Blockchain-Based E-Voting System

Fridrik P. Hjalmarsson, Gunnlaugur K. Hreidarsson
School of Computer Science
Reykjavik University, Iceland
{fridrik14, gunnlaugurl5}@ru.is

Abstract—Building an electronic voting system that satisfies the
legal requirements of legislators has been a challenge for a long
time. Distributed ledger technologies is an exciting technological
advancement in the information technology world. Blockchain
technologies offer an infinite range of applications benefiting from
sharing economies. This paper aims to evaluate the application
of blockchain as service to implement distributed electronic
voting systems. The paper elicitates the requirements of building
electronic voting systems and identifies the legal and technological
limitations of using blockchain as a service for realizing such
systems. The paper starts by evaluating some of the popular
blockchain frameworks that offer blockchain as a service. We
then propose a novel electronic voting system based on blockchain
that addresses all limitations we discovered. More generally this
paper evaluates the potential of distributed ledger technologies
through the description of a case study, namely the process of
an election and implementing a blockchain-based application
which improves the security and decreases the cost of hosting
a nationwide election.

I. INTRODUCTION

In every democracy, the security of an election is a matter of
national security. The computer security field has for a decade
studied the possibilities of electronic voting systems [1], with
the goal of minimizing the cost of having a national election,
while fulfilling and increasing the security conditions of an
election. From the dawn of democratically electing candidates,
the voting system has been based on pen and paper. Replacing
the traditional pen and paper scheme with a new election
system is critical to limit fraud and having the voting process
traceable and verifiable [2].

Electronic voting machines have been viewed as flawed, by
the security community, primarily based on physical security
concerns. Anyone with physical access to such machine can
sabotage the machine, thereby affecting all votes cast on the
aforementioned machine.

Enter blockchain technology. A blockchain is a distributed,
immutable, incontrovertible, public ledger. This new tech-
nology works through four main features:

(i) The ledger exists in many different locations: No single
point of failure in the maintenance of the distributed
ledger.

There is distributed control over who can append new
transactions to the ledger.

Any proposed “new block” to the ledger must reference
the previous version of the ledger, creating an immutable
chain from where the blockchain gets its name, and
thus preventing tampering with the integrity of previous
entries.

(i)
(iii)

(iv) A majority of the network nodes must reach a consensus
before a proposed new block of entries becomes a
permanent part of the ledger.

These technological features operate through advanced
cryptography, providing a security level equal and/or greater
than any previously known database. The blockchain tech-
nology is therefore considered by many [3]], including us, to be
the ideal tool, to be used to create the new modern democratic
voting process.

This paper evaluates the use of blockchain as a service to
implement an electronic voting (e-voting) system. The paper
makes the following original contributions: (i) research exist-
ing blockchain frameworks suited for constructing blockchain-
based e-voting system, (ii) propose a blockchain-based e-
voting system that uses “permissioned blockchain” to enable
liquid democracy.

The reminder of this paper is organized as follows: In sec-
tion II, we discuss design considerations for election systems.
In section III, we present our blockchain based e-voting system
and evaluate some of the popular blockchain frameworks for
realizing the system. In section IV, we discuss some of the
security and legal considerations and limitations regarding
designing an electronic voting system for national elections.
Related work is presented in Section V. Finally, conclusions
and directions for future work are presented in Section VI.

II. PRELIMINARIES OF E-VOTING AND BLOCKCHAIN

This section explains the liquid democracy and its design
consideration. We then provide an overview of blockchain and
smart contract technology and its capabilities as a service for
implementing an e-voting system for liquid democracy along
with an overview of Zero-Knowledge proofs and their use
cases in such systems.

A. Liquid Democracy Design Considerations

The main idea in a liquid democracy [6]] is that the voter has
the power, at any given moment, to review the way his vote
was cast in terms of a specific legislative proposal or a bill.
This allows people with domain-specific knowledge to better
influence the outcome of decisions, which should lead to an
overall better governance. The concept of liquid democracy
could be a possible answer to the public requests, but there
are technical and social barriers in the way. The solution to
the technical concerns associated with the liquid democracy
concept could be vital for the evolution of democracy as we
know it.

Below, we list our envisioned essential requirements that
need to be fulfilled by an e-voting system in order for it to
effectively be used in a national election:

(i) An election system should not enable coerced voting.

(i) An election system should not enable traceability of a
vote to a voters identifying credentials.

(iii) An election system should ensure and proof to a voter,
that the voters vote, was counted, and counted correctly.

(iv) An election system should not enable control to a third
party to tamper with any vote.

(v) An election system should not enable a single entity
control over tallying votes and determining an elections
result.

(vi) An election system should only allow eligible individuals
to vote in an election

B. Blockchain as a Service

The blockchain technology was introduced in 2008 when
Satoshi Nakamoto created the first cryptocurrency called Bit-
coin. The Bitcoin blockchain technology uses a decentralized
public ledger combined with PoW (Proof-of-Work) based sto-
castic concensus protocol, with financial incentives to record a
totally ordered sequence of blocks, the blockchain. The chain
is replicated, cryptographically signed and publicly verifyable
at every transaction so that no-one can tamper with the data
that has been written onto the blockchain. The blockchain
structure is an append-only data structure, such that new blocks
of data can be written to it, but cannot be altered or deleted
The blocks are chained in such a way that each block has a
hash that is a function of the previous block, providing the
assurance of immutability.

Whereas the Bitcoin blockchain publishes all elements of
the entire chain, in general other types of blockchain can be
public, private or consortium based. Public blockchains grant
access to read and ability to create a transaction to any user
on that network. This type is mostly used for cryptocurrencies
(e.g., Bitcoin, Ethereum, Dogecoin and Auroracoin). Consor-
tium blockchain is a “partially decentralized” blockchain[17],
where the consensus process is controlled by a pre-selected
set of nodes. Imagine a consortium of 15 financial institutions,
each of which operates a node of which 10 must sign every
block in order for the block to be valid. The right to read
the blockchain can be public or restricted to the participants.
Private blockchain limits not only the write access but the read
access as well, to specific participants who can verify their
transaction internally. That makes the transaction on a private
network cheaper, since they only need to be verified by few
nodes that are trusted and with guaranteed high processing
power. Nodes can be trusted to be very well-connected and
faults can quickly be fixed by manual intervention, allowing
the use of consensus algorithms which offer finality after much
shorter block times.[17]]

In our proposal, we will use a permissioned blockchain,
a variation of the consortium-based chains, which uses the
proof-of-authority(POA) consensus algorithm. In proof-of-
authority-based networks, transactions and blocks are vali-

dated by approved accounts, known as validators. This process
is automated and does not require the validators to be con-
stantly monitoring their computers. A permissioned blockchain
which uses the POA consensus algorithm enables us to set
restrictions on a set of selected known entities to validate and
certify transactions on the blockchain and censor transactions
arbitrarily, with their identity and reputation at stake. This
otherwise needs to be done by miners on a public blockchain
which uses the proof-of-work consensus algorithm. Rather
than employing mining fees, like the public blockchains in
operation require, using a permissioned blockchain, validators
get payed for the service they provide by acting as validators
in the system. Moreover, using a private network limits the
possibility for an eavesdropper to monitor traffic or read the
incoming data. This is needed to fulfill voting rights so that
voters can cast votes without leaking their identity or voting
data.

1) Smart Contracts: Smart contracts are trackable and
irreversible applications that execute in a decentralized en-
vironment (e.g., blockchain). Once the smart contract has been
deployed nobody can edit the code or change its execution
behavior. Smart contract execution guarantees to bind parties
together to an agreement as written. This creates a new
powerful type of trust relationship that does not rely on a
single party. Smart contracts enables better management for
realizing and administering digital agreements because they
are self-verifying and self-executing[[19]].

The phrase and concept of “smart contracts” is attributed to
Nick Szabo, who has a degree in law and computer science.
His expressed goal with smart contracts is to bring the highly
evolved practices of law to the design of electronic commerce
protocols between strangers on the Internet. Ethereum provides
an open-source blockchain platform that can be used to deploy
smart contracts. Ethereum introduced a new programming
language called Solidity (similar to Javascript) to write these
contracts. We implement our e-voting system, as a system
based on a smart contract in a permissioned blockchain. The
functionality in detail will be discussed in Section III.

2) Non-Interactive Zero-Knowledge proof: Another con-
cept that is not directly related to blockchain but can be
seen as an essential component for satisfying some of the
requirements of building an e-voting system on a blockchain
is zero-knowledge proof. A zero-knowledge proof is a cryp-
tographical method by which one party, the prover, can prove
to another party, the verifier that the prover knows a value
X, without revealing any information other than the fact that
the verifier knows the value x. A simple example which was
first demonstrated live by Konstantinos Chalkias and Mike
Hearn[20]. Using the example of “Two balls and the colour-
blind friend”, the ZKP works as follows: The prover has two
balls, one red and one green, and otherwise identical. The
verifier (the friend) is colour-blind. To prove that they are in
fact differently coloured, you give the balls to your friend, who
hides them behind his back. Your friend then decides whether
to switch the balls between hands or not, and then reveals one
of the balls. The prover declares if the balls were switched.

& Create Activate Observe Close Observe Deploy
Admin Election Election Votes Election Result Result
@
ah Open Cast Observe
Voter Ballot Vote Result
. Access Verify Observe
” to SC Votes Result
District Node
. Establish
- network
Boot Node

Fig. 1: Election roles and process

By repeating this process, the prover can prove that he can
correctly identify the balls, as the verifier confirms that the
likelihood of repeated success is halved each time.

A non-interactive zero-knowledge proof, or NIZKP for
short, is a variant of zero-knowledge proofs in which there
is no interaction between the prover and verifier. Blum, Feld-
man and Micali[21] showed that a common reference string
shared between the prover and verifier is enough to achieve
computational zero-knowledge without requiring interaction.
The Fiat-Shamir heuristic[22] however showed that NIZKPs
could also be obtained in the random oracle model, which
in practice can be used as a cryptographic hash function
instead[23]] which enables any user to prove their identity and
the authenticity of their message without a shared public key.
This scheme is ideally suited for microprocessor-based devices
such as smart cards, personal computers and remote control
systems. The Fiat-Shamir heuristic therefore provides a simple
yet efficient and secure method to authenticate and verify
eligible individuals for a voting system while guaranteeing
voters privacy.

III. BLOCKCHAIN AS A SERVICE FOR E-VOTING

In this paper, we consider existing electronic voting sys-
tems, blockchain-based and non-blockchain-based, and eval-
vate their respective feasibility for implementing a national
e-voting system (see section VI). Based on this, we devised a
blockchain-based electronic voting system, optimizing for the
requirements and considerations identified. In the following
subsection, we start by identifying the roles and component
for implementing an e-voting smart contract then, we evaluate
different blockchain frameworks that can be used to realize
and deploy the election smart contracts. In the last subsection,
we will discuss the design and architecture of the proposed
system.

A. Election as a Smart Contract

Defining a smart contract includes identifying the roles that
are involved in the agreement (the election agreement in our
case) and the different components and transactions in the

agreement process. We start by explaining the election roles
followed by the election process.

1) Election Roles: As can be seen in Figure [T} elections in
our proposal enable participation of individuals or institutions
in the following roles. Where multiple institutions and
individuals can be enrolled to the same role.

(1) Election administrators: Manage the lifecycle of an
election. Multiple trusted institutions and companies are
enrolled with this role. The election administrators spec-
ify the election type and create aforementioned election,
configurate ballots, register voters, decide the lifetime of
the election and assign permissioned nodes.

(i) Voters: For elections to which they are eligible for,
voters can authenticate themselves, load election ballots,
cast their vote and verify their vote after an election is
over. Voters can be rewarded for voting with tokens when
they cast their vote in an election in the near future,
which could be integrated with a smart city project.

(iii) District nodes: When the election administrators create
an election, each ballot smart contracts, representing each
voting district, are deployed onto the blockchain. When
the ballot smart contracts are created, each of the corre-
sponding district nodes are given permission to interact
with their corresponding ballot smart contract. When an
individual voter casts his vote from his corresponding
smart contract, the vote data is verified by all of the
corresponding district nodes and every vote they agree
on are appended onto the blockchain when block time
has been reached.

(iv) Bootnodes: Each institution, with permissioned access
to the network, host a bootnode. A bootnode helps the
district nodes to discover each other and communicate.
The bootnodes do not keep any state of the blockchain
and is ran on a static IP so that district nodes find its
peers faster.[27]]

2) Election Process: In our work, each election process is

represented by a set of smart contracts, which are instantiated

on the blockchain by the election administrators. A smart

Admin

POA network

[
Ballot Contract Blockchain S
T -
3
Election Creation |- Voting - Oxdeadbeef [* §
Contract district A ‘
A /" |-cCandidates| /|0xfoobar
- Voting / :
- districts L \
] 1/ 1 \
- Candidates - Voting \
district B
- Candidates

|

Fig. 2: Election as a smart contract

contract is defined for each of the voting districts of the
election so multiple smart contracts are involved in an election.
For each voter with its corresponding voting district location,
defined in the voters registration phase, the smart contract with
the corresponding location will be prompted to the voter after
the user authenticates himself when voting.

The following are the main activities in the election process:

®

(i)

(iii)

Election creation Election administrators create election
ballots using a decentralized app(dApp). This decen-
tralized app interacts with an election creation smart
contract, in which the administrator defines a list of can-
didates and voting districts. This smart contract creates
a set of ballot smart contracts and deploys them onto the
blockchain, with a list of the candidates, for each voting
district, where each voting district is a parameter in
each ballot smart contract. When the election is created,
each corresponding district node is given permission to
interact with his corresponding ballot smart contract (See
Figure [2).

Voter registration The registration of voter phase is
conducted by the election administrators. When an elec-
tion is created the election administrators must define
a deterministic list of eligible voters. This requires a
component for a government identity verification service
to securely authenticate and authorize eligible individu-
als. Using such verification services, each of the eligible
voter should have an electronic ID and PIN number and
information on what voting district the voter is located
in. For each eligible voter, a corresponding wallet would
be generated for the voter. The wallet generated for each
individual voter should be unique for each election the
voter is eligible for and a NIZKP could be integrated to
generate such wallet so that the system itself does not
know which wallet matches an individual voter.

Vote transaction When an individual votes at a voting
district, the voter interacts with a ballot smart contract
with the same voting district as is defined for any
individual voter. This smart contract interacts with the
blockchain via the corresponding district node, which ap-
pends the vote to the blockchain if consensus is reached
between the majority of the corresponding district nodes.

Each vote is stored as a transaction on the blockchain
whereas each individual voter receives the transaction
ID for their vote for verifying purposes (see “Verifying
vote” section). Each transaction on the blockchain holds
information about whom was voted for, and the location
of aforementioned vote. Each vote is appended onto the
blockchain by its corresponding ballot smart contract, if
and only if all corresponding district nodes agree on the
verification of the vote data. When a voter casts his vote,
the weight of their wallet is decreased by 1, therefore
not enabling them to vote more than once per election.
As can be seen in Table [I] a single transaction on the
public Ethereum blockchain includes the transaction ID,
the block which the transaction is located, the age of
the transaction, the wallet which sent the transaction
and who received it, the total value which was sent
and the transaction fee. A transaction in our proposed
system doesn’t require all of this information, a single
transaction only has information of the transaction ID,
the block which the transaction is located at, to which
smart contract the transaction was sent, in this example
NISC indicates that the vote was sent from the NI
district. Finally the value of the transaction is the data
which was selected to cast, D therefore indicates that
the vote casted in this transaction was the the party
D. A transaction in our system (see Table [[I) therefore
reveals no information about the individual voter who
casted this particular vote. The age of a single transaction
is excluded to protect individual voters from a timing
attack.

TABLE I: Example of an public transaction(Ethereum)

TxHash Block | Age From To Value [TxFee]
Oxdead... | 1337 33 sec ago | Oxbeef... Token 10 Ether | 0.087
Oxface... 1337 33 sec ago | 0x4242.. | 0x1234... | 1 Ether 0.056

(iv)

)

TABLE II: Example of an transaction in our system

TxHash Block | To Value
Oxdeadbeef... 1337 NISC | D
0xG1345edf... | 1330 N2SC | P

Tallying results The tallying of the election is done on
the fly in the smart contracts. Each ballot smart contract
does their own tally for their corresponding location in
its own storage. When an election is over, the final result
for each smart contract is published.

Verifying vote As was mentioned earlier, each individual
voter receives the transaction ID of his vote. Each
individual voter can go to his government official and
present their transaction ID after authenticating himself
using his electronic ID and its corresponding PIN. The
government official, utilizing district node access to the
blockchain, uses the blockchain explorer to locate the
transaction with the corresponding transaction ID on the
blockchain. The voter can therefore see his vote on the

blockchain, verifying that it was counted and counted
correctly.

B. Evaluating Blockchain as a Service for E-Voting

Table [[TI] shows a comparison between the three blockchain
frameworks that we consider for implementing and deploying
our election smart contracts. Those are Exonum, Quorum and
Geth.

1) Exonum: Looking at the Exonum blockchain, it is
robust end to end with its full implementation done with
the programming language Rust. Exonum is built for private
blockchains. It has a customized Byzantine algorithm that is
used to achieve consensus in the network. With that consensus
algorithm, Exonum can support up to 5000 transactions per
second. Unfortunately, the limitation of the framework is that
Rust is the only programming language in the current version,
which limits the developers to the constructs available in
that language. To solve this limitation, Exonum is planning
to introduce Java-bindings and platform-independent interface
description to make Exonum more developer-friendly in the
near future.

2) Quorum: Is an Ethereum-based distributed ledger pro-
tocol with transaction/contract privacy and new consensus
mechanisms. It’s a Geth fork and is updated in line with
Geth releases. Quorum changed up the consensus mechanism
and aimed more towards consortium chain based consensus
algorithms. Using this consensus allows it to support from
dozens to hundreds transactions per second.

3) Geth: Go-Ethereum or Geth is one of three orginal
implementations of the Ethereum protocol and it runs smart
contract applications exactly as programmed without possibil-
ity of downtime, censorship, fraud or third party interference
[4][24]. This framework supports develmopment beyond the
Geth protocol, and is the most developer-friendly framework
of the frameworks we evaluated. The transaction per sec-
ond(transaction rate) is dependent on whether the blockchain is
implmented as a public or private network. Because of these
capabilities, Geth was the framework we chose to base our
work on, any similar blockchain framework with the same
capabilities as Geth should be considered for such systems.

C. Design and Implementation

To introduce a method of secure authentication, our pro-
posed system is designed to use electronic ID authentication
via Audkenni[25]], which is an Icelandic service provider for
identity verification. Audkenni utilizes the Nexus software
and RFID scanners. When a user registers for an electronic
ID, a user chooses a PIN number for its corresponding ID
consisting of 6 numbers. A user will therefore identify himself
in the voting booth by scanning his ID and providing his
corresponding PIN number to authenticate himself to the
system.

1) Any computer in any voting district can be used by any
eligible voter to vote, since the wallet for the corresponding
voter has information on which voting district the voter is

Audkenni API

POA Network

Government

Bootnode

Smart Contract
- District

Authenctication
1. Authenticate credentials
2. Retrieve voter district
3. Generate voter wallet
4. Return to corresponding
Smart Contract

2. Voters District | - List of candidates

4. Verify vote

5. Transaction ID

Fig. 3: Voter authenticates himself and casts vote

POA Network

Government

3

= o Tonce
HASHN+2 T tAsHNA gENTeT "’

Non
HAsHNe | (]
6.New block ™0) 0 ™D

Transactions - Transactions
PREV N+2 <

- Transactions

PREV N-1 k) |PREVN e’

PREV N-1

Fig. 4: Block added to the blockchain

supposed to vote from. For a user to successfully authenti-
cate, a valid ID and PIN number needs to be presented at a
voting district using a card reader and the nexus software.

2) If the authentication is successful, the corresponding smart
contract is prompted for the ongoing election. The ballot
for the aforementioned election is a smart contract which
has a list of the candidates a voter can choose from.

3) When a voter has selected a candidate and casts his vote,
the voter proceeds to sign his vote by re-entering the
corresponding PIN number for his electronic ID.

4) After the voter has signed his vote, the vote data proceeds
to be verified by the corresponding district node, which the
voter is interacting with the smart contract through. If the
aforementioned district node accepts the vote data, the vote
data must be agreed upon by the majority corresponding
district node.

5) If the majority of district nodes agree upon the vote data,
consensus for the particular vote has been reached. The
user then receives the transaction ID for the corresponding
transaction of his vote in the form of a QR-code and the

TABLE III: Framwork Evaluation

Exonum Quorum Go-Ethereum
Consensus Custom-built BFT algorithm QuorumChain, IBFT and Raft-based consensus ~ PoW, PoS and PoA
Transactions p/s up to 5000 transactions p/s Dozens to hundreds Depends
Private support Yes Yes Yes
Smart Contract Language Rust Solidity Solidity
Programming Language Rust Go, C, JavaScript Go, C, Javascript
Decentralized Yes Partially Optional

option to print the transaction ID. When the vote is casted
and has been verified, a function in the smart contract
adds one vote to the party which was voted for. This
functionality of the smart contract structure is utilized to
determine the election result in each of the voting districts.
Figure [3] is a visual representation of the steps we just
ellaborated.

6) All transactions which were received and verified in the
ongoing block time are deployed onto the blockchain after
the block time has reached its time limit (see Figure H).
With each new block added to the blockchain, each district
node updates his copy of the ledger.

D. Index of functionalities

Below, we will elaborate the functionalities of a novel ballot
and election smart contract for an e-voting system, without the
integration of a government indentity verification service.

contract ElectionCreation {
address|[] public deployedBallots;
constructor (bytes32[] candidates,
bytes32[] district, uint hours) public {
for(uint 1 = 0; 1 < district.length;
i++) {
address newBallot =
new Ballot (candidates,
district[i], msg.sender, hours);
deployedBallots.push (newBallot) ;

}

function getDeployedBallots ()

public view returns (address[]) {
return deployedBallots;

« ElectionCreation constructor: Takes in a list of candidates
and districts along with the address of the wallet of the
creator and the amount of hours the election will take.
The constructor then creates a single smart contract for
each district provided and puts the address of each smart
contract created into the deployedBallots array.

« getDeployedBallots: returns an array with the address of
each created smart contract in each index of the array.

contract Ballot {
struct Candidates {
bytes32 name;
uint voteCount;
uint creationDate;

uint expirationDate;
}
Candidates[] public candidates;
address public manager;
bytes32 public votingDistrict;
mapping (address => bool) public voters;

modifier restricted() {
require (msg.sender == manager) ;
7
}
constructor (bytes32[] candidateNames,
bytes32 district, address creator,
uint amountOfHours) public {
manager = creator;
votingDistrict = district;
for (uint i = 0;
i < candidateNames.length; i++) {
candidates.push (Candidates ({
name: candidateNames[i],
voteCount: O,
creationDate: now,
expirationDate: now +
amountOfHours

}

Restricted modifier: This modifier is used to restrict
functions in the manner of that only the creator of the
election can access the information which the functions
give.

Ballot constructor: Sets the manager of the ballot smart
contract to the address of the wallet which created the
election, the voting district of the smart contract to the
district which the ElectionCreation contract provided and
then proceeds to fill the Candidates struct with the list
of candidates provided and the number of votes for each
candidate to 0. The constructor also stores the time of
the creation of the contract along with the time when the
contract is to expire.

function vote (uint candidate) public{
require (!voters|[msg.sender]);
if (now >

candidates[candidate] .expirationDate) {

revert () ;

}

candidates[candidate] .voteCount +=

1;

voters[msg.sender] = true;
}

« vote: This function allows voters to vote. The requirement
for a voter to vote, is that the mapping of the address of
the voter is set to its default, false. If that is the case,
the function guarantees that the election time limit has
not been reached. If both requirements are satisfied, the
contract retrieves the index of which candidate was voted
for and increases his vote count by 1 and sets the mapping
to true, so that the voter can never vote again in this
particular election.

function getCandidateName (uint index)
public restricted view
returns (bytes32)

require (now >
candidates[candidate]
.expirationDate)
}
return candidates[index] .name;
}
function getVoteCount (uint index)
public restricted view
returns (uint)

require (now >
candidates[candidate]
.expirationDate)
return candidates[index] .voteCount;

« getCandidateName & getVoteCount: Both these functions
retrieve the name and amount of votes a candidate has
recieved from an index. These functions classify as helper
functions to determine the election results after the elec-
tion is finished

IV. SECURITY ANALYSIS AND LEGAL ISSUES

In this section we analyze the security of the proposed e-
voting system and the main legal issues.

A. Security analysis

1) DDoS: To successfully DDos a distributed system such
as we have proposed, the attacker must DDoS every single
bootnode in the private network. The individual or institution
would be immediately located if that would occur. Each node
is implemented with a Byzantine fault tolerance algorithm,
which helps locating failed nodes in the system.

2) Authentication vulnerability: Each individual is identi-
fied and authenticated by the system by presenting an elec-
tronic ID from Audkenni and the corresponding 6-digit PIN
in the voting booth. Without supervision, an individual could
vote for multiple people, if the individual had knowledge of
the PIN for each corresponding electronic ID he has. To further
address this vulnerability in the near future, a biometric scan
could be introduced.

3) Sybil: Sybil attack[26] is known against centralized
systems, where an individual creates a large amount of nodes
in an attempt to disrupt network operation by hijacking or
dropping messages. Since our proposal is running in a private
network no individual has the access to create one. Even the
consensus protocol that is used in our system is prone Sybil
attacks.

Private blockchains solve many of today’s security problems
using strong cryptography features and the limited access
to the ledger, without negating the transparency aspect the
blockchain technology offers.

B. Legal issues

1) Remote voting: Remote elections provide no coercion
resistance because of the non supervised factor in a remote
election. Remote elections can therefore not guarantee the
privacy that people have when they cast their vote in a
voting booth. Family members or a coercer can watch over
your shoulder while you’re voting, which could lead to a
misconfigured results. If elections are hosted on a website for
example it could easily be taken down by people with good
hacking skills and the mindset to do so. People could identify
themselves as another person and therefore vote for another
person and even multiple people.

2) Transparency: In the today’s election scheme, no
method of transparency can be offered to participants of the
election. When an individual places his ballot in the box at his
voting district, there is no guarantee from the scheme that his
vote was counted and counted correctly. Any individual vote
can be misplaced, counted incorrectly because of human error
or simply because the party which the voter voted for could
be disliked by the individual which counted the vote. This
transparency is non-existent because no ballot has information
on who casted aforementioned vote. To introduce transparency
in the process of an election would require a new law which
would allow government officials to provide the services which
allow such method of transparency

3) Voter privacy: In every pen and paper election scheme,
voters privacy is a key element. The law forbids any individual
or entity to be able to know from a single vote, who gave
aforementioned vote. If such information could be gathered for
each vote, such information could then leak to the public which
would allow for listing every single individual who voted for
a single party/candidate. To satisfy the privacy of each voter,
no individual vote should be traceable back to the voter.

V. RELATED WORK

In this chapter we will be examining various research papers
and thesis which explored similar fields of study, i.e electronic
voting systems.

Anonymous voting by two-round public discussion, pro-
posed an addition of a self-tallying function to the 2-Round
Anonymous Veto Protocol (called AV-net). The AV-net pro-
vided exceptional efficiency compared to related techniques,
the paper was focused on the dining cryptographers network

(DC-net) and its weaknesses and proposed the AV-net as a
new way to tackle that problem.[7][8][9]

The new protocol, like the AV-net requires no trusted third
party or private channel. Participants execute the protocol by
sending two-round public messages, but is significantly more
efficient in terms of the number of rounds, computational cost
and bandwidth usage. In general, the new protocol divided
electronic voting into to two classes:

1) Decentralized elections where the protocol is essentially

run by the voters.

2) Centralized elections where trusted authorities are em-

ployed to administer the process.

The protocol proposed was focused on the first class, where
strong voter privacy was the primary objective which had two
challenges. First challenge was that there exists no trusted third
party. With a trusted third party, many security problems can
be easily solved, but could lead to the ‘trusted’ third party
to become the one who breaks the security policy. The goal
therefore was to eliminate the use of a trusted third party
altogether. The second challenge was that there would be no
voter-to-voter private channels to ensure dispute freeness, i.e
everybody could check whether all voters had followed the
protocol faithfully.

These challenges were fulfilled in the AV-net, but the new
protocol proposed a new solution which solved the downside
of the AV-net, heavy computational load for each voter, which
increased linearly with the number of voters. The new protocol
proved as secure as the AV-net and can be seen as a generali-
sation of the AV-net protocol, but significantly more efficient.
The first round in the two-round protocol consisted of every
participant to publish his public key and a zero knowledge
proof (ZKP) for his private key. When the round finished, each
participant checks the validity of the ZKPs and computes. In
the second round, each participant needs to demonstrate that
the encrypted vote was one of the valid voting choices without
revealing which one. The self-tallying function then works in
a way that the public keys of all participants are combined is
such a structured way that the random factors of the private
keys immediately vanish, thus revealing the tally. There are
limitations with this protocol concerning national elections.
The protocol requires a collaborative effort from all voters,
otherwise the protocol will not work. For example if some
voters refuse to send data in the end of round 1, the tallying
process will fail, everyone will know who those voters are
and can expel them and restart the protocol. This leads to the
voting process to be delayed, which would be severely costly
for a large scale election. Another limitation is the lack of
resistance of coercion because of the remote voting, a voter
can be forced to reveal his secret value, therefore revealing
how he voted.

A Smart Contract For Boardroom Voting with Maxi-
mum Voter Privacy[[10]], proposed the first implementation of
a decentralized and self-tallying internet voting protocol with
maximum voter privacy using the Blockchain, called The Open
Vote Network (OVN). The OVN is written as a smart contract
for the Ethereum blockchain. In its general idea the OVN is an

implementation of the Anonymous voting by two-round public
discussion we previously discussed.

The creators of the OVN came to the conclusion after
implementing the system, that the cost of running such system
on the Ethereum blockchain was 0.73$ per voter. The safe
upper limit of voters was 50 voters, but the cost could be
considered reasonable as it provided maximum voter privacy
and is publicly verifiable. The limitation of number of voters
was recommended because of the gas limit on the public
Ethereum blockchain.

By examining their research paper, the limitations of the
previous protocol are unchanged. The OVN does not provide
any coercion resistance with the public verifiability in the way
that the voting is conducted in a unsupervised environment,
i.e the coercer cand stand over the shoulder of the voter. The
OVN is also vulnerable to denial of service attack because it
is implemented on the Ethereum blockchain, which has had
numerous DOS attacks through its lifespan. The Ethereum
blockchain could also be throttled by major traffic of trans-
actions at the time of an election, which could delay the voting
process immensely. The implementation could therefore be
optimal for small boardroom voting, with the downside of
having each individual voter downloading the full Ethereum
blockchain to confirm the voting protocol is being executed
correctly.

A Secure and Optimally efficient Multi-Authority Elec-
tion Scheme, proposed a multi-authority secret-ballot election
scheme which would guarantee privacy, universal verifiability
and robustness, where voters would participate using a PC,
where the main consideration is the effort required of a
voter[11]].

In this model, voters cast their vote by posting ballots to
a bulletin board. The bulletin board works as a broadcast
channel with memory to the extent that any party can access
its content but no party can erase anything from the bulletin
board. The ballot does not reveal any information on the
vote itself but is ensured by an accompanying proof that
the ballot contains a valid vote. The final tally, the sum
of all votes, which occurs when the deadline is reached,
can then be obtained and verified, by any observer, against
the product of all submitted ballots. Which would ensure
universal verifiability, due to the homomorphic properties of
the encryption method used.

While this proposal can scale up to large elections better
than the previous ones, it does have limitations. The proposal
doesn’t provide any coercion resistance, as the election takes
place on a PC at home, like the Ethereum smart contract, the
coercer can stand over the shoulder of the voter.

Netvote[12] is a decentralized blockchain-based voting net-
work on the Ethereum blockchain. Netvote utilizes decentral-
ized apps for the user interface of the system. The Admin
dApp allows election administrators to set election policies,
create ballots, establish registration rules and open and close
voting. The Voter dApp is used by individual voters for regis-
tration, voting and can be integrated with other devices(such as

biometric readers) for voter identification. The Tally dApp is
then used to tally and verify election results. Netvote supports
three types of elections:

1) Open Election: Anyone may vote

2) Private Election: Only authenticated and authorized indi-
viduals may vote

3) Token-Holder Elections: Only voters who operate ac-
counts that have a balance of a designated compliant
token may vote.

In Netvote, each election is represented by a set of smart
contracts which is instantiated on the Ethereum blockchain
by an election administrators through the Admin dApp. Each
ballot smart contract references one ballot. Multiple ballots can
be listed together through a voter pool smart contract where
each voter pool smart contract can f.x. represent each polling
place. An individual voter therefore registers at the polling
place and then interacts with the voter pool smart contract
through the voter dAapp. In a private election, Netvote utilizes
a so called Vote Gateway to provide voters privacy. Through
the voter dApp, each individual voter transmits a cryptograph-
ically signed vote token to the Vote Gateway for verification.
The Vote Gateway then retrieves the Vote ID secret key from
a vault, where the secret key is specific to each election and is
destroyed when voting closes. The Vote Gateway then does a
SHA3 hash of the vote token with the secret key to generate
an anonymous Vote ID. The Vote Gateway then submits the
vote payload in a blockchain transaction to the voter pool
smart contract with the vote payload mapped to the anonymous
Vote ID. This Vote Gateway is used in a manner of a Zero-
knowledge proof to guarantee voters privacy.

Netvote is an optimal solution for national election, while there
is a limitation concerning scaleability since netvote utilizes the
public Ethereum blockchain which we discussed earlier can
be throttled and have immense traffic of transaction while the
election is taking place.

Agora[13] is an end-to-end verifiable blockchain based voting
solution designed for governments and institutions. Agora
uses their own Token on the blockchain for elections, where
governments and institutions purchase these tokens for each
individual eligible voter. This voting system is a multi-layer
architecture which include the blockchain, called the Bulletin
Board, which is based on the Skipchain architecture. The
data on the Bulletin Board is cryptographically tied to the
Bitcoin blockchain through the Cotena layer, which provides
a high level of immutability and decentralization of the data.
The Bulletin Board utilizes permissioned collective authority
nodes, which confirm transactions, where each node in the
network maintains a copy of all transactions and approves
them into blocks as part of the networks consensus mechanism.
The Skipchain architecture[[14] provides a proactive Byzan-
tine consesus mechanism. This architecture enables software
clients to navigate arbitrarily long blockchain timelines both
forward and backward, providing proof of transaction validity
without the need for a full record of the blockchain. The
Cotena schema[l5]] is a tamper-resistant logging mechanism

built on top of the Bitcoin blockchain. This layer links the
Bulletin Board and supporting cryptographic proofs to the
Bitcoin blockchain, which provides decentralized immutability
to the permissioned layers data. Cotena was created to leverage
the data security of the Bitcoin blockchain while introducing a
design that has minimal data storage requirements and reduced
Bitcoin transaction costs. Agora’s voting process consists of
six distinct steps:
1) Configuration: Election administrators create a new elec-
tion event.
2) Casting: Voters cast their encrypted ballots to Agora’s
network.
3) Anonymization: Agora’s network anonymizes all voter
ballots.
4) Decryption: Agora’s network decrypts the anonymized
ballots.
5) Tallying: All votes are counted.
6) Auditing: Auditors post their reviews confirming validity
of the election results.

Agora’s voting system was partially used for the presidential
election in Sierra Leone on march 7th in 2018[16)]. In this
election representatives of Agora went to poll stations and
manually registered the vote data of paper ballots onto their
blockchain to do a private tally of the votes. Agora is also an
optimal blockchain-based electronic voting system solution,
the only limitation found of this system is that Agora is a
token-based solution, for every eligible voter, a token must
be purchased to enable every voter with a voting right. This
can lead to cost inefficiency with low voter turnout, f.x. if a
government purchases 3 million tokens for 3 million eligible
voters, but the voter turnout is 50%, then 1.5 million tokens
would have sufficed. There would be no possibility for the
government to purchase only 1.5 million tokens, since that
would lead to the individuals that would not vote to not having
a right to vote, which is illegal and predicting voter turnout
precisely is impossible.

VI. CONCLUSION

The idea of adapting digital voting systems to make the pub-
lic electoral process cheaper, faster and easier, is a compelling
one in modern society. Making the electoral process cheap
and quick, normalizes it in the eyes of the voters, removes a
certain power barrier between the voter and the elected official
and puts a certain amount of pressure on the elected official.
It also opens the door for a more direct form of democracy,
allowing voters to express their will on individual bills and
propositions.

In this paper, we introduced a unique, blockchain-based
electronic voting system that utilizes smart contracts to enable
secure and cost efficient election while guaranteeing voters
privacy. We have outlined the systems architecture, the design,
and a security analysis of the system. By comparison to
previous work, we have shown that the blockchain technology
offers a new possibility for democratic countries to advance
from the pen and paper election scheme, to a more cost- and
time-efficient election scheme, while increasing the security

measures of the todays scheme and offer new possibilities
of transparency. Using an Ethereum private blockchain, it is
possible to send hundreds of transactions per second onto
the blockchain, utilizing every aspect of the smart contract to
ease the load on the blockchain. For countries of greater size,
some measures must be taken to withhold greater throughput
of transactions per second, for example the parent & child
architecture[28|] which reduces the number of transactions
stored on the blockchain at a 1:100 ratio without compro-
mising the networks security. Our election scheme allows
individual voters to vote at a voting district of their choosing
while guaranteeing that each individual voters vote is counted
from the correct district, which could potentially increase voter
turnout.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

Sos.ca.gov. (2007). Top-to-Bottom Review | California Secretary of State.
Available at: hitp://www.sos.ca.gov/elections/voting-systems/oversight/
top-bottom-review/.

Nicholas Weaver. (2016). Secure the Vote Today. Available at:https://
www.lawfareblog.com/secure-vote-today.

TechCrunch, (2018). Liquid democracy uses blockchain to fix politics,
and now you can vote for it [Online]. Available at: https://techcrunch.
com/2018/02/24/liquid-democracy-uses-blockchain/

Geth.ethereum.org. (2018). Go Ethereum. Available at: https://geth.
ethereum.org/

Vitalik Buterin. (2015). Ethereum White Paper. Available at: https://
github.com/ethereum/wiki/wiki/ White- Paper.
Nca.tandfonline.com. (2015). Pirates on
Liberal Democracy: Movement Frames of European Pirate Par-
ties. [Online]. Available at: https://nca.tandfonline.com/doi/abs/10.1080/
13183222.2015.1017264#.Wr0zCnVISYR

Feng Hao, P.Y.A. Ryan and Piotr Zielinski. (2008). Anonymous voting
by two-round public discussion. Available at: http://homepages.cs.ncl.ac.
uk/feng.hao/files/OpenVote_IET.pdf

Feng Hao and Piotr Zielinski. A 2-Round Anonymous Veto Protocol
Available at: http://homepages.cs.ncl.ac.uk/teng.hao/files/av_net.pdf.
The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability. Available at: https://users.ece.cmu.edu/~{ }adrian/
731-sp04/readings/dcnets.html.

Patrick McCorry, Siamak F. Shahandashti and Feng Hao. (2017). A
Smart Contract for Boardroom Voting with Maximum Voter Privacy
Available at: https://eprint.iacr.org/2017/110.pdf.

Ronald Cramer, Rosario Gennaro and Berry Schoenmakers. A Secure
and Optimally Efficient Multi-Authority Election Scheme Available at:
http://www.win.tue.nl/~berry/papers/euro97.pdf|

Jonathan Alexander, Steven Landers and Ben Howerton (2018).
Netvote: A Decentralized Voting Network Available at: https://netvote.
i0/wp-content/uploads/2018/02/Netvote- White-Paper-v7.pdf

Agora (2017). Agora: Bringing our voting systems into the 21st century
Available at: https://agora.vote/Agora_Whitepaper_v0.1.pdf]

Kirill Nikitin, Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nico-
las Gailly, Ismail Khoffi, Justin Cappos and Bryan Ford (2017).
CHAINIAC: Proactive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds Available at: https://www.usenix.
org/system/files/conference/usenixsecurity 17/sec17-nikitin.pdf

Alin Tomescu and Srinivas Devadas(2017). Catena: Efficient Non-
equivocation via Bitcoin Available at: |https://people.csail.mit.edu/
alinush/papers/catena-sp2017.pdf

Michael del Castillo (2018). Sierra Leone Se-
cretly Holds First Blockchain-Audited Presiden-
tial Vote Available at: https://www.coindesk.com/
sierra-leone-secretly-holds-first-blockchain-powered- presidential- vote/
Ethereum Blog. (2018). On Public and Private Blockchains -
Ethereum Blog. Available at: https://blog.ethereum.org/2015/08/07/
on-public-and-private-blockchains/

Bitfury.com. (2018). Digital Assets on Public Blockchains Available
at: http://bitfury.com/content/5- white-papers-research/bitfury-digital_
assets_on_public_blockchains- 1.pdf]

the Liquid Shores of

[19]

[20]

[21]

(22]

[23]

[24]

[25]
[26]

(27]

(28]

Steve Ellis, Ari Juels and Sergey Nazarov. (2017). ChainLink: A De-
centralized Oracle Network Available at: https://link.smartcontract.com/

whitepaper

Konstantinos Chalkias, (2017). Demonstrate how
Zero-Knowledge Proofs work without using
maths Available at: https://www.linkedin.com/pulse/

demonstrate-how-zero-knowledge- proofs- work- without-using- chalkias
Manuel Blum, Alfredo De Santis, Silvio Micali and Giuseppe
Persiano (1988). Non-Interactive Zero-Knowledge Available at:
https://people.csail.mit.edu/silvio/Selected %20Scientific%20Papers/
Zero\%20Knowledge/Noninteractive_Zero- Knowkedge.pdf

Amot Fiat and Adi Shamir. (1986). How to Prove Yourself: Practical
Solutions to Identification and Signature Problems Available at:
https://www.math.uni-frankfurt.de/~dmst/teaching/SS2012/Vorlesung/
Fiat.Shamir.pdf

Mihir Bellare & Phillip Rogaway (1995). Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols Available at: https://
cseweb.ucsd.edu/~mihir/papers/ro.pdf

Ethdocs.org. (2018). What is Ethereum? — Ethereum Homestead
0.1 documentation. [online] Available at: |http://ethdocs.org/en/latest/
introduction/what-is-ethereum.html

Audkenni.is (2018). [Online] Available at: https://www.audkenni.is/en/
Vincent Gramoli. (2018). On the Danger of Private Blockchains.
[Online] Abailable at: https://www.zurich.ibm.com/dccl/papers/gramoli_
dccl.pdf

Salanfe, "Setup your own private Proof-of-Authority Ethereum net-
work with Geth", Hacker Noon, 2018. Available at: https://tinyurl.com/
y7g362kd.

Jelurida, "Jelurida", 2017. Available at: https://www.jelurida.com/sites/|
default/files/JeluridaWhitepaper.pdf

http://www.sos.ca.gov/elections/voting-systems/oversight/top-bottom-review/.
http://www.sos.ca.gov/elections/voting-systems/oversight/top-bottom-review/.
https://www.lawfareblog.com/secure-vote-today.
https://www.lawfareblog.com/secure-vote-today.
https://techcrunch.com/2018/02/24/liquid-democracy-uses-blockchain/
https://techcrunch.com/2018/02/24/liquid-democracy-uses-blockchain/
https://geth.ethereum.org/
https://geth.ethereum.org/
https://github.com/ethereum/wiki/wiki/White-Paper.
https://github.com/ethereum/wiki/wiki/White-Paper.
https://nca.tandfonline.com/doi/abs/10.1080/13183222.2015.1017264#.Wr0zCnVl8YR
https://nca.tandfonline.com/doi/abs/10.1080/13183222.2015.1017264#.Wr0zCnVl8YR
http://homepages.cs.ncl.ac.uk/feng.hao/files/OpenVote_IET.pdf
http://homepages.cs.ncl.ac.uk/feng.hao/files/OpenVote_IET.pdf
http://homepages.cs.ncl.ac.uk/feng.hao/files/av_net.pdf.
https://users.ece.cmu.edu/~{}adrian/731-sp04/readings/dcnets.html.
https://users.ece.cmu.edu/~{}adrian/731-sp04/readings/dcnets.html.
https://eprint.iacr.org/2017/110.pdf.
http://www.win.tue.nl/~berry/papers/euro97.pdf
https://netvote.io/wp-content/uploads/2018/02/Netvote-White-Paper-v7.pdf
https://netvote.io/wp-content/uploads/2018/02/Netvote-White-Paper-v7.pdf
https://agora.vote/Agora_Whitepaper_v0.1.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-nikitin.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-nikitin.pdf
https://people.csail.mit.edu/alinush/papers/catena-sp2017.pdf
https://people.csail.mit.edu/alinush/papers/catena-sp2017.pdf
https://www.coindesk.com/sierra-leone-secretly-holds-first-blockchain-powered-presidential-vote/
https://www.coindesk.com/sierra-leone-secretly-holds-first-blockchain-powered-presidential-vote/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
http://bitfury.com/content/5-white-papers-research/bitfury-digital_assets_on_public_blockchains-1.pdf
http://bitfury.com/content/5-white-papers-research/bitfury-digital_assets_on_public_blockchains-1.pdf
https://link.smartcontract.com/whitepaper
https://link.smartcontract.com/whitepaper
https://www.linkedin.com/pulse/demonstrate-how-zero-knowledge-proofs-work-without-using-chalkias
https://www.linkedin.com/pulse/demonstrate-how-zero-knowledge-proofs-work-without-using-chalkias
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Zero\%20Knowledge/Noninteractive_Zero-Knowkedge.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Zero\%20Knowledge/Noninteractive_Zero-Knowkedge.pdf
https://www.math.uni-frankfurt.de/~dmst/teaching/SS2012/Vorlesung/Fiat.Shamir.pdf
https://www.math.uni-frankfurt.de/~dmst/teaching/SS2012/Vorlesung/Fiat.Shamir.pdf
https://cseweb.ucsd.edu/~mihir/papers/ro.pdf
https://cseweb.ucsd.edu/~mihir/papers/ro.pdf
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
https://www.audkenni.is/en/
https://www.zurich.ibm.com/dccl/papers/gramoli_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/gramoli_dccl.pdf
https://tinyurl.com/y7g362kd
https://tinyurl.com/y7g362kd
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf

	Introduction
	Preliminaries of E-Voting and Blockchain
	Liquid Democracy Design Considerations
	Blockchain as a Service
	Smart Contracts
	Non-Interactive Zero-Knowledge proof

	Blockchain as a Service for E-Voting
	Election as a Smart Contract
	Election Roles
	Election Process

	Evaluating Blockchain as a Service for E-Voting
	Exonum
	Quorum
	Geth

	Design and Implementation
	Index of functionalities

	Security analysis and Legal issues
	Security analysis
	DDoS
	Authentication vulnerability
	Sybil

	Legal issues
	Remote voting
	Transparency
	Voter privacy

	Related work
	Conclusion
	References

