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Abstract

We study the strategic considerations of miners participating in the bitcoin’s protocol.
We formulate and study the stochastic game that underlies these strategic considerations.
The miners collectively build a tree of blocks, and they are paid when they create (mine) a
node which will end up in the path of the tree that is adopted by all. Since the miners can
hide newly mined nodes, they play a game with incomplete information. Here we consider
two simplified forms of this game in which the miners have complete information. In the
simplest game the miners release every mined block immediately, but are strategic on which
blocks to mine. In the second more complicated game, when a block is mined it is announced
immediately, but it may not be released so that other miners cannot continue mining from
it. A miner not only decides which blocks to mine, but also when to release blocks to
other miners. In both games, we show that when the computational power of each miner is
relatively small, their best response matches the expected behavior of the bitcoin designer.
However, when the computational power of a miner is large, it will deviate from the expected
behavior, and other Nash equilibria arise.

1 Introduction

Bitcoin is the most successful decentralized digital currency. It was first presented in the white
paper [Nakamoto, 2008] under the pseudonym Satoshi Nakamoto. Its backbone is the blockchain
protocol which attempts to keep a consisted list of transactions in a peer-to-peer network. The
blockchain protocol successfully solves the real distributed problem of agreement, and has the
potential to support novel applications which require distributed computing across a network.

Game-theoretic issues are very important for the correct execution of the blockchain pro-
tocol. This was realized at its inception when its creator, Nakamoto, analyzed incentives in
a simple, albeit insufficient, model. Understanding these issues is essential for the survival of
bitcoin and the development of the blockchain protocol. In practice it can help understand
their strengths and vulnerabilities and, in economic and algorithmic theory, it can provide an
excellent example for studying how rational (selfish) players can play games in a distributed
way and map out their possibilities and difficulties.

Distilling the essential game-theoretic properties of blockchain maintenance is far from triv-
ial; some “attacks” and vulnerabilities have been proposed but there seems to exist no systematic
way to discover them. In this work, we study two models in which the miners (the nodes of
the network that run the protocol and are paid for it) play a complete-information stochastic
game. Although the miners in the actual blockchain game do not have complete information, our
games aim to capture two important questions that selfish miners ask: (a) what to compute next
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(more precisely, which block to mine) and (b) when to release the results of computation (more
precisely, when to release a mined block). By considering only complete information games, we
may weaken the immediate applicability of the results, but we obtain a clean framework for
studying these issues with proper focus and in a rigorous way.

We consider two stochastic games: (a) the immediate-release game in which every miner
reveals immediately the blocks that he mines; in this game, the strategy of every miner is to
select an appropriate block to mine and, (b) the strategic-release game in which miners not
only can select which block to mine, but they can also withhold releasing blocks; we add the
interesting twist that they must immediately announce a successful mining of a block but not the
block itself; in this way, all miners have complete information of the current situation but can
mine only the blocks which have been completely released by their discoverers. This interesting
twist turns a very complicated game of incomplete information into an attractive, highly non-
trivial game with complete information. We believe that although this is not the game actually
modeling the real world1, it is of great value in understanding the game-theoretic aspects of the
highly convoluted incomplete information game that takes place in the real world.

1.1 The Bitcoin currency and the blockchain protocol

The Bitcoin currency came into existence in 2009 when the first B50 (bitcoins) were introduced
to the system. Since then it has gained significant recognition with more than B15 million
currently in circulation with an exchange rate of B1 for around 500e at the time of this writing.

Bitcoin was the first successful design of a fully distributed currency and is based on
a peer-to-peer network achieving consensus on the broadcasted bitcoin transactions. The
difficulty in the design of a fully distributed digital currency lies in avoiding the possibil-
ity of double spending the (easily reproducible) digital coins, [Nakamoto, 2008, Finney, 2011,
Karame et al., 2012]. Eliminating these possibilities is far from trivial in a decentralized set-
ting, with applications that go way beyond the monetary nature of bitcoin. A practical pure
consensus protocol can have far-reaching implications in many domains, e.g., secure distributed
timestamping [Haber and Stornetta, 1991] or decentralizing Internet name services, (see also
[Pease et al., 1980] [Okun and Barak, 2007] regarding the topic of Byzantine Agreement in the
standard and anonymous version respectively).

Bitcoin’s design is based on several previous attempts. The idea is that the users maintain
a public log of all transactions that have taken place between the clients (bitcoin owners).
The history of the recorded transactions alone determines the ownership of the bitcoins, so
it is imperative that the users reach an agreement about it. Perhaps the most important
element of the Bicoin protocol, allowing it to provide a consensus solution in a setting where
identities are not available, is the notion of proof of work [Dwork and Naor, 1993] [Back, 1997]
[Juels and Brainard, 1999] [Rivest et al., 1996]. Bitcoin uses cryptography to make the miners
provide proof of work before validating a block of transactions in an operation that is reminiscent
of Sybil attack prevention techniques that were discussed earlier, see e.g., [Aspnes et al., 2005].
Cryptographic techniques (digital signatures) are also used to guarantee that only the rightful
owner of bitcoins can “spend” them by including them in a transaction.

We now give a brief but detailed description of how the Bitcoin protocol works. As mentioned
before, the goal is for the users to maintain a public ledger listing all transactions of the form
{X pays Y the amount of BZ } in a distributed fashion, i.e., without the need for a central
authority. This is called the blockchain. To add a block of transactions to the blockchain and
claim the corresponding reward, a user has to solve a hard cryptographic puzzle, thus spending
computational power. This process is called mining and we will use the term miner to refer to
the users.

1It is interesting to point out that there are potential real world settings where the fact that a block was
mined becomes known but the block itself may not released. This would correspond to a setting that a head of
a pool withholds a block, but a pool participant that found the block announces its discovery.
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Ideally, the blockchain would be a simple chain of blocks implying precedence between the
corresponding transactions, i.e., a serialization of valid transactions between the clients of the
Bitcoin protocol. This would be the case if miners always started mining at the last announced
block and propagated each block creation immediately to the network of the remaining miners.
However, the selfish nature of the miners who try to receive the rewards of as many blocks
as possible (or even the inherent delay of block propagation in the distributed network)2 can
result in temporary forks in the blockchain. The protocol suggests to the miners to always start
mining at the end of the branch which needed the largest amount of computational effort so far,
i.e., the end of the longest fork. This strategy is called Frontier and we will call the miners
that follow it honest miners.

In order to mine a block, the miners are asked to compute some nonce value such that
adding that value to the hash of the preceding block (specifying the branch of the blockchain
that they are extending) and the batch of transactions they are trying to validate will render a
block whose hash (SHA-256) does not exceed a certain threshold. Solving this puzzle is assumed
to be computationally hard; however, the verification of a provided solution is easy. It is also
assumed that in order to solve the puzzle, a miner cannot do any better than trying it for
different inputs repeatedly. If a miner has more computational power than another, then he has
higher probability to solve the puzzle faster and create the block. The difficulty of the puzzles
is adjusted so that a single block is created every 10 minutes on average. Once a miner solves
a puzzle and creates a block, he becomes eligible to receive a reward. It is important for our
game-theoretic analysis that the reward is given only if the corresponding block is permanently
added to the blockchain. The reward for each successful mining is a fixed amount of newly
created bitcoins plus fees from the transactions that are included in the block. This fixed
reward was originally set to B50 while the protocol determines that it will be halved each time
210, 000 blocks are permanently added to the blockchain, which happens approximately every
4 years. This implies that the protocol will eventually stop creating new bitcoins (10−8 BTC
is the minimal unit of Bitcoin), at which time the fixed rewards for mining will be entirely
replaced by transaction fees.3

The reward structure of the protocol guarantees that the honest miners’ revenue is pro-
portional to their computational power. However, understanding when it is profitable for the
miners to deviate from the honest strategy is a central question and has attracted a lot of at-
tention. The original assumption was that no miner has an incentive to deviate from the honest
strategy if the majority of the miners are honest. However, this is not true as was shown by
Eyal and Sirer [Eyal and Sirer, 2014]. They gave a specific strategy which, when followed by
a miner with computational power at least 33% of the total power, provides rewards strictly
better than the honest strategy (assuming that every other miner is honest). This was extended
computationally in [Sapirstein et al., 2016].

1.2 Our results

We consider two stochastic games whose states are rooted trees. The nodes of the tree are
blocks that have been mined in the past. At every time-step, each miner selects a node of the
current tree and tries to extend it by one new block. The probability that a miner succeeds in
mining a new block is proportional to the miner’s computational power. The utility of a miner
is the fraction of successfully mined blocks in the common history.

In the immediate-release game, the miner can select any node of the tree to mine, while in
the strategic-release, the miner can select only nodes that have been (declared) released by their
creator.

If a miner has computational power above a threshold, he may not mine a node at the

2Accidental forking happens every 60 blocks on average.
3Currently, the transaction fees are insignificant compared to fixed rewards (approximately 1.33%).
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frontier (the set of deepest nodes) in the hope that his blocks will become the accepted history
instead of the already mined nodes. Also, he may not release a node immediately in the hope
that the computational power of the other miners will be wasted in mining nodes which will
not be part of the common history.

Our work seeks to identify thresholds of the computational power below of which Frontier
(the honest strategy), is a Nash equilibrium while above them it is no longer the optimal strategy.
We denote by h0 and ĥ0 the threshold for the immediate-release and the strategic-release games,
respectively. It is easy to see that for both games h0, ĥ0 ∈ [0, 0.5]. Our results are as follows.

• We prove that in the immediate-release setting the threshold is 0.361 ≤ h0 ≤ 0.455. This
implies that a miner with at most 36% of the total computational power can not gain more
than 36% of the total rewards, i.e., his fair share which he would gain by being honest and
following the suggested strategy Frontier; and that a miner with computational power
more than 46% will always deviate from the honest strategy. An immediate consequence
is that if every miner has computational power less than h0, then Frontier is a Nash
equilibrium. We have experimentally determined that the actual threshold is close to
h0 ≈ 0.42.

• Regarding the strategic-release setting, we prove rigorously that the corresponding thresh-
old is lower bounded by ĥ0 ≥ 0.308 (root of the polynomial p3−6p2+5p−1). A similar re-
sult was obtained recently by Sapirshtein, Sompolinsky, and Zohar in [Sapirstein et al., 2016].
Their result is tighter and sets the threshold below 0.33 (cf. Figure 2 in their paper for
γ = 0). The difference between our approach and the approach of [Sapirstein et al., 2016],
is that they provide an algorithm to compute an approximately optimal strategy and then
run their algorithm to estimate the threshold. The authors acknowledge the fact that their
“algorithm copes with computational limitations by using finite MDPs as bounds to the
original problem, and by analyzing the potential error that is due to inexact solutions”.
Our result on the other hand, gives an exact, albeit suboptimal bound on the threshold
and considers exact best responses in a purely mathematical (not computational) way.

Open problems: This work sets the stage and makes progress towards a systematic study
of these complicated stochastic games. A lot of issues remain open. For example, besides the
obvious problem of tightening our results, there are a lot of interesting questions about the
Nash equilibria above the thresholds h0 and ĥ0 in both types of games.

1.3 Related work

The Bitcoin protocol was originally introduced in [Nakamoto, 2008] and was built based on
ideas from [Back, 1997] and [Dai, 1998]. After the “creation” of Bitcoin several other alter-
native electronic currencies followed, known as altcoins (http://altcoins.com/), e.g., litecoin,
Primecoin etc. The Bitcoin white paper provides a probabilistic analysis of double spending
attacks while a more detailed analysis can be found in [Rosenfeld, 2014]. Bitcoin’s design and
research challenges are discussed in [Bonneau et al., 2015] along with a presentation of the exist-
ing research. In [Tschorsch and Scheuermann, 2015] an extensive and more introductory survey
on distributed cryptocurrencies can be found.

The works most relevant to ours are [Kroll et al., 2013], [Eyal and Sirer, 2014] and [Sapirstein et al., 2016].
In [Kroll et al., 2013], the equilibria of the Bitcoin game are considered. The authors observe
that any monotonic strategy is a Nash equilibrium (one of many). Their analysis though is
quite restricted: as we show, even in the case of the immediate release game, Frontier is
not best response for values above 0.455. In [Eyal and Sirer, 2014], the authors prove that a
guaranteed majority of honest miners is not enough to guarantee the security of the Bitcoin
protocol. In particular they present a specific strategy called the “Selfish Mine” strategy and
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examine when this strategy is beneficial for a pool of miners. It appears that a fraction of 1/3
of the total processing power is always enough for a pool of miners to benefit by applying the
Selfish Mine Strategy no matter the block propagation characteristics of the network (γ = 0 in
their setting). Hence, this constitutes a profitable attack against the Bitcoin protocol. Further-
more, when block propagation is favoring the attacker the threshold above which “Selfish Mine”
is beneficial is any non-zero value. It is not hard to see that the “Selfish Mine” strategy does
not fully exploit settings where block propagation is more favorable to the attacker. This was
observed in [Garay et al., 2015] where an optimal attack against the property of chain quality
was considered in their setting where the network is considered to be completely adversarial. In
[Sapirstein et al., 2016] the authors consider a wider set of possible strategies that includes the
“Selfish-Mine” strategy and explore this space computationally. Their analysis also accounts
for possible communication delays in the network, the presence of which can diminish the profit
threshold.

A vast majority of previous work examines possible types of attacks against the Bitcoin
protocol and suggest adaptations of the protocol to ensure its security. We very briefly mention
some of these works here.

Successful pool mining related attacks are discussed in [Rosenfeld, 2011] and [Courtois and Bahack, 2014].
In [Eyal, 2014] the author considers attacks performed between different pools where users are
sent to infiltrate a competitive pool giving raise to a pool game. See also [Lewenberg et al., 2015]
for a (cooperative) game theoretic analysis regarding pool mining. [Babaioff et al., 2012] deals
with information propagation and Sybil attacks. The authors propose a reward scheme which
will make it in the best interest of a miner to propagate the transactions he is made aware of and
not duplicate. [Kroll et al., 2013] considers an attack that can be performed from people that
are only interested in destroying Bitcoin, as opposed to other attacks performed by users trying
to increase their expected reward. This is called the Goldfinger attack. [Heilman et al., 2015]
focuses on the peer-to-peer network and examines eclipse attacks where the attacker(s) isolates
a node/user from the network and forces him to waste his computational power thus partic-
ipating in an attack without even being aware. Certain deanonymization attacks have also
recently been observed [Meiklejohn et al., 2013] by analysing the transactional graph (see also
[Fergal Reid, 2012] and [Ron and Shamir, 2013]).

In [Sompolinsky and Zohar, 2015] an alternative consensus method is described, called Greedy
Heaviest-Observed Sub-Tree or GHOST. A variant of GHOST has been adopted by Ethereum,
a distributed applications platform that is built on top of block chains. [Eyal et al., 2014] at-
tempts to overcome scalability issues that arise in Bitcoin (block size and interval vs latency and
stability) by proposing a new scalable blockchain protocol. [?] provides another alternative for
scalability that utilizes off chain transactions while using the distributed ledger for maintaining
the contracts between the parties that engage in off chain transactions. In [Garay et al., 2015]
the authors analyze the Bitcoin protocol in depth. They abstract the core of the protocol that
they term the bitcoin backbone and prove formally its main attributes and properties, which can
be used as building blocks for achieving goals other than simply maintaining a public ledger.
They show that when the propagation delay in the network is relatively small, an honest ma-
jority of users is enough to guarantee smooth operation in a cryptographic model where the
rationality of the players is not considered.

2 The Bitcoin Mining Game and its Variants

The game-theoretic issues of bitcoin mining can be captured by the following game-theoretic
abstraction. The parameters of the game are:

• the number n of miners or players

• the probabilities p = (p1, . . . , pn) that miners succeed in solving the crypto-puzzle; these
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are proportional to their computational power and they sum up to 1:
∑n

i=1 pi = 1.

• the depth of the game d; the payment for mining a new block is not payed immediately,
but only after a chain of certain number of new blocks is attached to it; in the current
implementation of the Bitcoin protocol this number is d = 100. We will mainly consider
games with d =∞, but we will discuss briefly how they are affected by this parameter.

Two more parameters could play a role in a more general model of the protocol. The
computational cost c∗ of mining a new block and the reward (payment) r∗ per block accepted
by all miners (currently approximately 25 bitcoins). Here we assume that the reward r∗ is
constant and we scale all payments so that r∗ = 1. Also, if the expected gain is high enough
to entice a miner to participate4, its actual value is not important, since the miner tries to
maximize revenue.

AK: Note that because of the distributed nature of the Bitcoin protocol, it is possible that
more than one miners succeed almost simultaneously to mine a new block. We choose to ignore
this aspect here; nevertheless, it is easy to generalize our model to a setting where

∑n
i=1 pi < 1

and thus there is a non-zero probability at each step that no miner will be awarded a block.
During the execution of the protocol, the miners build a tree of blocks to which they try

to add more blocks. The protocol aims to increase the height of this tree by one every ten
minutes, on average. Once a miner succeeds in creating a block, the new node is added to the
tree. However if the miner is strategic, he may have reasons not to add the newly discovered
node to the tree. Therefore besides the publicly known tree, each miner might have his own
private tree.

Definition 1 (State). A public state is simply a rooted tree. Every node is labeled by one of
the players. The nodes represent mined blocks and the label indicates the player who mined the
block. Every level of the tree has at most one node labeled i because there is no reason for a
player to mine twice the same level.

A private state of player i is similar to the public state except it may contain more nodes
called private nodes and labeled by i. The public tree is a subtree of the private tree and has the
same root.

In the incomplete information case, the private states may also include the partial knowledge
that players have about the other players (knowledge about the probabilities of other private
trees, but also about their knowledge etc). This is a very complicated case, and we do not treat
it in this work. Instead we treat two complete-information cases in which all miners know the
private states of all miners:

Immediate-release model Whenever a miner succeeds in mining a block, it releases it im-
mediately, and all miners can continue from the newly mined block.

Strategic-release model Whenever a miner succeeds in mining a block, it becomes common
knowledge. However, the miner may decide to postpone the release of the block. Until
the block is released, other miners cannot continue mining from this block, although they
are aware of its existence.

AK: While the second model has no counterpart in practice, we believe it is of high theoretical
interest as it can serve as an intermediate model between immediate-release and strategic-release
with incomplete information. The immediate-release model enables the study of miners that
follow the protocol in terms of block propagation but mine strategically, while the strategic
release allows us to extend the study to the game-theoretic issues of block witholding. Although
ideally we would want to study the latter under the incomplete information regime, we will

4The protocol must satisfy Individual Rationality. Rational participating players should have non-negative
expected utility.
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defer this for future work since the game becomes substantially more complex to analyze. It
is important to stress that any strategy in the full information setting is also a valid strategy
in the incomplete information setting. Importantly, if a strategy is not dominant in the full
information setting it cannot be dominant in the incomplete information setting XXX check
this XXX. Remaining of paragraph to be removed. The second model makes little sense in
practice, but we believe that it is of high theoretical interest as an intermediate model between
immediate-release and strategic-release with incomplete information. The immediate-release
model allows us to study the game-theoretic issues of mining while the strategic-release model
allows us to extend this study to the game-theoretic issues of withholding the release of blocks.
Although ideally we would want to study the latter under the incomplete information regime,
it is not clear that we can convincingly model such a game, let alone study and understand it.

We describe the set of strategies for the strategic-release case. The immediate-release case
is the special case in which the release function has been fixed to immediate-release.

Definition 2 (Strategy). A pure strategy of player i consists of two functions (µi, ρi):

• the mining function µi which selects a node of the current public state to mine.

• the release function ρi which is a (perhaps empty) private part of the player’s state which
is added to the public state.

Both functions depend on the state of knowledge of the miner. For the strategic-release
case with incomplete information they depend on the public state and the private states of
all miners.

The suggested strategy by the designer of the protocol is the Frontier strategy.

Definition 3 (Frontier). We say that a miner follows the Frontier strategy when he releases
any mined block immediately and selects to mine one of the deepest nodes.

In the expected execution of the protocol in which all players play the Frontier strategy,
the Bitcoin protocol creates a path. AK: This is due to our simplifying assumption that no
players simultaneously mine a block. In practice, the Frontier strategy creates something
very close to a path, with occasional “orphan” blocks hanging from it.

The game is played in phases. In each phase, each player i uses his mining function µi
to select a block to mine. We assume that exactly one player succeeds in mining a block in
each phase, and that the probability of success for each player is given by the probabilities
(p1, . . . , pn). The winner then adds the newly mined block to his private tree as a leaf hanging
from his mined node. He then applies his release function which may add some of his private
part of the tree (for example, the newly mined node) to the public tree. This may trigger a
cascade of releases from other players. When the dust settles, we will have a new public tree,
and each player will have updated knowledge5. The phase ends at this point and a new phase
begins.

Note that it is possible that the release function of the winning player may result in an empty
release. Since here we consider the complete information case, all miners can immediately detect
the end of the phase. In the incomplete information case however this is not possible, although
the miners can estimate the probability of this happening, and that adds another complication
in modeling strategic considerations in the incomplete information regime.

Payments for mining new blocks are essential to incentivize the players to try to mine new
blocks. A miner who succeeds in mining a block is paid d phases later (currently d = 100); the
delay is considered sufficient to guarantee that no long branches off the main path exist. The
description of the payment scheme seems sufficient under the assumption that branches become

5The releasing step is non-deterministic and, depending on the release functions and the order of applying the
release functions, may lead to different outcomes. However, this never happens in the cases we analyze here.
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stale quickly and that only the main trunk survives. With the term trunk we refer to a long
path with ignored stale branches (i.e., the sibling of a paid node as well as its descendants will
get no payment at any point in time, thus they are effectively deleted).

A rigorous game-theoretic analysis of the Bitcoin protocol is quite complicated because of
the potential strategic branching, and it requires a more precise definition of payments. To be
consistent with the non-game-theoretic considerations of the Bitcoin protocol, we assume that
at every level (i.e., height of the tree) only one node is paid, the first one which succeeds in
having a descendant d generations later. In graph-theoretic terms, a node u is paid when its
path from the root is extended by a path of length d; when this happens every sibling (as well
as its descendants) of node u becomes stale.

Definition 4 (Payments). For some nodes of the tree, the miners who discovered them will get
a fixed payment (normalized to 1). The payments comply with the following rules:

• the nodes that receive payment must form a path from the root. This immediately adds
the restriction that at every level of the tree exactly one node receives payment.

• among the nodes of a single level that satisfy the above path restriction, the first one which
succeeds in having a descendant d generations later receives payment.

Since only one node per level is paid for, the utility of a miner in the long run is defined as the
fraction of the total payment which he receives (his paid nodes over the total number of paid
nodes).

When a node is paid, rational miners will completely ignore every branch that starts at
an earlier node. So in the long run, the tree essentially becomes the trunk (a long path with
ignored stale branches) with a small tree of depth at most d at the end. We will call such a
game truncated at level d. Immediate-release truncated games are finite stochastic games.

We will also consider games that are not truncated at a specific level d. We have to do this
with care, since it is possible that two or more miners will continue expanding their own branch
forever and they will never agree. However, in our games this cannot happen in an optimal play
when one miner has probability less than 1/2. The reason is that the utility of a miner is the
fraction of the total payment he receives which is expected to be 0 if he keeps mining his own
branch forever (a case of gambler’s ruin).

3 The Immediate-Release Game

In this section we determine the conditions which guarantee that the suggested Frontier
strategy is a Nash equilibrium. We fix the strategy of all but one miners to Frontier and
identify when Frontier is the best response of the remaining miner.

We can assume that all miners who follow the Frontier strategy by assumption act as a
single miner AK: (as mentioned, we consider only the simplified setting where miners do not
simultaneously produce blocks). This gives rise to a two-player (two-miner) game: Miner 1
is the miner whose optimal strategy (best response) we wish to determine and has relative
computational power p (p fraction of the total computational power), while Miner 2 is assumed
to follow the Frontier strategy and have collective relative computational power 1− p.

A (public) state is simply a rooted tree of width at most 2. In the immediate-release case,
after pruning away stale (abandoned) branches, the state is a long path (called trunk) followed
by two branches, one for each miner of lengths a and b (see Figure 1). The lengths of these two
branches determine the state and can be 0. Also because Miner 2 plays Frontier, his path
must be the longest one, except temporarily when Miner 1 mines a block and moves ahead; in
this case we have a = b+ 1, and when this happens, Miner 2 abandons his path and continues
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Figure 1: One the left, a typical state (tree). On the right, the set of states form the optimal
strategy for the truncated game at d = 100. The upper-left green part is the set C of capitulating
states, the diagonal red line is the set W of winning states, and the orange part the set M of
mining states.

from the frontier of the other path. To summarize, the states of the game are the pairs (a, b)
with 0 ≤ a ≤ b+ 1.

The set of states (a, b) can be partitioned into three parts (see Figure 1):

Mining states: the set M in which both miners keep mining their own branch. State (0, 0)
belongs to M . Depending on the strategy of miner 1, additional states might be included
in M .

Capitulation states: the set C of states in which Miner 1 gives up on its branch and continues
mining from some block of the other branch. When the game is truncated at depth d,
this set includes all states of the form (a, d), for a = 0, . . . , d.

Winning states: the set W of states in which Miner 2 capitulates. Given that miner 2 plays
Frontier it holds that W = {(a, a− 1) : a ≥ 1}.

Note that when Miner 1 capitulates and abandons its own branch, it can choose to move to
any state (0, s). Since the miner is rational, it will select the best of these states (we assume
that in case of a tie, it will always select the same state). AK: It follows that without loss of
generality we can describe fully the strategy of Miner 1 by specifying the set of mining states M
and the state (0, s) that is chosen when Miner 1 capitulates. The set of deterministic strategies
of Miner 1 is exactly the set of pairs (M , s), where M is the set of mining states and (0, s) is
the landing state to which the miner jumps from any capitulation state.

Let gk(a, b) denote the expected gain of Miner 1 when the frontier advances by k new levels
starting from an initial tree in which the branches of Miner 1 and 2 have lengths a and b,
respectively. It should be intuitively clear that, in the long run, the expected gain per level
should be almost independent of the initial state. AK: As a result, for large k, k′, it should be
that gk(a, b)−gk′(a, b) is independent of a, b and thus it is merely a function of k, k′. Furthermore,
assuming that constant rewards are given and expenses per block created remain constant, it
will hold that gk(a, b) satisfies for any large k, k′,

gk(a, b)− gk′(a, b)
k − k′

= g∗

for some constant g∗ which represents the expected gain per level in the long run. Based on
this we can define the expected gain as

gk(a, b) = k · g∗ + ϕ(a, b),
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where the potential function ϕ(a, b) = limk→∞ gk(a, b)−k · g∗ denotes the advantage of Miner 1
for currently being in state (a, b); that this limit exists follows from a straightforward argument6.
The objective of Miner 1 is to maximize g∗. AK: fix this

For a strategy (M, s), we can define gk(a, b) recursively as follows. When the current state
is (a, b), there are three possibilities:

• If (a, b) ∈M , both miners continue mining. With probability p, Miner 1 succeeds to mine
the next block first and the new state is (a+ 1, b); with the remaining probability Miner
2 succeeds and the new state is (a, b+ 1).

• If (a, b) ∈ C, Miner 1 abandons its branch and the new state is (0, s). The trunk increases
by b− s blocks.

• If (a, b) ∈W , Miner 2 abandons its branch and the new state is (0, 0). The gain for Miner
1 is a · g∗. The trunk increases by a blocks.

The frontier advances when either Miner 2 wins or when Miner 1 wins and a = b. From the
above consideration, we get

gk(a, b) = max

(
max

s=0,1,...,b−1
gk(0, s), p

{
gk−1(0, 0) + a+ 1, if a = b

gk(a+ 1, b), if a < b

}
+ (1− p) gk−1(a, b+ 1)

)
(1)

and by definition g0(a, b) = 0. From this, we can get a similar recurrence for ϕ:

ϕ(a, b) =

{
ϕ(0, 0) + a− g∗ a = b+ 1

max (maxs=0,...,b−1 ϕ(0, s), pϕ(a+ 1, b) + (1− p)ϕ(a, b+ 1)− (1− p)g∗) otherwise

We also fix ϕ(0, 0) = 0; note that the potential of all states is non-negative.
We note that the above definitions do not take depth d into account (consider d =∞). This

is without loss of generality for the proof of Theorem 1 where we use this recurrence, as proving
that Frontier is best response for d = ∞ (i.e., when Miner 1 has a superset of available
winning paths than for any constant d) implies that the result also holds for any constant d.

3.1 Frontier is a NE iff p ≤ h0, where 0.361 ≤ h0 ≤ 0.455

If every miner plays Frontier, their expected gain is proportional to the probability of mining
a block and therefore proportional to their relative computational power pi. For this we get the
following proposition.

Proposition 1. Frontier is a Nash equilibrium if, having fixed the strategy of all miners
except i to Frontier, the best response of a miner i has expected gain per level equal to pi.

AK: we need proof here. also the iff statement
In this section we bound the threshold on the computational power of each miner so that

Frontier is a Nash equilibrium. The main result is the lower bound that follows.

Theorem 1. In the immediate-release model, Frontier is a Nash equilibrium when every
miner has relative computational power pi ≤ 1

3(1 − 8/(1 + 3
√

57)1/3 + (1 + 3
√

57)1/3) ≈ 0.361
(root of the polynomial 2p2 − (1− p)3).

6Since state (0, 0) is clearly recurrent, we can alternatively define ϕ(a, b) as the expected value gk(a, b)− k · g∗
until state (0, 0) is reached.
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Starting in a mining state, one of the two miners will eventually capitulate and join the
other branch.7 The probability that the miner wins such a race plays a significant role in our
analysis. A formal definition follows.

Definition 5. Let rM,s(a, b) denote the winning probability starting at state (a, b), that is, the
probability that a winning state will be reached before a capitulation state.

We will use the notation of r(a, b) for the optimal strategy (M , s), and r∞(a, b) when the
miner never capitulates (i.e., when C = ∅).

The probability rM,s(a, b) can be defined recursively as follows:

rM,s(a, b) =


p · rM,s(a+ 1, b) + (1− p) · rM,s(a, b+ 1), (a, b) ∈M,

1, (a, b) ∈W,
0, (a, b) ∈ C.

The next simple lemma which bounds the probability r(a, b), plays a central role in our
analysis:

Lemma 1. The following holds for every state (a, b):

r(a, b) ≤ r∞(a, b) =

(
p

1− p

)1+b−a
.

Proof. The inequality follows from the fact that the miner has more opportunities/paths to
reach a winning state when he never gives up.

Regarding the equality, we essentially want to solve the recurrence for r∞

r∞(a, b) =

{
1 when a = b+ 1

p · r∞(a+ 1, b) + (1− p) · r∞(a, b+ 1) otherwise.

Consider the quantity l = 1 + b − a which captures the distance of state (a, b) from the set of
winning states. This quantity decreases by one when the miner succeeds in mining a block,
and increases by one when the opponent succeeds. Since we consider r∞, the case in which the
miner never gives up, the situation is a gambler’s ruin version: the quantity l behaves as the
position of a biased random walk on a half-line with an absorbing state at 0, probability p of
moving away from the absorbing state, and probability 1− p of moving towards the absorbing
state. The probability r∞(a, b) is the probability of reaching the absorbing state starting at
position l = 1 + b− a which can be easily computed to be ( p

1−p)l.

The next lemma gives a very simple necessary and sufficient condition for the potential
function so that Frontier is a Nash equilibrium. Intuitively, the condition states that Miner
1 capitulates from state (0, 1), so no other state except (0, 0) will ever be reached.

Lemma 2. Strategy Frontier is a best response for Miner 1 if and only if ϕ(0, 1) = ϕ(0, 0).

Proof. From the definition of ϕ, we have:

ϕ(0, 0) = pϕ(1, 0) + (1− p)ϕ(0, 1)− (1− p) g∗

ϕ(0, 1) = ϕ(0, 0) + 1− g∗.

It follows that ϕ(0, 1)−ϕ(0, 0) = (g∗− p)/(1− p). Since Frontier is best response if and only
if g∗ = p, the lemma follows. AK: we need to invoke a proposition here - be explicit

7This happens even when d is unbounded. For a miner with relative computational power pi < 1/2 who never
capitulates, the expected gain is 0, as he is engaged in a gambler’s ruin situation. Lemma 1 shows that the
probability of winning drops exponentially with the distance of its branch from the frontier.
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We now derive a very useful relation between the expected optimal gain of a pair of states
and the winning probability of one of them.

Lemma 3. For every state (a, b) and every nonnegative integers c and k:

gk(a+ c, b+ c)− gk(a, b) ≤ c · r(a+ c, b+ c).

Conversely for p < 1/2, there is εa,b(k) which tends to 0 as k tends to infinity, such that

gk(a+ c, b+ c)− gk(a, b) ≥ c · r(a, b)− εa,b(k).

Proof. We focus on the first inequality since the proof of the second inequality follows from
similar reasoning. Suppose that the current state is (a, b) and Miner 1 continues playing not
in the optimal way, but by simulating the strategy that he would follow had the current state
been (a + c, b + c). The crucial observation is that the simulation can be carried out because
the strategy of the other miner, based only on the difference b− a, is unaffected.

Let ĝk(a, b) be the gain for the next k levels using this potentially suboptimal strategy. Let
also r̂ be the probability that Miner 1 will reach a winning before a capitulating state (within
the next k levels). Then we must have

ĝk(a, b) = gk(a+ c, b+ c)− c · r̂.

Now, since the simulated strategy cannot be better that the optimal strategy, it is clear that
gk(a, b) ≥ ĝk(a, b). Furthermore, the probability r(a + c, b + c), which is the probability that
Miner 1 wins the competition even if more than k levels are used, is at least equal to r̂. These
two bounds give the first part of the lemma:

gk(a, b) ≥ ĝk(a, b) = gk(a+ c, b+ c)− c · r̂ ≥ gk(a+ c, b+ c)− c · r(a+ c, b+ c).

The second inequality follows from similar considerations and in particular by starting in state
(a + c, b + c) and simulating the strategy as being in state (a, b). The term εa,b(k) is needed
because now we want to bound the probability r̂ from below: r̂ = r(a, b)− εa,b(k), where εa,b(k)
is the probability that Miner 1 will win the competition in more than k levels. This probability
tends to 0 as k tends to infinity; in particular for p < 1/2, this is bounded by the probability
that a gambler with initial value a and probability of success p < 1/2 will win against a bank
of initial value b after Θ(k) steps.

The second part of the previous lemma will not be used in this work, but it may prove
helpful to tighten our results. The following corollary is a direct consequence of the first part
of the lemma.

Corollary 1. For any state (a, b) and nonnegative integer c

ϕ(a, b) ≥ ϕ(a+ c, b+ c)− c · r(a+ c, b+ c).

The gain gk(a, b) is clearly increasing in a as having mined more blocks cannot hurt the
miner. Therefore we get the following useful fact.

Claim 1. The potential ϕ(a, b) is non-decreasing in a.

The following three lemmas use the above results to provide explicit bounds on the potential
of states (1, 2), (0, 2), and (0, 1) under certain assumptions on the best response of Miner 1 from
these states and his computational power.

Lemma 4. For every p:

ϕ(1, 2) ≤ 2p2 − p
(1− p)2

+ g∗
1

1− p
. (2)
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Proof. Consider the potential of state (1, 1). We know that

ϕ(1, 1) ≥ pϕ(2, 1) + (1− p)ϕ(2, 1)− g∗(1− p) = p(2− g∗) + (1− p)ϕ(1, 2)− g∗(1− p).

On the other hand, from Corollary 1 and Lemma 1 we can bound it from above by ϕ(1, 1) ≤
ϕ(0, 0) + r(1, 1) ≤ p

1−p . By putting the two bounds together and eliminating ϕ(1, 1) we get the
lemma.

Lemma 5. For p < (3−
√

5)/2 ≈ 0.382, if state (0, 2) is a mining state, i.e. (0, 2) ∈M , then

ϕ(0, 2) ≤ 2p2 − (1− p)3

(1− p)2
. (3)

It follows that for p < 1
3(1− 8/(1 + 3

√
57)1/3 + (1 + 3

√
57)1/3) ≈ 0.361 (root of the polynomial

2p2 − (1− p)3), state (0, 2) is not a mining state.

Proof. To bound ϕ(0, 2) we use the bound for ϕ(1, 2) from the previous lemma and a bound
for ϕ(0, 3). To bound ϕ(0, 3) we use the monotonicity property of ϕ(a, b) with respect to a and
apply Corollary 1 and Lemma 1 to ϕ(1, 3):

ϕ(0, 3) ≤ ϕ(1, 3) ≤ ϕ(0, 2) + r(1, 3) = ϕ(0, 2) +
p3

(1− p)3
.

Assuming now that (0, 2) is a mining state, we get:

ϕ(0, 2) = pϕ(1, 2) + (1− p)ϕ(0, 3)− g∗(1− p)

≤ pϕ(1, 2) + (1− p)ϕ(0, 2) + (1− p) p3

(1− p)3
− g∗(1− p)

and by solving for ϕ(0, 2):

ϕ(0, 2) ≤ ϕ(1, 2) +
p2

(1− p)2
− g∗ 1− p

p

≤ 2p2 − p
(1− p)2

+ g∗
1

1− p
+

p2

(1− p)2
− g∗ 1− p

p

=
3p2 − p
(1− p)2

− g∗ (1− p)2 − p
p(1− p)

.

The coefficient of g∗ is negative for p ≤ (3 −
√

5)/2, so we can replace it by p to get the first
part of the lemma (recall that g∗ is always greater or equal to p).

For the second part of the lemma, it suffices to observe that for p < 1
3(1−8/(1 + 3

√
57)1/3 +

(1 + 3
√

57)1/3) the expression 2p2−(1−p)3
(1−p)2 is negative. Since the potential cannot be negative, it

follows by contradiction that (0, 2) 6∈M .

Lemma 6. For p < (3−
√

5)/2, if (0, 1) is a mining state, then (0, 2) is also a mining state.

ϕ(0, 1) ≤ (1− p)ϕ(0, 2)− p1− 3p+ p2

1− p
. (4)

Proof. First we bound ϕ(0, 1) if we assume that (0, 1) ∈M :

ϕ(0, 1) = pϕ(1, 1) + (1− p)ϕ(0, 2)− g∗(1− p)
= p(pϕ(2, 1) + (1− p)ϕ(1, 2)− g∗(1− p)) + (1− p)ϕ(0, 2)− g∗(1− p)

≤ (1− p)ϕ(0, 2)− p1− 3p+ p2

1− p
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where we used the bound for ϕ(1, 2) from above and ϕ(2, 1) = 2− g∗. Towards a contradiction
assume now that (0, 2) 6∈M . That is, the miner capitulates at state (0, 2) and moves to either
state (0, 1) or state (0, 0). Since the miner can move to state (0, 0) in two steps by first moving to
state (0, 1), we can assume without loss of generality that it moves to state (0, 1) and therefore
ϕ(0, 2) = ϕ(0, 1). By substituting this in the above expression we get

ϕ(0, 1) ≤ −1− 3p+ p2

1− p
< 0

for p < (3−
√

5)/2, a contradiction.

We are now ready to prove the main result of this section. We use the bounds provided by
the previous three technical lemmas (together with Lemma 2) to prove that Miner 1 capitulates
from state (0, 1), and that Frontier therefore is his best response.

Proof of Theorem 1. For p ≤ 1
3(1−8/(1 + 3

√
57)1/3 + (1 + 3

√
57)1/3), Lemma 5 establishes that

(0, 2) is not a mining state. But then from Lemma 6, neither state (0, 1) is a mining state, or
equivalently, Frontier is the best-response strategy of Miner 1.

3.2 Upper bound

The main theorem of this section, Theorem 1, shows that if all miners have relative computa-
tional power p < 0.361, Frontier is a Nash equilibrium. On the other hand, it is intuitively
clear that if a miner has computational power close to 1/2, it will have some advantage if he
does not play Frontier, against miners who play Frontier. Let h0 be the maximum rela-
tive computational power of miners for which Frontier is a Nash equilibrium. Experimental
results stated in Table 1 AK: we need some details about how the experimental results were
obtained, based on computing the potential ϕ, show that h0 = 0.418.

Table 1: The threshold for different values of d.

threshold

d = 2 0.5
d = 3 0.454
d = 5 0.432
d = 10 0.422
d = 15 0.42
d =∞ 0.418

Our work in this section is to estimate the threshold h0. Providing rigorous lower bounds for
h0—as we do in Theorem 1—does not appear to be easy since it involves a non-trivial Markov
decision process. However, it is not too hard to obtain good upper bounds of h0 as it suffices
to come up with a mining strategy that has expected gain g∗ greater than p. Here we provide
a simple such upper bound which can be directly extended to get an upper bound of h0 close
to 0.418.

Theorem 2. When Miner 2 plays Frontier, the best response strategy for Miner 1 is not
Frontier when p ≥ 0.455.

Proof. It suffices to consider a fixed mining strategy (M, s) that has expected gain per step g∗

greater than p. We consider a mining strategy truncated at d = 3, i.e., the miner capitulates at
every state (a, b) with b ≥ 3.
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We select M = {(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)} and s = 1 and define the potential for this
strategy as follows:

ϕ(0, 0) = 0,

ϕ(0, 1) =
g∗ − p
1− p

,

ϕ(a, b) = ϕ(0, 1), for every (a, b) ∈ C
ϕ(a, b) = a− g∗, when a = b+ 1

ϕ(2, 2) = pϕ(3, 2) + (1− p)ϕ(0, 1)− g∗(1− p),
ϕ(1, 2) = pϕ(2, 2) + (1− p)ϕ(0, 1)− g∗(1− p),
ϕ(1, 1) = pϕ(2, 1) + (1− p)ϕ(1, 2)− g∗(1− p).

We need to select g∗ and verify that this is the correct potential. In particular, we need to
verify that for all mining states (a, b) ∈M we have ϕ(a, b) ≥ ϕ(0, 1), which holds when

g∗ =
p2(2 + 2p− 5p2 + 2p3)

1− p2 + 2p3 − p4
.

We can also verify that for p ≥ 0.455, the expected gain g∗ is strictly greater than p, which
establishes that the strategy (M, s) is a better response than Frontier.

The strategy employed in the proof of the theorem is optimal for the truncated game at
d = 3 when p ≈ 0.455. As we mentioned above, one can compute the optimal strategy for the
finite games truncated at d = 4, 5 and so on, to get better and better upper bounds. These
bounds converge relatively quickly to h0 = 0.418.

4 The Strategic-Release Game

Similarly to the immediate-release case, we wish to identify conditions such that Frontier is
a Nash equilibrium. To do so, we again assume that all but one miner, say Miner 1, use the
Frontier strategy, and then examine the best response of Miner 1. Since all honest miners
select the same block to mine and release it immediately once it is mined, they essentially act
as one miner, and it is sufficient to consider the case of two miners.

As in the immediate-release case, the tree created by the two miners has width 2. The
trunk is permanently fixed and can be safely ignored; hence, the situation is captured by the
two branches of the execution tree in addition to a bit of information regarding each block in
Miner 1’s branch specifying whether or not Miner 1 has released this block. In particular, this
situation can be captured by a triple of numbers a, ar and b, where a and b denote the number
of blocks mined by Miner 1 and the honest miner, respectively (the length of the two branches),
while ar ≤ a denotes the number of the released blocks on Miner’s 1 branch (note that they are
consecutive blocks starting from (0, 0)). AK: better change the notation ar e.g., to ar, r looks
too much like a variable Since the honest miner immediately announces the mined blocks, all
b blocks on his branch are always released. Also, contrary to the immediate-release case, it can
be a > b+ 1.

Under the assumption that Miner 2 follows the Frontier strategy, we know that if Miner 1
has released ar ≤ b blocks, then Miner 2 will not abandon his path, but if ar > b then the honest
miner will immediately capitulate. So, without loss of generality we can assume that if a ≤ b
then ar = a while if a > b, then ar = b, otherwise the honest miner would have immediately
abandoned his path, and the game would be at state (a− ar, 0). In other words, we can always
consider ar = min{a, b}; hence we can capture the state of the game by the tuple (a, b) as in
the immediate-release case.
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Let ĝk(a, b) denote the expected gain of Miner 1 when the branch of the honest miner in the
execution tree is extended by k new levels starting from an initial tree in which the non-common
parts of the paths have length a and b, but Miner 1 has only released the first min{a, b} blocks
on his path. It should be intuitively clear that, in the long run, the expected gain per level
should be almost independent of the initial state. With this in mind, we can write the expected
gain as

ĝk(a, b) = k · ĝ∗ + ϕ̂(a, b),

for some constant ĝ∗ which is the expected gain per level in the long run. The potential function
ϕ̂(a, b) denotes the advantage of Miner 1 for currently being in state (a, b) (and having released
min{a, b} blocks).

We can define ĝk(a, b) as follows:

• If a ≤ b, Miner 1 has two options: to capitulate or to mine. In the latter case, the next
state will be (a+ 1, b) with probability p, and (a, b+ 1) with the remaining probability.

• If a > b, Miner 1 has one additional option to the previous case: it can release an additional
block and lead the game to state (a − b − 1, 0). When this happens, Miner 2 who plays
Frontier capitulates. Note that we allow Miner 1 to repeatedly release blocks, which is
equivalent to allowing him to release any number of blocs.

From the above consideration, we get the following optimal gain for Miner 1:

ĝk(a, b) = max

{
max

s=0,...,b−1
ĝk(0, s), p · ĝk(a+ 1, b) + (1− p) · ĝk−1(a, b+ 1),

max
s=0,...,b−1

ĝk−1(a− b− 1, 0) + b+ 1

}
, (5)

where the last term inside the max applies only when a ≥ b + 1; equivalently we can define
ĝ(a, 0) = −∞ when a < 0. The base case of the recurrence is ĝ0(a, b) = 0.

As in the case of immediate-release, we define a potential ϕ̂ from

ĝk(a, b) = kĝ∗ + ϕ̂(a, b),

when k tends to infinity. We also note that the definition above does not take d into account
(considers d =∞). This is without loss of generality for the proof of Theorem 3 as proving the
result for d =∞ is stronger.AK: this needs to be explained / proven

The recurrence for the potential is

ϕ̂(a, b) = max

{
max

s=0,...,b−1
ϕ̂(0, s), p · ϕ̂(a+ 1, b) + (1− p)(ϕ̂(a, b+ 1)− ĝ∗ · (1− p),

max
s=0,...,d−1

ϕ̂(a− b− 1, 0) + b+ 1− ĝ∗
}
, (6)

where again we define ϕ̂(a, 0) = −∞ when a < 0. We also fix the value ϕ̂(0, 0) = 0.

4.1 Frontier is a NE iff p ≤ ĥ0, where ĥ0 = 0.308

In this section we will show the following theorem.

Theorem 3. In the strategic-release model, Frontier is a Nash equilibrium for every miner
with p ≤ 0.308 (root of the polynomial p3 − 6p2 + 5p− 1).

Theorem 1 established that for any p ≤ 0.361 there exists a potential ϕ for the immediate-
release model such that ϕ(0, 0) = ϕ(0, 1) and g∗ = p. The main idea of the proof is to extend
this potential to states (a, b) such that a > b+ 1. This is possible, for the following reasons:
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• for states (b + 1, b), when p is small and Miner 1 is one block ahead of Miner 2, there is
a high risk if he does not release the block; the risk is that Miner 2 can mine one extra
block and then Miner 1 may end up in a stale branch.

• for states (a, b) with a > b + 1, when Miner 1 is at least two blocks ahead, it is safe not
to release any blocks until Miner 2 catches up to within distance one.

With this in mind, we define the following potential

ϕ(a, b) =

{
ϕ(a, b), when a ≤ b,
aλ− bµ− c, otherwise

where λ = (1−p)2
1−2p , µ = p2

1−2p and c = p(1−p)
1−2p . The parameters of the second part are chosen so that

ϕ(a, b) = pϕ(a+1, b)+(1−p)ϕ(a, b+1)−p(1−p). It is important to notice that the two pieces
fit together nicely in the sense that for a = b+ 1 we have that ϕ(a, b) = ϕ(a, b) = aλ− bµ− c,
so we could use the following equivalent definition for ϕ:

ϕ(a, b) =

{
ϕ(a, b), when a ≤ b+ 1,
aλ− bµ− c, otherwise

To ease the presentation, we will use the following notation, for the potential of states (a, b)
with a ≥ b + 1: (a) ϕM when Miner 1 continues to mine, (b) ϕR when Miner 1 releases one
more block and the other (honest) miner capitulates, and (c) ϕC when Miner 1 capitulates.

ϕM (a, b) = pϕM (a+ 1, b) + (1− p)ϕM (a, b+ 1)− p(1− p)
ϕR(a, b) = ϕ(a− b− 1, 0) + a− p
ϕC(a, b) = 0.

Note that when Miner 1 capitulates, he starts mining at one of the states (0, s) where s ≤ b−1,
where by assumption the potential is 0. To prove the theorem, we first show that ϕ satisfies
the recurrence of the strategic-release potential (6) when ĝ∗ = p. Equivalently, using the above
notation

ϕ̂(a, b) = max(ϕM (a, b), ϕR(a, b), ϕC(a, b)). (7)

Lemma 7. The potential ϕ satisfies the recurrence (6) when ĝ∗ = p and p ≤ 0.308 (root of the
polynomial p3 − 6p2 + 5p− 1).

Proof. We break down the proof into three distinct claims:

Claim 2. For states (a, b) with a < b+ 1,

ϕ(a, b) = max(ϕM (a, b), ϕR(a, b), ϕC(a, b)).

Using the alternative definition of ϕ, the claim holds trivially, since ϕ satisfies it, and
ϕR(a, b) = −∞.

Claim 3. For states (a, b) with a > b+ 1,

ϕ(a, b) = ϕM (a, b) = max(ϕM (a, b), ϕR(a, b), ϕC(a, b)).

This claim also follows directly: ϕ(a, b) = ϕM (a, b) holds by design, and it is easy to verify
that ϕM gives the maximum of the three values:

ϕM (a, b) > aλ− bµ− c− p(1− p)
1− 2p

= ϕR(a, b),

ϕR(a, b) ≥ 0 = ϕC(a, b).
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Claim 4. For states (b+ 1, b):

ϕ(b+ 1, b) = ϕR(b+ 1, b) = max(ϕM (b+ 1, b), ϕR(b+ 1, b), ϕC(b+ 1, b)).

Note first that ϕR(b+ 1, b) = b+ 1− p ≥ 0 ≥ ϕC(b+ 1, b). The most complicated part is to
show that ϕR(b+ 1, b) ≥ ϕM (b+ 1, b). To do this, we write

ϕM (b+ 1, b) = pϕ(b+ 2, b) + (1− p)ϕ(b+ 1, b+ 1)− p(1− p)
= p((b+ 2)λ− bµ− c) + (1− p)ϕ(b+ 1, b+ 1)− p(1− p).

From Corollary 1 for the immediate-release case, we get the bound ϕ(b+1, b+1) ≤ (b+1)p/(1−p).
By substituting this we bound ϕM (b + 1, b) from above by 2bp + p(2 − 4p + p2)/(1 − 2p). We
want this to be at most equal to ϕR(b+ 1, b) = b+ 1− p which gives the following inequality,

b(1− 2p)2 + 1− 5p+ 6p2 − p3 ≥ 0.

Since b ≥ 0, it suffices to have 1 − 5p + 6p2 − p3 ≥ 0 which holds for p ≤ 0.308 (root of the
polynomial p3 − 6p2 + 5p− 1).

We now present the main result of this section based on the previous lemma.

Proof of Theorem 3. The above lemma implies that for every state (a, b),

ĝk(a, b) ≤ k · p+ ϕ(a, b). (8)

Intuitively, ϕ(a, b) can only overestimate the optimal potential when a ≥ b + 1, even when
ĝ∗ > p.

We prove this using induction on k, b, and a. This is possible because Recurrence (5) of ĝk
depends on ĝk(0, s) for s < b (for b > 0), on gk(a+ 1, b), and/or ĝk−1.

For the outer induction on k, the base case k = 0 is trivial since ĝ0(a, b) = 0 and ϕ(a, b) ≥ 0.
For a fixed k, we use double (strong) induction on b and (backwards induction on) a. So,

for fixed k and b we assume that the statement holds for all k′ < k and for all states (a, b′)
such that b′ < b. Note that for the base b=0, the induction step does not use the inductive
hypothesis on b since a rational miner never capitulates from a state (a, 0).

Since ĝk(a, b) cannot be bigger than k + b, there is a value of a large enough such that
aλ− bµ− c ≥ k+ b; call this value am(k, b). Statement (8) holds for every a ≥ am(k, b) because

ĝk(a, b) ≤ k + b ≤ aλ− bµ− c = ϕ(a, b) ≤ k · p+ ϕ(a, b).

We can then use any value â ≥ am(k, b) as base case of the backwards induction on a. More
formally,

ĝk(a, b) = max

{
max

s=0,...,b−1
ĝk(0, s), p ĝk(a+ 1, b) + (1− p) ĝk−1(a, b+ 1),

max
s=0,...,b−1

ĝk−1(a− b− 1, 0) + b+ 1

}
≤kp+ max

{
max

s=0,...,b−1
ϕ(0, s), p ϕ(a+ 1, b) + (1− p)ϕ(a, b+ 1)− p(1− p),

max
s=0,...,b−1

ϕ(a− b− 1, 0) + b+ 1− p
}

=kp+ ϕ(a, b),

where the inequality holds by our induction hypothesis, and the last equality by Lemma 7.
Statement (8) shows that the optimal gain per step cannot exceed p, which shows that

Frontier is best response for Miner 1. The proof of the theorem is complete.
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