
Research Article

Blockchain-Based Secure Outsourcing of Polynomial
Multiplication and Its Application in Fully
Homomorphic Encryption

Mingyang Song , Yingpeng Sang , Yuying Zeng , and Shunchao Luo

School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China

Correspondence should be addressed to Yingpeng Sang; sangyp@mail.sysu.edu.cn

Received 15 March 2021; Revised 26 May 2021; Accepted 7 June 2021; Published 25 June 2021

Academic Editor: Yinghui Zhang

Copyright © 2021 Mingyang Song et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

(e efficiency of fully homomorphic encryption has always affected its practicality. With the dawn of Internet of things, the
demand for computation and encryption on resource-constrained devices is increasing. Complex cryptographic computing is a
major burden for those devices, while outsourcing can provide great convenience for them. In this paper, we firstly propose a
generic blockchain-based framework for secure computation outsourcing and then propose an algorithm for secure outsourcing
of polynomial multiplication into the blockchain. Our algorithm for polynomial multiplication can reduce the local computation
cost to O(n). Previous work based on Fast Fourier Transform can only achieve O(nlog(n)) for the local cost. Finally, we integrate
the two secure outsourcing schemes for polynomial multiplication and modular exponentiation into the fully homomorphic
encryption using hidden ideal lattice and get an outsourcing scheme of fully homomorphic encryption.(rough security analysis,
our schemes achieve the goals of privacy protection against passive attackers and cheating detection against active attackers.
Experiments also demonstrate our schemes are more efficient in comparisons with the corresponding nonoutsourcing schemes.

1. Introduction

As the development of the big data era, there is an increasing
demand for large-scale time-consuming computations.
Fortunately, with the emergence of cloud computing,
computation outsourcing brings convenience to resource-
constrained users. (ey can outsource complex computing
tasks into the cloud by paying a fee and avoiding buying
expensive high-performance hardware. It not only improves
the resource utilization in cloud but also brings economic
benefits to resource-constrained users. Nevertheless, the
attractive computing scheme also causes security issues. A
passive attacker in the cloud may be only curious about the
privacy contained in the user’s outsourced data, while an
active attacker may make malicious damage or forge the
results to sabotage the computation. Even if there is no
attacker, computing errors caused by cloud hardware failure
and software errors, etc. should also be considered.

Furthermore, it should not be a great burden for the user to
check the correctness of the returned results from the cloud;
otherwise, the efficiency benefit of outsourcing will be
nullified. (erefore, the secure and efficient outsourcing of
computations that can not only protect the privacy of users
but also ensure the correct results has become a hot research
topic.

Gentry proposed a homomorphic encryption algorithm
based on ideal lattice [1] for the first time, providing us with
a direction to solve the privacy issues in computation
outsourcing. (e direction is a secure computation out-
sourcing mode: encryption-outsourcing-decryption
(EOD). Even if we use the common EOD model, the device
should also undertake the computations of secret key
generation, encryption, verification, decryption, and so on,
locally. (ese computations are also great burden for the
resource-constrained devices (such as mobile phones and
IoT nodes).

Hindawi
Security and Communication Networks
Volume 2021, Article ID 9962575, 14 pages
https://doi.org/10.1155/2021/9962575

mailto:sangyp@mail.sysu.edu.cn
https://orcid.org/0000-0001-7870-2422
https://orcid.org/0000-0002-2085-4359
https://orcid.org/0000-0002-1617-6209
https://orcid.org/0000-0003-1671-9012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9962575

Blockchain has attractive features such as transparency,
traceability, decentralization, and immutability, which make
it an optimal approach for applications intrinsically with
untrusted natures, such as computation outsourcing. A
central trusted entity is not required for the computation
outsourcing based on blockchain. Information about the
whole data exchange process, computations, users, and
computational nodes is recorded and is traceable in
blockchain. Besides, smart contract can be utilized to dig-
itally facilitate the implementation of whole transaction,
which greatly improves the speed of building applications on
blockchain. However, privacy is still an issue in the com-
putation outsourcing based on blockchain.

Owing to the low efficiency of fully homomorphic en-
cryption algorithms, the general computation outsourcing
mode based on EOD is impractical on the resource-con-
strained devices. In this paper, we will outsource some
complex computations in the fully homomorphic encryp-
tion using hidden ideal lattice (FHEHIL) [2] into a block-
chain framework. (e contributions of this paper can be
summarized as follows:

(1) We propose a framework of blockchain-based
computation outsourcing, in which we can imple-
ment secure outsourcing for FHEHIL. (e frame-
work has a credit-based task allocation strategy,
which will significantly reduce the probability of
malicious nodes participating in computing.

(2) We propose a secure outsourcing algorithm for
polynomial multiplication, which reduces the local
computation cost (including the cost on result
verification) to O(n). Previous work based on the
Fast Fourier Transform (FFT) can only achieve
O(nlog(n)) for the local cost. Besides, the algorithm
can not only detect cheating but also identify
cheating nodes combining with blockchain. (e
result verification in the outsourcing algorithm does
not cause extra burden.

(3) We also extend the secure outsourcing algorithm of
modular exponentiation, in [3], in our blockchain-
based framework. (e two algorithms for polyno-
mial multiplication and modular exponentiation are
employed in FHEHIL as basic operations, and the
FHEHIL implementation on the blockchain-based
framework can have higher efficiency compared with
previous work.

2. Related Work

At present, research studies on secure outsourcing can be
roughly divided into two directions. In one direction, a
general outsourcing mechanism is studied. In this mecha-
nism, a fully homomorphic encryption algorithm is
designed and the EOD model is used to outsource any
computations. After the work of Gennaro et al. [1], great
progress has been made in the field of fully homomorphic
encryption [4–6]. However, the fully homomorphic en-
cryption algorithms have high computational complexity.
Recently, there are many researches to reduce the

computation cost of homomorphic encryption algorithm.
For example, Su et al. accelerated the leveled Ring-LWE fully
homomorphic encryption [7]. (ese research studies mainly
focus on the efficiency of hardware. However, secure out-
sourcing complex computations of fully homomorphic
encryption is a better way to improve efficiency for resource-
constrained devices.

In the other direction, specific outsourcing algorithms are
designed for various scientific computations, e g., modular
exponentiation, solution of large-scale linear equations [8],
bilinear pairings, and extend Euclidean. (e Wei pairing and
Tate pairing in algebraic curves are commonly used in key
establishment and signature schemes in the field of cryp-
tography. However, the computation of bilinear pairings is
time-consuming in resource-constrained devices.(us, many
outsourcing schemes have been proposed [9–11]. To our
knowledge, the scheme in [9] is the most efficient and secure
till now. Because of the wide application in cryptography, the
study on modular exponentiation is also a hot topic of re-
search. Hohenberger and Lysyanskaya [12] proposed a
modular exponentiation secure outsourcing scheme. Chen
et al. [13] further improved its efficiency and verifiability. Ren
et al. [14] proposed a scheme that only protects the privacy of
exponent. Recently, Fu et al. [3] proposed a secure out-
sourcing scheme of modular exponentiation with hidden
exponent and base. It has a stronger checkability. In cryp-
tography, extended Euclidean algorithm is usually used to
calculate modular inverse, which is widely used in RSA en-
cryption algorithm. Similarly, Euclidean algorithm can be
used to find the greatest common factor of two polynomials,
which is commonly used in encryption algorithm based on
Lattice. Zhou et al. [15] proposed the secure outsourcing
algorithm of extended Euclidean algorithm.

Polynomial multiplication is likewise a commonly used
operation in cryptography schemes, error correcting codes,
and computer algebra. (e complexity of polynomial
multiplication is still a major open problem. Using the FFT,
the local computation of polynomial multiplication can
achieve the complexity of O(nlog(n)). Recently, some effi-
cient polynomial multiplication methods based on the FFT
are proposed. Harvey et al. proposed a faster method over
finite fields Zp when the degree of polynomials is less than p
[16]. (e efficiency has been further improved in [17]. For
the hardware utilization, Liu et al. designed a high hardware
efficiency polynomial multiplication on field-programmable
gate array (FPGA) platform [18]. Hsu and Shieh proposed a
method with less addition and multiplication [19] in 2020.
Besides, there are also some research studies on reducing the
space complexity of polynomial multiplication [20, 21].
However, the complexity of some research studies based on
the acceleration of FFT remains at O(nlog(n)). Other
methods using distributed computing to improve hardware
utilization are not applied to the resource-constrained de-
vice. Till now, there are few research studies on the secure
outsourcing of polynomial multiplication.

Due to the characteristics of the blockchain and Bitcoin
[22], there are lots of research studies and applications on
blockchain in recent years including the secure outsourcing.
Lin et al. studied the secure outsourcing for bilinear pairings

2 Security and Communication Networks

based on blockchain [23]. Zheng et al. [24] proposed a secure
outsourcing scheme for attribute-based encryption on
blockchain. (ere are also some schemes [25, 26] of out-
sourced data integrity verification. (e fairness problem in
blockchain-based secure multiparty computation was also
solved by multiple efforts. For example, Gao et al. [27]
proposed a scheme which realized fairness by maintaining
an open reputation system. (is type of general scheme for
secure multiparty computation can be cumbersome for the
problems in secure outsourcing computation.

Andrychowicz et al. [28] utilized only scripts in Bitcoin
currency to construct a fair protocol for secure multiparty
lotteries, without relying on a trusted third party. Zhang
et al. proposed BCPay in [29] and BPay in [30] to achieve fair
payment for blockchain-based outsourcing services, which
are compatible with the Bitcoin and Ethereum platforms.
However, these frameworks can only provide fairness be-
tween the client and a single server. (ey are applicable to
the outsourcing scenarios where the task is outsourced to a
single server from the client. In the problem of our work, the
computation task needs to be outsourced to multiple
computational nodes simultaneously. (erefore, we propose
a new one, considering the penalty on the cheating nodes,
compensation on the honest nodes, and application of a
credit-based scheme.

3. Notations and Background

3.1. Notations. We use upper case bold letters for matrices
and det(M) for the determinant of matrix M. Lower case
bold letters represent vectors (eg., v � [v1, . . . , vn]), where vi
is the ith element in v. We denote polynomial by lower case
italics (eg., f(x)). For a rational number r, round(r) rep-
resents the nearest integer to r. (e rational vector v can also
be rounded to round(v) � [round(v1), . . . , round(vn)]. We
use v(x) for the polynomial form of the vector v. We use
v1 × v2 for polynomial multiplication (v1 × v2 � (v1(x) × v2
(x))modf(x)) on the ring. We use |v| for the norm of v and
|S| for the base of set S. We use v ∘w for correlation
(v ∘w � [v1 ∗w1, . . . , wn]). We use R(v, f) for the rotation
matrix of v whose ith row is the coefficients of
v(x) × x(i− 1)modf(x). We use xgcd(a(x), b(x)) for the
extended Euclidean algorithm on a(x) and b(x). deg(f(x))
represents the degree of f(x). We use Fv to denote the
coefficient set of Discrete Fourier transform (DFT) of v and
F−v for the coefficient set of inverse DFT of v.

3.2. Fully Homomorphic Encryption Using Hidden Ideal
Lattice. (e FHEHIL scheme [2] is described in Algorithm 1,
including the components of key generation, encryption,
and decryption. (e related parameters are shown in
Table 1.

As shown in Algorithm 1, it is obvious that polynomial
multiplication is the primary computation in encryption and
decryption. (erefore, our proposed algorithm for the se-
cure outsourcing of polynomial multiplication can be di-
rectly applied. As for the key generation, the computing
burden is from Step 7, 9, and 11. (e main computational

cost of Step 7 is on computing the determinant of matrix V.
(e most time-consuming operation in Step 9 is polynomial
multiplication. Step 11 computes the inverse of polynomial.
Below, we will analyze the detailed computations in Step 7
and 11 and demonstrate that polynomial multiplication and
modular exponentiation are themain types of computations,
which are the two improvement aims of this paper.

3.2.1. (e Method of Computing d in Algorithm 1.
Because of the characteristic of V, computing the deter-
minant of matrix V needs only log(n) times of polynomial
multiplication using the method in [31]. d is the free item of
g(z) � ∏n−1

i−0 (v(pi) − z). (us, d � ∏n−1
i�0 v(pi), where pi is

the root of f(x) � 0 in the complex domain and they satisfy
equation (2). Due to equation (2), we have
d � ∏n−1

i�0 v(pi) � ∏n/2−1
i�0 v(pi)v(−pi) � ∏n/2−1

i�0 a(pi). (us,
the computation of d mainly involves polynomial multi-
plications and modular exponentiations.

3.2.2. (e Method of Computing w in Algorithm 1 When d Is
a Prime. In the algorithm of FHEHIL, if d is a prime, we
can obtain w by performing xgcd(v, f) once. (e ex-
tended Euclidean algorithm computes xgcd(a(x), b(x))
to get u(x), v(x), and d(x), satisfying u(x) × a(x) + v(x)
× b(x) � d(x). (e specific procedures of secure out-
sourcing for extended Euclidean algorithm [15] are
summarized in Algorithm 2. It can be seen that the local
computations of this algorithm consist of mostly modular
exponentiation and polynomial multiplications. Detailed
analysis of Algorithm 2 can be found in [15].

3.2.3. (e Method of Computing w in Algorithm 1 When d Is
Not a Prime. When d is not a prime, the fastest method to
calculate polynomial inverse at present is Gentry’s method in
[31]. (e method is based on fast Fourier transform and
halves the number of terms in each step to offset the
doubling of the bit length of the coefficients. (is method
relays onf(x) � xn+1, where n is a power of 2.(emethod is
analyzed as follows.

Firstly, the second coefficient (g1) of polynomial g(z) �∏n−1
i�0 (v(pi) − z) can be computed, where pi is the ith root of

f(x) � 0 in the complex domain. We can get w0 � (g1/n).
Secondly, v′(x) � x × v(x)modf(x) can be constructed.
(en, the second coefficient g1′) of polynomial
g′(z) � ∏n−1

i�0 (v′(pi) − z) can be computed. We can get
w1 � (g1′/n). Finally, other coefficients of w can be computed
by

w1

w0

�
w2

w1

� · · · �
wn−1
wn−2

, (1)

pi +
nj

2
()2i � − p2i

i
() nj �

n

2j
(). (2)

Since n is a power of 2 in f(x), the roots satisfy equation
(2). In the process of computing coefficients g1 and g1′, the
major computations are also polynomial multiplications and
modular exponentiations.

Security and Communication Networks 3

4. The Framework of Blockchain-Based
Computation Outsourcing

(is section introduces a blockchain-based computation
outsourcing framework. (e overall system model is illus-
trated in Figure 1, and the related symbols are described in
Table 2. In Figure 1, we assume that, at least, one trusted
third party is available to implement the smart contract.(is
is a generic model on which a variety of computational tasks
can be implemented, including the tasks of secure out-
sourcing of polynomial multiplication and modular expo-
nentiation. (e two specific tasks will be given in details in
the rest of this paper.

4.1. Registration. Users and computational nodes need to
register before joining the network. (ey need to pay
deposits in advance, the amount of which needs to be
greater than a specified threshold or they will be rejected.
(e smart contract initializes the same credit score to all

new nodes and users. After registration, information of
users and computational nodes is written to the smart
contract. (e specific function is shown as Algorithm 3. In
this algorithm, addr[p] is the deposit account of node p in
the smart contract. Node p’s asset privacy is protected
because it is unnecessary for him to expose his total asset to
the smart contract.

4.2. Computational Service. User p posts computing tasks,
data, and rewards of each task to the smart contract. If the
account balance of p is insufficient for the computations,
smart contract refuses this service and reduces the credit
score of p, to prevent malicious users from attacking the
smart contract by constantly sending tasks that they cannot
afford to. After the smart contract accepts the tasks of p, the
user’s computing tasks are stored in the task queue and wait
for the selection of computational nodes.

To achieve a high benefit, the computational nodes will
be active to undertake computing tasks. If multiple com-
putational nodes select the same task at the same time, the
node with the highest credit score will win the task. Nodes
that undertake the computing task should submit the results
after completing. If any computational node cannot finish
on time, it will be added to the dishonest set. If all com-
putational nodes can submit the results on time, the smart
contract sends the results to user and initiates the period of
dispute resolving. During this period, the user needs to verify
the results locally and notify the smart contract whether the

Input: ζ, c, η, t, n
Output: SK � d, w{ }, PK � [p1, . . . , pt]
(1) function KEY GENERARTION (ζ, c, η, t, n)
(2) generate a random vector v satisfying v ∈ Zn, 2c− 1 < |v|< 2c,∑n−1

i�0 vimod 2 � 1{ }
(3) generate t− 1 random vectors [g1, . . .gt−1] satisfying gi ∈ Zn, 2n− 1 < [gi]< 2n{ }
(4) generate a random vector gt satisfying gt ∈ Zn, [gi]< 2n,∑n−1i−0 gt|i|mod 2 � 1{ }
(5) generate t− 1 random vectors [r1, . . . , rt−1] satisfying ri ∈ 0, 1,−1{ }n, |ri|< ζ{ }
(6) generate a random vector rt satisfying rt ∈ 0, 1,−1{ }n, |rt|< ζ,∑n−1i�0 rt|i|mod 2 � 1{ }
(7) f(x)⟵xn + 1; V⟵R(v, f); d⟵ |det(V)|
(8) for i � 1⟶ t do
(9) pi⟵gi × v + ri
(10) end for
(11) Get w satisfying w × v� d mod f
(12) return SK � d, w{ }, PK � [p1, . . . , pt]
(13) end return
(14) function ENCRYPTION (PK � [p1, . . . , pt], plaintext)
(15) generate t− 1 random integer vectors [s1, . . . , st−1] satisfying ∑n−1

j�0si[j]mod 2 � 0
(16) generate a random vector st satisfying ∑n−1j�0st[j]mod 2 � plaintext
(17) generate a random vector st+1 satisfying ∑n−1

j�0st+1[j]mod 2 � 0
(18) ψ⟵ ∑ti�1 si × pi + st+1
(19) return ψ
(20) end function
(21) function DECRYPTION (SK � (d,w),ψ)
(22) ψ′⟵ round(ψ × w/d)
(23) plaintext⟵ψ′(1)mod2
(24) return plaintext
(25) end function

ALGORITHM 1: Fully homomorphic encryption using hidden ideal lattice.

Table 1: Parameters in the FHEHIL algorithm.

Parameters Implication

ζ (e norm of random noise vector
c (e bit length of norm of generating polynomial

η
(e bit length of norm of the random multiplier

vector
t (e number of vectors contained in the public key
n (e dimension of the hidden lattice (power of 2)

4 Security and Communication Networks

results are accepted or not. If the period of dispute ends and
there is no feedback received from the user, the smart contract
assumes that the computations succeed and performs the
reward and charge operations. If the user does not accept the
results in the feedback, the smart contract will verify the
results by itself.(e specific function is shown as Algorithm 4.

4.3. Verification and Payment. If the user does not accept the
computing results, the smart contract will perform verifi-
cation operations to find dishonest nodes or users. In the

verification, he will simulate all computations required by
the user on the encrypted data uploaded by the latter. (is
means he will repeat exactly every step the computational
nodes have carried out, so as to find which step is not correct
and who is cheating. Decryptions are not required in the
simulation, and thus, the data privacy of the user is
protected.

To complete the verification, the smart contract should
be equipped with the same function modules as those of the
computational nodes. For example, in the secure out-
sourcing of polynomial multiplication, a function should be

Blockchain

User
1. Registration 1. Registration

2. Task upload 3. Task allocation

5. Return result 5. Result upload

6. Verfication
and payment

Smart contract

Computational nodes

Figure 1: (e framework of blockchain-based computation outsourcing.

Table 2: Symbols in the framework of blockchain-based computation outsourcing.

Symbol Implication

addr[p] (e account address of p
User/node (e set of users/computational nodes
Rep[p] (e reputation of p
Task (e queue of published tasks
Allocated (e queue of allocated tasks
Data (e queue of published data
Time (e set of the latest result return time
Dishonest/honest (e set of dishonest/honest nodes
Result (e set of results
Δb (e amount of economic punishment
Δc (e amount of credit punishment/reward
Δt (e longest computing time consumption

Input: a(x), b(x)
Output: v(x), v(x), d(x)
(1) generate r(x) and a ∈ Z randomly
(2) f(x)⟵ a(αx), g(αx)⟵ b(x)
(3) a′(x)⟵ r(x) × f(x), b′(x)⟵ r(x) × g(x)
(4) a″(x)⟵u11(x) × a′(x) + u12(x) × b′(x), b″(x)⟵ u21(x) × a′(x) + u22(x)b′(x)
(5) send a″(x) and b″(x) to computational node
(6) get u″(x), v″(x) and d″(x) from computational mode
(7) verify a″(x) × u″(x) + b″(x) × v″(x) � d″(x); deg(u″(x))< deg(b″(x))/d″(x); deg(v″(x))< deg(a″(x))/d″(x);
(8) u(x)⟵ αdeg(d″(x))− deg(r(x))(u11(α− 1x) × u″(α− 1x) + u21(α− 1x) × v″(α− 1x))
(9) v(x)⟵ αdeg(d″(x))− deg(r(x))(u12(α− 1x) × u″(α− 1x) + u22(α− 1x) × v″(α− 1x))
(10) d(x)⟵ αdeg(d″(x))− deg(r(x))d″(α− 1x)/r(α− 1x)

ALGORITHM 2: Securely outsource the extended Euclidean algorithm.

Security and Communication Networks 5

added into the smart contract to simulate the FFT/IFFT
operations on the data uploaded by the user in case of
disputes.

(e dishonest nodes and users will be put into the
dishonest set. If no one is put into the dishonest set, the user
will pay the reward to all participating nodes. Otherwise,
cheating nodes will be penalized and the honest nodes will
be compensated. (e credit score of the participating nodes
that have correctly completed their tasks will increase,
while the credit score of the malicious nodes will decrease.

When the account balance of a node is lower than the
threshold value or its credit score is reduced to zero, the
system will remove it. (e specific function is shown as
Algorithm 5.

A malicious user with enough balance may constantly
initiate transactions, aiming to increase the burden of the
smart contract. However, he cannot refuse to pay because his
deposit account is managed by the smart contract. By setting
up a suitable threshold in the registration, sooner or later his
balance will be used up by his attack.

(1) function Registration(p, role)
(2) if the balance of addr[p]≥ the threshold then
(3) if role� user then
(4) put addr[p] into User
(5) else
(6) put addr[p] into Node
(7) end if
(8) Rep[p]⟵ Default credit value; state⟵ true
(9) else
(10) state⟵ false
(11) end if
(12) return false
(13) end function

ALGORITHM 3: Registration.

(1) function TASK UPLOAD (user, tasks, data, price)
(2) if the balance of addr[user]≥ |tasks| ∗ price then
(3) put tasks into Task; put data into Data
(4) else
(5) Rep[user]⟵Rep[user] − ∆c
(6) end if
(7) end function
(8) function TASK ALLOCATION (nodes, task)
(9) if task≠ALLOCATED then
(10) sort the nodes with their credit descending; send task and Data[task] to nodes [0]
(11) put task into ALLOCATED; Time[task]⟵current time +∆t
(12) end if
(13) end function
(14) function RESULT UPLOAD (node, task, result)
(15) if current time<Time[task] then
(16) put node into Honest; Put result into result
(17) else
(18) put node into Dinhonest
(19) end if
(20) end function
(21) function RESULT UPLOAD(node, task, result)
(22) if Dishonest� 0 and |Result|� |Task| then
(23) send Result to user; Wait for the feedback from user
(24) end if
(25) call verification and payment
(26) end function

ALGORITHM 4: Computational service.

6 Security and Communication Networks

4.4. Security Analysis. Both the malicious user nodes and
computational nodes can launch attacks to the framework,
but their strategies are different. (e malicious user nodes
could launch a DDoS attack. A malicious computational
node could destroy the computation by returning forged
results or not returning any result.

(e user nodes could employ two ways to launch a DDoS
attack. One is to continuously publish the tasks that the user
actually cannot afford to; the other is to maliciously inform
the smart contract that the results are not accepted during
the dispute resolving period. For the first attack, the smart
contract will refuse to add the computing tasks and data to
the queue and reduce the credit score of the user. Moreover,
when the node’s credit score drops below 0, the node will be
removed. We can increase Δc in the function of TASK
UPLOAD to remove malicious users as soon as possible. For
the second attack, the smart contract has to simulate the
computations of all nodes participating in the outsourcing
according to the data and records. (is attack has a greater
impact on the smart contract, but it brings more loss to the
attackers (including the financial punishment). Similarly, we
can increase Δb in Algorithm 5 to mitigate the impact on
smart contracts.

(e computational nodes also have two ways to deploy
attack: returning forged results or not returning any result.
(e cost of both attacks is the same (in financial and credit
punishment). Since forged results render the smart contract
to simulate the computations of all nodes, rational compu-
tational nodes prefer to attack by returning forged results,
rather than return nothing. Similarly, we can increase Δb and
Δc in Algorithm 5 to mitigate the impact on smart contracts.
(e proposed framework adopts a task allocation strategy
based on credit scores.Whenmalicious nodes are found, their
credit score is reduced, and their probability of obtaining
computing tasks in the next time is also reduced. We assume
there are enough computational nodes which are willing to
return correct results to fulfil the requirement of outsourcing,
under the incentives of achieving financial and credit reward.

4.5. Compatibility Analysis. We know that the Bitcoin script
is not Turing-complete, and Ethereum has a complete
programming language on the blockchain to execute more
complex smart contracts. It is easy to see that our framework
is compatible with opcodes allowed by the Ethereum
blockchain. Since the function of Verification and Payment
(Algorithm 5) involves loops, which are not allowed by the
Bitcoin script, our framework is not compatible with opc-
odes of the Bitcoin blockchain.

5. Polynomial Multiplication and Modular
Exponentiation SecureOutsourcing Algorithm

5.1. Polynomial Multiplication Secure Outsourcing Algorithm.
(e computational complexity of traditional polynomial
multiplication is O(n2), which is reduced to O(nlog(n)) by
the FFT. In this section, we employ secure outsourcing to
further reduce the local computational complexity to O(n).
(e outsourcing is implemented in our proposed framework
of blockchain-based secure computation outsourcing. (e
main idea of our algorithm is as follows. Firstly, the Fourier
transform of the polynomial coefficients are securely out-
sourced. Secondly, correlation operation on the results of the
Fourier transform is locally performed. Finally, the inverse
Fourier transform on result of the correlation operation are
securely outsourced. (e specific process of our algorithm is
shown as Algorithm 6.

5.1.1. Description. In Algorithm 6, the input polynomials are
f(x) � a0 + a1x + · · · + an−1x

n− 1 and g(x) � b0 + b1x+
· · · + bn−1x

n− 1. (e output is t(x) � f(x) × g(x)
� c0 + c1x + · · · + c2n−1x

2n− 1. For convenience, polynomials
are replaced with vectors of polynomial coefficients
(a � [a0, a1, . . . , an−1], b � [b0, b1, . . . , bn−1], and
c � [c0, c1, . . . , c2n−2]). Besides, Wm

n � e
− 2πjm/n, in this

section. We use 6p computational nodes in this algo-
rithm, where p is a parameter associated with the

(1) function VERIFICATION AND PAYMENT (feedback, Result, Honest, user, price)
(2) if feedback≥ user or (feedback�NULL and |Result|� |Task|) then
(3) addr[user]⟵ addr[user]-[Honest]∗ price
(4) for i� 1⟶|Honest| do
(5) Rep[nodei]⟵ Rep[nodei] +∆c; addr[nodei]⟵addr[nodei] + price
(6) end for
(7) else
(8) stimulate all computations and put dishonest user or nodes into Dishonest
(9) t⟵ ∆b∗ [IDishonest]
(10) for i� 1⟶|Dishonest| do
(11) Rep[nodei]⟵Rep[nodei] +∆c; addr[nodei]⟵ addr[nodei]−∆b
(12) end for
(13) for i� 1⟶|Honest|do
(14) Rep[nodei]⟵ Rep[nodei] +∆c; addr[nodei]⟵ addr[nodei] + t/|Honest|
(15) end for
(16) end if
(17) end function

ALGORITHM 5: Verification and payment.

Security and Communication Networks 7

number of computational nodes. (ere are six steps in the
algorithm:

(1) Six parameters are picked randomly, three of which
are i, j, β, s.t.0≤ n − 1, 0≤ j≤ n − 1 and 0≤ β≤ 2n − 2.
(e other three are k1, k2, k3∈RZ. We define that
L(i, k, n): Z3⟶ Zn can generate one n-dimensional
vector in which the ith element is k, and all the other
elements are zeros. We define that
T(v, r): z(n∗2)⟶ Z(n∗p) can generate a random
matrix W � [w1,w2, . . . ,wp] satisfying
v � ∑pi�1 wi + r. (en, the user generates
r1 � L(i, k1, n), r2 � L(j, k2, n), r3 � L(β, k3, 2n),
V � T(a, r1), U � T(a, r1), Z � T(b, r2), and
S � T(b, r2). In this way, onemust know r1 to recover
a from V or U and know r2 to recover b from Z or S.

(2) (e user uploads the data (V, U, Z, and S) and task
requirement (i.e., FFT) to smart contract, by the
function TASK UPLOAD. (e smart contract calls

the function TASK ALLOCATION and distributes
the vectors in V, U, Z, and S to Z and 4p compu-
tational nodes. After receiving the vectors, the
computational nodes perform the Fourier transform
on the received vectors and call the function RE-
SULT UPLOAD. (e smart contract collects the
results and returns [Fv1, . . . , Fvp], [Fu1, . . . , Fup],
[Fz1, . . . , Fzp], and [Fs1, . . . , Fsp] to the user by
calling the function RETURN RESULT. Meanwhile,
the user locally computes Fr1 Fr2 and F−r1 which are
Fourier transform of r1 and r2 and inverse Fourier
transform of r3, respectively. Because there is only
one nonzero coefficient in r1, as well as r2and r3, we
simplify the DFT/IDFT, as shown in the DFTRV/
IDFTRV functions in Algorithm 6.

(3) (e user verifies equations (3) and (4). If they are
valid, the user computes Fa � ∑pi−1 Fa + Fr1 + Fb,
Fb � ∑pi−1 Fzi + Fr2, and Fc � Fa ∘Fb:

Input: a,b
Output: c � a × b
(1) function DISCRETE FOURIER TRANSFORM FOR RESERVED VECTOR (DFTRV) (r, i)
(2) n⟵ the length of r
(3) base⟵Wi

n

(4) Fr[0]⟵ ri
(5) for j � 1⟶ n − 1 do
(6) Fr[j]⟵Fr[j − 1]∗ base
(7) end for
(8) return Fr
(9) end function
(10) function INVERSE DISCRETE FOURIER TRANSFORM FOR RESERVED VECTOR(IDFTRV) (r, i)
(11) n⟵ the length or r
(12) base⟵W−i

n

(13) F−r [0]⟵ ri
(14) for j � 1⟶ n − 1 do
(15) F−r [j]⟵F−r [j − 1]∗ base
(16) end for
(17) return F−r
(18) end function
(19) (e user picks random parameters i, j, β, k1, k2, k3, and generates
(20) r1⟵L(i, k1, n), r2⟵ L(j, k2, n), r3⟵L(β, k3, 2n),
(21) V⟵T(a, r1),U⟵ (a, r1),Z⟵T(b, r2), S⟵T(b, r2);
(22) (e user calls TASK UPLOAD locally and uploads U,V,Z, Sto the smart contract;
(23) (e smart contract calls TASK ALLOCATION and sends vectors in U,V,Z, Sto 4p nodes;
(24) (e computational nodes compute [Fv1, . . . ,Fvp], [Fu1, . . . ,Fup], [Fz1, . . . ,Fzp], [Fs1, . . . ,Fsp], and call RESULT UPLOAD;
(25) (e smart contract calls RETURN RESULT;
(26) (e user computes Fr1⟵DFTRV(r1, i),Fr2⟵DFTRV(r2, j),F

−
r3
⟵ IDFTRV(r3, β), and verifies equations (3) and (4)

locally;
(27) (e user computes Fa⟵ ∑pi�1 Fvi + Fr1,Fb⟵∑pi�1 Fzi + Fr2, Fc⟵Fa ∘Fb;
(28) (e user generates D⟵T(Fc, r3),E⟵T(Fc, r3), calls TASK UPLOAD locally and uploads D,E to the smart contract;
(29) (e smart contract calls TASK ALLOCATION and sends vectors in D,E to 2pnodes;
(30) (e computational nodes compute [F−d1 , . . . , F

−
dp
], [F−e1 , . . . ,F

−
ep
], and call RESULT UPLOAD;

(31) (e smart contract calls RETURN RESULT;
(32) (e user computes c⟵ ∑p

i�1 F
−
di
+ F−r3 , and verifies equations (5)–(7) locally;

(33) (e user sends feedback to the smart contract;
(34) (e smart contract calls VERIFICATION AND PAYMENT.

ALGORITHM 6: Secure outsourcing of polynomial multiplication.

8 Security and Communication Networks

∑p
i−1

Fvi�
? ∑p

i−1

Fui, (3)

∑p
i−1

Fzi�
? ∑p

i−1

Fsi. (4)

(4) (e user generates D � T(Fc, r3) and E � T(Fc, r3)
and uploads them with the task requirement (i.e.,
IFFT) to smart contract, by the function TASK
UPLOAD. Calling the function TASK ALLOCA-
TION, the smart contract distributes the vectors inD
and E to 2p computational nodes.

(5) After receiving the vectors, the computational nodes
perform the inverse Fourier transform on the re-
ceived vectors and return [F−d1, . . . ,F

−
dp] and [F−e1,

. . . ,F−ep] to smart contract by the function TASK
UPLOAD. Smart contract returns them to the user
by calling the function RETURN RESULT.

(6) (e user computesc � F−rs +∑pi�1 F−d1 , selects two
integers m, l∈R 0, . . . , 2n − 2{ } randomly, and verifies
equations (5)–(7). If they are valid, the computing
succeeds; otherwise, the computing fails. (e user
sends a message to the smart contract. (en, the
latter calls the function VERIFICATION AND
PAYMENT:

∑p
i�1

F
−
di
�
? ∑p

i�1

F
−
ei
, (5)

∑p
i�0

aibl−i �
? ∑2n−2

i�0

W−li
2n−1Fc[i], (6)

∑2n−2
i�0

Wmi
2n−1ci �

?
Fc[m]. (7)

In Algorithm 6, if any verification fails, the user will
report a cheating and the algorithm will come to an end.

Figure 2 demonstrates the procedures and data com-
munications in the six steps of Algorithm 6.

5.1.2. Correctness and Complexity. Because ∑pi�0 vi + r1 � a
and ∑p

i�0 zi + r2 � b and the Fourier transform is a linear
transform, we can have ∑p

i�0 Fv1 + Fr1 � Fa and∑pi�1 Fz1 + Fr2 � Fb. We get Fc � Fa ∘Fb. Because of the
convolution theorem, F−Fc � F−Fa∘Fb � a × b � c.

Using the DFTRV/IDFTRV in Algorithm 6, computing
Fourier transform of r1, r2 and inverse Fourier transform of rs
needs 4n multiplications. Because of the characteristics of
r1,r2, and r3, only one multiplication is needed to compute
each term in Fr1,Fr2, and F

−
rs. Computing Fa and Fb needs 2pn

additions. Computing Fc needs 2n multiplications. (e ver-
ification of equations (3)–(5) takes 6(p − 1)n additions. 6(p −
1)n additions are needed to compute c. (e final verification
(equations (6) and (7)) needs l + 2n multiplications. To sum
up, we need l + 8n multiplications and 10pn − 6n additions.

(e local complexity of multiplication in this algorithm is
O(n), and the local complexity of addition isO(n). (erefore,
the local complexity of this algorithm is O(n).

5.1.3. Security against Passive Attackers. A participant may
be a passive attacker. Passive attackers will follow the scripts
of the algorithm while exploiting the intermediate infor-
mation to breach the privacy of polynomials. In the fol-
lowing, we analyze the security of our algorithm against
passive attackers.

(e algorithm should protect the privacy of f(x), g(x),
c, and Fc. As it is known to all, when all nodes collude, the
passive attackers can get the most information, and the
security of privacy is the lowest.

Since the operations on f(x) and g(x) are consistent,
the risks of privacy leakage of them are the same.We analyze
the security of f(x) in the worst case, i e., collusion of all
nodes. When all the computational nodes collude, they can
guess a set of values [a0′, a1′, . . . , an−1′], in which n − 1 values
are consistent with the true coefficients of f(x), while one
value is not. Because of r1, they even do not know the
position of the false value. (ey still have to make a brute-
force guessing. If ai ∈ D, where the base of D is m, the
attackers should traverse all possibilities by taking m dif-
ferent values for each coefficient. In this case, the attackers
have to make mn attempts to get f(x). However, ai ∈ Z in
FHEHIL. (en, m⟶∞, and the attackers cannot get
f(x).

Fc and c are also privacy-protected. For the security of
Fc, when all the computational nodes collude, the passive
attackers can guess a set of values F1

c[0], F1
c[1],

. . . , F1
c[2n − 2], in which 2n − 2 values are consistent with

the true coefficients of Fc, while one value is not. However,
the existence of r3 shows that passive attackers do not know
the position of the false value. (e only way to attack is by
making a brute-force guessing. Same as a and b, the domain
of the coefficients of Fc is infinite. (erefore, the attackers
cannot get Fc. For the security of c, on the one hand, the
attackers cannot compute c using inverse Fourier trans-
form without knowing Fc. On the other hand, it is easy to
see that when lacking F−ra, attackers cannot get c which is
equal to ∑pi�1 F−di + F−rs.

5.1.4. Security against Active Attackers. A participant may
also be an active attacker. Active attackers will inject false
computations into the algorithm to tamper with the whole
process. In the following, we analyze the security of our
algorithm against active attackers.

Active attackers may return forged values to damage
computing. To damage computing without being detected,
attackers prefer to make minimal changes on results. In
Algorithm 6, it is easy to see that the lowest risk way for
computational nodes to cheat is to tamper with only one
item of the results returned to the user, while the other items
are correct.

(ere is one way to cheat in the process of securely
outsourcing Fourier transform. For example, the nodes of

Security and Communication Networks 9

computing the DFT of f(x) perform honestly, while the
nodes of computing the DFT of g(x) do not. One node nj
changed the ith term in Fzj and another node nk′ also changed
the ith term in Fsk. (is way of cheating can nullify the
verification at equations (3) and (4) and damage the result of
Fb, whereas the error in the ith term of Fb will be propagated
to Fc[i] and every term of c. Equation (6) computes the
correct c1 � ∑li�0 aibl−i and the false cl′ � ∑2n−2

i�0 W
−li
2n−1Fc[i].

Since Fc[i] is false, cl′ is not equal to cl for any random l. (e
verification at equation (6) can certainly detect this cheating.

(ere is the other way to cheat in the process of se-
curely outsourcing the inverse DFT of Fc. One node nj
changed the ith term in F−dj and another node nk′ also
changed the ith term in F−ek . In this way, we can nullify the
verification at equation (9) and return a false item ci. (e
false item ci causes that Fc′[m] � ∑2n−2

i�0 W
mi
2n−1ci is also a false

value in equation (7). Fc′[m] will not be equal to Fc[m], for
all 0≤m≤ 2n − 2. (e verification at equation (7) can
certainly detect this way of cheating.

5.2. Secure Outsourcing of Modular Exponentiation. To the
secure outsourcing of modular exponentiation, we extend the
algorithm in [3] and apply it to the blockchain. In our ex-
tension, six modular exponentiation pairs are outsourced to
six computational nodes, instead of a single cloud, aiming to
protect against possible attacks on small discrete logarithms.
(e process is shown as Algorithm 7.(e input is two integers.
(e output is ud, where u is the base and d is the exponent. In a
similar way to Figure 2, Algorithm 7 can be implemented in
the framework of Blockchain-based computation outsourcing,
but we omit it due to limitation of space.

5.2.1. Correctness and Complexity. It is easy to prove that the
algorithm is correct from equations (8) and (9). In the
process of parameter generation, there are two exponenti-
ations, two divisions, and two multiplications. Two expo-
nentiations and six multiplications are involved during the
verification. Compared with the exponentiation, the

User Smart
contract

Computational
nodes

(1)

(2)

(3)

(4)

(5)

(6)

Pick parameter i, j, β, k
1
, k

2
, k

3

Generate r
1
, r

2
, r

3
, V, U, Z, S

V, U, Z, S V, U, Z, S

Compute F
r1

, F
r2

, F
r3

_

Compute [F
v

1

,, F
v

p

], [F
u

1

, ..., F
u

p

]

Compute [F
_

d
1

,, F
_

d
p

], [F
_

e
1

, ..., F
_

e
p

]

F
V

, F
U

, F
Z
, F

S

F
V

, F
U

, F
Z
, F

S

Task upload
Task allocation

Task upload
Task allocation

Result upload
Return result

Result upload
Return result

Verify ∑
p

i=1
 F

vi
 = ∑

p

i=1
 F

ui

Compute c

Verify ∑
p

i=1
 F

_

di
 = ∑

p

i=1
 F

_

ei

∑
l

i=0
 a

i
b

l-i
 = ∑

2n-2
 W

2n-1
F

c
[i]

∑
2n-2

 W
2n-1

C
i
= F

c
[m]

?

?

Generate D, E

D, E
D, E

[F
_

d
1

,, F
_

d
p

], [F
_

e
1

, ..., F
_

e
p

]

[F
_

d
1

,, F
_

d
p

], [F
_

e
1

, ..., F
_

e
p

]

?

?

?
i=0

i=0

_li

mi

F
ee

d
b

a
ck

Verification and
payment

[F
z

1

, ..., F
z

p

], [F
s

1

, ..., F
s

p

]

∑
p

i=1
 F

zi
 = ∑

p

i=1
 F

si

Compute F
a
, F

b
, F

c

Figure 2: Blockchain-based secure outsourcing of polynomial multiplication.

10 Security and Communication Networks

complexity of multiplication and division can be ignored.
However, in the algorithm, the exponents are e and t1 which
are much smaller than the original exponent d through the
transformation of t1 � d − k1e. (erefore, local complexity
will be greatly reduced:

v
k1
1 w

l1
1 g1w

k2
1()t1 � vk11 gt11 wl11 w

k2
1()t1 � vk21 gt21 wl1+k2t11 � gd1w

d
1 � v

d, (8)

v
k1
2 w

l1
2 g2w

k2
2()t1 � vk12 gt12 wl12 w

k2
2()t1 � vk22 gt22 wl1+k2t12 � gd2w

d
2 � v

d. (9)

5.2.2. Security. (e only way to pass the verification is that
the six computational nodes perform correctly. (e forged
results of active attackers cannot pass the verification in Step
8. (e user only needs to know whether the results are
correct or not, and the smart contract can detect the cheating
nodes according to the records.

We analyze the security against passive attackers in the
worst case, i e., the conspiring of six computational nodes.
(e exponents k1, l1, and k2 are visible for attackers, while
the other exponents t1, d, and e are not. (e bases v1, v2, w1,
and w2 are visible for attackers, while g1, g2, and e are not.
We discover that the privacy of u may leak in [3], which
sends six pairs to a single node in the cloud. In [3], the base
and exponent are about 1000 bit, while the parameters
including g1, g2, e, k1, and k2 are only 64-bit long, to reduce
the overhead of local computation. (e shorter bit length of
parameters may promote an easier attack on the small
discrete logarithms. In this kind of attack, an attacker in the
cloud can exhaust x so that w∗1 ∗ v1 � w∗2 ∗ v2. (en, e is
breached. (e attacker then exhausts g, satisfying ge � v1.
Finally, the cloud can obtain u by w1 ∗g.

We solve this attack by distributing six modular expo-
nentiation pairs to six computational nodes, which increases
the difficulty of the above attack.

6. Results and Discussion

In this section, we conduct three types of experiments.
Firstly, we evaluate the efficiency of the secure outsourcing
of polynomial multiplication in various numbers of poly-
nomial multiplications and compare it with the traditional
nonoutsourcing method using FFT. Secondly, we evaluate

the efficiency of the secure outsourcing of polynomial
multiplication by varying the numbers of items and bit
length of coefficients and also compare it with the non-
outsourcing method. Finally, we complete the secure out-
sourcing for FHEHIL in blockchain, analyze the time
consumption of each step, and compare it with the non-
outsourcing method. (e experiments are simulated on two
machines with Intel Core i7 processor running at 2.90GHz
and 16G memory as a cloud server and Intel Core i5 pro-
cessor running at 1.80GHz and 8G memory as a local user.
(e communication bandwidth is 20Mbps.

6.1. (e Evaluation of Secure Outsourcing of Polynomial
Multiplication. We make experiments to evaluate the effi-
ciency of the secure outsourcing algorithm for polynomial
multiplication. We implement this experiment using Py-
thon3 language.

We compare the secure outsourcing of polynomial
multiplication with the nonsourcing algorithm on time
consumption with different numbers of polynomial multi-
plication, in which n � 1024, p � 3, and all the coefficients
are 512-bit long. As demonstrated in Figure 3, it is easy to see
that when the number of polynomial multiplications is less
than 60, the efficiency of the outsourcing scheme is lower
than the nonoutsourcing scheme due to the communication
time consumption. However, when the number of poly-
nomial multiplications increases above 60, the efficiency of
the outsourcing scheme becomes higher than the non-
outsourcing scheme. When the number of polynomial
multiplications is less than 300, the bottleneck of the out-
sourcing scheme is the time consumption on nodes’ com-
putations and interactions. When the number of polynomial

Input: u, d
Output: ud

(1) (e user generates random parameters g1, g2, e, k1, k2 ∈ Z,
(2) and computes v1⟵gel , v2⟵ge2, w1⟵ (u/g1), w2⟵ (u/g2),
(3) t1⟵ d − k1e, l1⟵ d − k2t1;
(4) (e user uploads (k1, v1), (k1, v2), (l1, w1), (k2, w1), (l1, w2), (k2, w2) to the smart contract;
(5) (e smart contract distributes (k1, v1), (k1, v2), (l1, w1), (k2, w1), (l1, w2), (k2, w2) to 6 computational nodes;
(6) (e computational nodes compute ba after receiving (a, b) and return results to the smart contract;

(7) (e user gets v
k1
1 , v

k1
2 , w

l1
1 , w

k2
1 , w

l1
2 , w

k2
2 from the smart contract;

(8) (e user verifies v
k1
1 w

l1
1 (g1w

k2
1)

t1 � v
k1
2 w

l1
2 (g2w

k2
2)

t1 .

(9) If the verification is valid, ud⟵ v
k1
1 w

l1
1 (g1w

k2
1)

t1

ALGORITHM 7: Secure outsourcing of modular exponentiation.

Security and Communication Networks 11

multiplications becomes larger, the bottleneck is the time
consumption on local computation.

We make another type of experiments to analyze the
influence of number of terms and bit length of coefficients on
the efficiency of secure outsourcing of polynomial multipli-
cation. We count the time consumption of 400 random
polynomial multiplications, with the number of polynomial
items varying from 50 to 1000, and the item bit length varying
from 50 to 1000. Figure 4(a) demonstrates that the time
consumption increases with the increase of items of poly-
nomials and bit length of coefficients. Moreover, the number
of terms has a more obvious effect on time consumption.
Besides, compared with the nonoutsourcing polynomial
multiplication, our method always has a higher efficiency
under all scales of data, as shown in Figure 4(b).

6.2. (e Evaluation of Blockchain-Based Secure Outsourcing
Scheme of Fully Homomorphic Encryption Using Hidden Ideal
Lattice. We employ the relevant security parameters rec-
ommended in [2], i.e., n � 1024, t � 310, and p � 3. Our
outsourcing scheme consists of the local user’s program and
the computational nodes’ program. Our outsourcing scheme
is compared with the nonoutsourcing scheme.(e programs
are written in Python3, and the smart contract based on the
Ethereum platform is written in Solidity. (e smart contract
interacts with computational nodes’ program and local
program by the interface provided by Web3.

Figure 5 demonstrates the running time at all stages of
the two schemes. (is figure does not display the time
consumption on generating parameters in the FHEHIL
because that is not what we are improving. In the process of

7

6

5

4

3

2

1

0

T
im

e
co

n
su

m
p

ti
o

n
 (

s)

0 100 200 300 400 500 600

�e number of polynomial multiplication

Non outsourcing

Outsourcing

Figure 3: Comparison of time consumption on the outsourcing and nonoutsourcing scheme of polynomial multiplications.

3.0

2.5

2.0

1.5

1.0

0.5
0.0T

im
e

co
n

su
m

p
ti

o
n

 (
s)

1000
1000

800
800

600
600

400 400
200 200

�e number of items ofpolynomial Bit-l
ength of coefficients

(a)

6

5

4

3

2

1

0

T
im

e
co

n
su

m
p

ti
o

n
 (

s)

1000800
600

400 200
�e number of items of

polynomial

1000
800

600400
200

Bit-length of coefficients

(b)

Figure 4: Comparison of time consumption on the outsourcing and nonoutsourcing scheme of polynomial multiplications.

12 Security and Communication Networks

computingw efficiency is slightly improved. Compared with
the non-sourcing scheme, our scheme saves about 2.6 s. (e
overall time consumption is improved by about 40.7% (the
unmarked areas in Figure 5 are the communication time
consumption for interacting with the blockchain). Table 3
shows the detailed time consumption of different entities
(user, smart contract, and computational nodes) in different
stages (verification, communication, DFTRV/IDFTRV,
FFT/IFFT, and other computations) for Key Generation.
Table 4 shows the detailed time consumption of different
entities in different stages for encryption.

(e time consumption of decryption is not shown in
Figure 5. Since there is only one polynomial multiplication,
the time consumption of communication is dominant in the
process of decryption, as illustrated in Figure 3. (erefore,
the time consumption of outsourcing decryption (0.379 s) is
larger than the nonoutsourcing decryption (0.103 s).

7. Conclusions

In this paper, we propose a secure outsourcing algorithm
for polynomial multiplication that reduces the local
complexity to O(n). According to security analysis, our
algorithm is secure against passive and active attackers. We
also propose a framework for blockchain-based compu-
tation outsourcing. It has a credit-based task allocation
strategy, which significantly reduces the probability of
failed computations. Using this framework, we implement
the secure outsourcing of FHEHIL, in which the basic
computations including polynomial multiplication and
modular exponentiation can be securely outsourced by our

proposed algorithms. (e security analysis and experi-
mental results show that our proposed outsourcing
schemes are secure and efficient. In the future, we will apply
the secure outsourcing of FHEHIL into some practical
secure computation problems, such as the millionaire
problem, and set operation problems.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

(e conference version of this paper has been published in
the 21st International Conference on Parallel and Distrib-
uted Computing, Applications, and Technologies (PDCAT
2020).

Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

(is work was supported by the Key-Area Research and
Development Program of Guangdong Province (No.
2020B010164003), the Science and Technology Program of
Guangzhou, China (No. 201904010209), and the Science and
Technology Program of Guangdong Province, China (No.
2017A010101039).

Table 3: Details of time consumption in key generation.

Verification (s) DFTRV/IDFTRV (s) Communication (s) Others (s) FFT/IFFT (s)

User 0.37 0.89 0.46 0.58 0
Smart contract 0 0 1.01 0 0
Computational nodes 0 0 0.52 0 0.19

0.58 0.98 1.10 1.43 1.53 1.61 1.97 2.35 2.68 2.76 2.91 3.11 3.21 3.53 3.78Start

Nonoutsourcing

Local

Smart contract

Computational
node

Outsourcing

Key generation Encryption

Other computation DFT

FFT FFTIFFT IFFT

IDFT IDFTVerify VerifyDFT

6.37 (s)

Figure 5: Time consumption on stages of the outsourcing and nonoutsourcing schemes.

Table 4: Details of time consumption in encryption.

Verification (s) DFTRV/IDFTRV (s) Communication (s) Others (s) FFT/IFFT (s)

User 0.24 0.93 0.43 0.11 0
Smart contract 0 0 0.99 0 0
Computational nodes 0 0 0.37 0 0.20

Security and Communication Networks 13

References

[1] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive ver-
ifiable computing: outsourcing computation to untrusted
workers,” in Proceedings of the Advances in Cryptology-
CRYPTO 2010, pp. 465–482, Santa Barbara, CA, USA, August
2010.

[2] T. Plantard, W. Susilo, and Z. Zhang, “Fully homomorphic
encryption using hidden ideal lattice,” IEEE transactions on
information forensics and security, vol. 8, no. 12, pp. 2127–
2137, 2013.

[3] A. Fu, S. Li, S. Yu, Y. Zhang, and Y. Sun, “Privacy-preserving
composite modular exponentiation outsourcing with optimal
checkability in single untrusted cloud server,” Journal of Net-
work and Computer Applications, vol. 118, pp. 102–112, 2018.

[4] Z. Brakerski, “Fully homomorphic encryption without
modulus switching from classical gapsvp,” in Proceedings of
the Annual Cryptology Conference, pp. 868–886, Santa Bar-
bara, CA, USA, August 2012.

[5] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homo-
morphic encryption from (standard) LWE,” SIAM Journal on
Computing, vol. 43, no. 2, pp. 831–871, 2014.

[6] G. Craig, S. Amit, and B. Waters, “Homomorphic encryption
from learning with errors: conceptually-simpler, asymptoti-
cally-faster, attribute-based,” in Proceedings of the Annual
Cryptology Conference, pp. 75–92, Santa Barbara, CA, USA,
August 2013.

[7] Y. Su, B. Yang, C. Yang, and L. Tian, “Fpga-based hardware
accelerator for leveled ring-lwe fully homomorphic encryp-
tion,” IEEE Access, vol. 8, pp. 168008–168025, 2020.

[8] F. Chen, T. Xiang, and Y. Yang, “Privacy-preserving and
verifiable protocols for scientific computation outsourcing to
the cloud,” Journal of Parallel and Distributed Computing,
vol. 74, no. 3, pp. 2141–2151, 2014.

[9] X. Chen, W. Susilo, D. S. Wong, J. Ma, S. Tang, and Q. Tang,
“Efficient algorithms for secure outsourcing of bilinear
pairings,” (eoretical Computer Science, vol. 562, pp. 112–121,
2015.

[10] B. Kang, M. Lee, and J. Park, “Efficient delegation of pairing
computation,” International Association of Cryptologic Re-
search, vol. 259, 2005.

[11] Y. Ren, N. Ding, T.-Y. Wang, H. Lu, and D. Gu, “New al-
gorithms for verifiable outsourcing of bilinear pairings,”
Science China Information Sciences. vol. 59, no. 9, Article ID
99103, 2016.

[12] S. Hohenberger and A. Lysyanskaya, “How to securely out-
source cryptographic computations,” in Proceedings of the
(eory of Cryptography Conference, pp. 264–282, Cambridge,
MA, USA, February 2005.

[13] X. Chen, L. Jin, J. Ma, Q. Tang, and W. Lou, “New algorithms
for secure outsourcing of modular exponentiations,,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 9, pp. 2386–2396, 2013.

[14] Y. Ren, N. Ding, X. Zhang, H. Lu, and D. Gu, “Verifiable
outsourcing algorithms for modular exponentiations with-
improved checkability,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security,
pp. 293–303, NewYork, NY, USA, May 2016.

[15] Q. Zhou, C. Tian, H. Zhang, Y. Jia, and F. Li, “How to securely
outsource the extended euclidean algorithm for large-scale
polynomials over finite fields,” Information Sciences, vol. 512,
pp. 641–660, 2020.

[16] D. Harvey, J. Van Der Hoeven, and G. Lecerf, “Faster
polynomial multiplication over finite fields,” Journal of the

Association for Computing Machinery, vol. 63, no. 6, p. 52,
2016.

[17] D. Harvey and J. van der Hoeven, “Faster polynomial mul-
tiplication over finite fields using cyclotomic coefficient
rings,” Journal of Complexity, vol. 54, Article ID 101404, 2019.

[18] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill,
“Optimized schoolbook polynomial multiplication for com-
pact lattice-based cryptography on fpga,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 10,
pp. 2459–2463, 2019.

[19] H. J. Hsu and M. D. Shieh, “Vlsi architecture of polynomial
multiplication for bgv fully homomorphic encryption,” in
Proceedings of the 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–4, Monterey, CL, USA,
October 2020.

[20] P. Giorgi, B. Grenet, and D. S. Roche, “Generic reductions for
in-place polynomial multiplication,” 2019.

[21] V. Nakos, “Nearly optimal sparse polynomial multiplication,”
2019, https://arxiv.org/abs/1901.09355.

[22] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,”
Technical report, Springer, Berlin, Germany, 2019.

[23] C. Lin, D. He, X. Huang, X. Xie, and K. -Kwang Raymond
Choo, “Blockchain-based system for secure outsourcing of
bilinear pairings,” Information Sciences, vol. 527, pp. 590–601,
2020.

[24] H. Zheng, J. Shao, and G. Wei, “Attribute-based encryption
with outsourced decryption in blockchain,” Peer-to-Peer
Networking and Applications, vol. 13, no. 5, pp. 1643–1655,
2020.

[25] H. Kun, J. Xin, Z. Wang, and G. Wang, “Outsourced data
integrity verification based on blockchain in untrusted en-
vironment,” World Wide Web, vol. 43, pp. 1–24, 2020.

[26] H. Wang, X. A. Wang, W. Wang, and S. Xiao, “A basic
framework of blockchain-based decentralized verifiable out-
sourcing,” in Proceedings of the International Conference on
Intelligent Networking and Collaborative Systems, pp. 415–
421, Oita, Japan, September 2019.

[27] H. Gao, Z. Ma, S. Luo, and Z. Wang, “BFR-MPC: a block-
chain-based fair and robust multi-party computation
scheme,” IEEE Access, vol. 7, pp. 110439–110450, 2019.

[28] M. Andrychowicz, S. Dziembowski, D. Malinowski, and
K. Mazurek, “Secure multiparty computations on Bitcoin,”
Communications of the ACM, vol. 59, no. 4, pp. 76–84, 2016.

[29] Y. Zhang, R. H. Deng, X. Liu, and Z. Dong, “Blockchain based
efficient and robust fair payment for outsourcing services in
cloud computing,” Information Sciences, vol. 462, pp. 262–
277, 2018.

[30] Y. Zhang, R. H. Deng, X. Liu, and Z. Dong, “Outsourcing
service fair payment based on blockchain and its applications
in cloud computing,” IEEE Transactions on Services Com-
puting, vol. 73, p. 1, 2018.

[31] G. Craig and S. Halevi, “Implementing gentry’s fully-ho-
momorphic encryption scheme,” in Proeedings of the Annual
international conference on the theory and applications of
cryptographic techniques, pp. 129–148, Tallinn, Estonia, May
2011.

14 Security and Communication Networks

https://arxiv.org/abs/1901.09355

