCTCATAATCACTGGCT 160

GADD45A NM_001924 GAGAGCAGAAGACCGAAAGGA CACAACACCACGTTATCGGG 145

CHEK1 NM_001114122 ATATGAAGCGTGCCGTAGACT TGCCTATGTCTGGCTCTATTCTG 183

CHEK2 NM_007194 TCTCGGGAGTCGGATGTTGAG CCTGAGTGGACACTGTCTCTAA 205

CDC25B NM_021873 GGCTGAGGAACCTAAAGCCC CTTTCCGTCTACTGTCTGTAGGA 139

CDC25C NM_001790 TCTACGGAACTCTTCTCATCCAC TCCAGGAGCAGGTTTAACATTTT 98

SFN NM_006142 TGACGACAAGAAGCGCATCAT GTAGTGGAAGACGGAAAAGTTCA 133

MYT1 NM_004535 CGCCTCTGTTTCGGATGAATC TGAATCTCGTCCTGTCCTGAC 75

ICAM1 NM_000201 AGCTTCGTGTCCTGTATGGC TTTTCTGGCCACGTCCAGTT 70

VCAM-1 NM_001078 TGTTTGCAGCTTCTCAAGCTTTT GATGTGGTCCCCTCATTCGT 181

CCNB2 NM_004701 CTACAGCGTCGAAGATCCCC CAAATCACTGGACACCGTCG 172

FOXM1 NM_202002 ATAGCAAGCGAGTCCGCATT AGCAGCACTGATAAACAAAGAAAGA 151

CENPF NM_016343 GCTGCGGGCAGTTTGAATTAG AAATAAACTTGCTCTCGGGGACG 105

NEK2 NM_002497 GTCTCTGGCAAGTAATCCAGAACT CTTCAGGTCCTTGCACTTGG 151

AURKA NM_198433 GGATATCTCAGTGGCGGACG GCAATGGAGTGAGACCCTCT 211

AURKB NM_004217 GCTCTCCTCCCCCTTTCTCT TGTGAAGTGCCGCGTTAAGA 245

Table 2. Nucleotide sequences of the primers used for qRT-PCR.
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Zymography. Equal amounts of protein from the supernatants were applied to polyacrylamide gels copoly-
merized with gelatin A (Sigma). A�er electrophoresis, the gels were rinsed in re-activation bu�er overnight and 
then stained with Coomassie Brilliant Blue. Areas of enzymatic activity appeared as clear bands over the dark 
background94.

Urokinase-type plasminogen activator activity assay. Urokinase-type plasminogen activator (uPA) 
activity was assayed with a uPA-speci�c chromogenic substrate according to the manufacturer’s instructions 
(Millipore). Equal amounts of protein from the conditioned media were added to the chromogenic substrate and 
incubated at 37 °C for 1 h. �e samples were read at 405 nm.

Cathepsin B activity assay. To monitor the e�ect of tivozanib on activity of secreted cathepsin B, a cathep-
sin B activity assay (Abcam) was applied following the manufacturer’s instructions. Brie�y, equal amounts of pro-
tein from the supernatants were incubated with a speci�c substrate of cathepsin B at 37 °C for 2 h. �e substrate 
contains amino-4-tri�uoromethyl coumarin, which is released because of cathepsin B activity. �e samples were 
then read in a Synergy HT �uorescent microplate reader (BioTek Instruments) with a 400 nm excitation �lter and 
a 505 nm emission �lter. �e cathepsin B activity was obtained by comparing the relative �uorescence units of the 
samples with the control group.

Cell adhesion. Cell adhesion assay was carried out as described by Ueno et al.95. �e cells were treated 
with tivozanib for 48 h and then seeded in collagen I-coated 60 mm dishes (Biocoat Cell Environments; Becton 
Dickinson). A�er incubation for 15 min at 37 °C, cells were washed twice with cold PBS, stained with 1% crystal 
violet, lysed with 30% acetic acid and the optical densitometry was measured at 590 nm.

Cell migration and invasion. Transwell cell migration and invasion assays were carried out as described 
earlier96.

Caspase 3 activity assay. A colorimetric caspase 3 activity assay (Sigma) was conducted to quantitatively 
determine apoptotic cell death. Cell lysates from both adherent and �oating cells were centrifuged at 20000 ×  g 
for 10 min. Twenty µ g of the supernatant was incubated with 85 µ L of assay bu�er plus 10 µ L of caspase 3 substrate 
acetyl-Asp- Glu-Val-Asp p-nitroanilide (Ac-DEVD-pNA) in a 96-well plate at 37 °C for 12 h. �e samples were 
then read at 405 nm in an ELISA reader.

Statistical analysis. All data were evaluated in triplicate against untreated control cells and collected 
from three independent experiments. Data were graphed and analysed by GraphPad Prism So�ware 7.0a using 
one-way ANOVA and the unpaired two-tailed Student’s t test. All data are presented as mean ±  standard devia-
tion (SD).
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