
Vol.:(0123456789)

Journal of Network and Systems Management (2020) 28:953–989

https://doi.org/10.1007/s10922-020-09559-4

1 3

Blockchain Signaling System (BloSS): Cooperative Signaling
of Distributed Denial-of-Service Attacks

Bruno Rodrigues1 · Eder Scheid1 · Christian Killer1 · Muriel Franco1 ·

Burkhard Stiller1

Received: 9 May 2020 / Revised: 13 July 2020 / Accepted: 28 July 2020 / Published online: 24 August 2020

© The Author(s) 2020

Abstract

Distributed Denial-of-Service (DDoS) attacks are one of the major causes of con-

cerns for communication service providers. When an attack is highly sophisticated

and no countermeasures are available directly, sharing hardware and defense capa-

bilities become a compelling alternative. Future network and service management

can base its operations on equally distributed systems to neutralize highly distributed

DDoS attacks. A cooperative defense allows for the combination of detection and

mitigation capabilities, the reduction of overhead at a single point, and the block-

age of malicious traffic near its source. Main challenges impairing the widespread

deployment of existing cooperative defense are: (a) high complexity of operation

and coordination, (b) need for trusted and secure communications, (c) lack of incen-

tives for service providers to cooperate, and (d) determination on how operations of

these systems are affected by different legislation, regions, and countries. The coop-

erative Blockchain Signaling System (BloSS) defines an effective and alternative

solution for security management, especially cooperative defenses, by exploiting

Blockchains (BC) and Software-Defined Networks (SDN) for sharing attack infor-

mation, an exchange of incentives, and tracking of reputation in a fully distributed

and automated fashion. Therefore, BloSS was prototyped and evaluated through a

global experiment, without the burden to maintain, design, and develop special reg-

istries and gossip protocols.

Keywords Distributed Denial-of-Service · Security · Blockchain · Software-Defined

Networks · Security Management

 * Bruno Rodrigues

 rodrigues@ifi.uzh.ch

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3277-3799
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-020-09559-4&domain=pdf

954 Journal of Network and Systems Management (2020) 28:953–989

1 3

1 Introduction

The technological evolution has built a digitally networked society, in which the

Internet is an indispensable basis for interactions. As the number of connected

devices (mobile and stationary) increases, the complexity of systems providing con-

tent for these devices and their communication network grew in a similar proportion

in support of the rocketing volume of traffic [1]. As a consequence, complex distrib-

uted systems are subject to several types of failures and threats that can compromise

critical infrastructures of societies [2].

Although a Distributed Denial-of-Service (DDoS) is a widely known attack type,

it remains one of the significant causes of concerns for service providers [5]. As

observed (cf. Fig. 1, left) the number of IoT (Internet-of-Things) devices is surpass-

ing the number of non-IoT devices, e.g., mobile phones, laptops, or computers. IoT

devices, ranging from small sensors to home gateways, are a main target of mali-

cious software exploiting their vulnerabilities to infect thousands [1, 6]. This soft-

ware, termed malware, contains malicious code using resources of its host system to

perform undesirable or malicious activities [7].

1.1 Botnets

Within a DDoS context, once a device is infected by malware, labelled as a Bot,

it runs software, whose resources are unintentionally used to execute commands.

A Botnet defines a system composed out of a cluster of Bots controlled by at

least one attacker. Botnets take advantage of lacking security of IoT devices and

are the primary basis for large-scale attacks (cf. Fig. 1, right). While in 2018 a

DDoS attack was peaking 1.7 TBit/s in traffic volume on GitHub servers, the fre-

quency of DDoS attacks also increased more than 29.7% times between 2015 and

2016 [8]. However, the 52% reduction in the number of large-scale attacks from

Fig. 1 Number of IoT-connected devices (per Year) (left), registered large-scale DDoS attacks (accumu-

lated quarters/year) (right), based on [3, 4]

955

1 3

Journal of Network and Systems Management (2020) 28:953–989

2016 to 2017 did not denote a reduction in attacks itself. Akamai reported that the

majority of attacks ranged between 250 Mbit/s and 1.25 Gbit/s in traffic volume.

However, in 2018 there was an alarming increase in the number of large-scale

attacks by 67.1% due to different Mirai variations and reflection attacks based on

Memcached [8].

The most prominent botnet example is the Mirai botnet, which exploits default

and weak security credentials to take control of hosts and spreads itself to other

devices. Mirai marked the transition toward an era of super attacks, in which the

traffic volume at the target system often surpasses 1 TBit/s [1]. The first appear-

ance of Mirai was in 2016, peaking 623 Gbit/s of traffic volume in an attack

against Krebs Security. Th respective Web site’s hosting company Akamai had

to shut down this site, because the defense during three days became too costly.

So many devices were used such that attackers did not have to use a sophisticated

strategy. Iin October 2016 the attack on DynDNS peaked 1.2 TBit/s, resulting

in the unavailability of significant Internet platforms and services, e.g., Twitter,

GitHub, PayPal, and Spotify, due to the rendering of their Domain Name System

(DNS) servers being unavailable [6].

1.2 Toward Cooperative Defenses

Taking these scenarios into account as well as the evolution of DDoS attacks, it

is crucial that defense mechanisms have to evolve to become more powerful, too.

For that, cooperative defenses for communication service providers—operators in

short—have been proposed to reduce the overhead at a single point of mitigation.

Although centralized defenses are effective in detecting and taking action against

these attacks, in case of large-scale DDoS attacks, they are largely overwhelmed

by the massive traffic. Hence, due to the highly distributed nature of such attacks,

future network and service management, especially security management opera-

tions will benefit as follows:

1 Since DDoS attacks are largely distributed, security management approaches need

to scale their defense capacity based on distributed approaches.

2 Operators can benefit from a cooperative decentralization, in which players

coordinate themselves in pre-established trust alliances to exchange information

required, as long as respective incentives exist to perform cooperative a DDoS

attack mitigation.

3 Operations need to minimize hardware requirements such that cooperative defense

mechanisms are based on state-of-the-art solutions, e.g., Software-defined Net-

working (SDN) and Network Function Virtualization (NFV), to manage network

operations, security measures, and deploying service functions for the detection

and mitigation of malicious traffic.

4 In addition, the use of Blockchains (BC) can increase trust among cooperative

operators based on a transparent exchange of information, driven by incentives

to deploy Virtual Network Functions (VNF) across SDNs.

956 Journal of Network and Systems Management (2020) 28:953–989

1 3

Cooperative defenses allow for the combination of detection and mitigation capa-

bilities of different domains, reduction of overhead at a single point, and blockage of

malicious traffic near its source. However, since there is no widespread deployment

of such a cooperative defense system yet main challenges [9, 10] remain: (a) the

high complexity of operation and coordination, (b) the need for trusted and secure

communications, (c) lack of incentives for the operators to cooperate, and (d) the

understanding on how operations of these systems are affected by different legisla-

tion, regions, and countries.

1.3 Cooperative Blockchain Signaling System (BloSS)

The central goal of the cooperative Blockchain Signaling for DDoS (BloSS) is to

provide a cooperative defense approach providing a technical answer for each of

these categories combined into a single system. BloSS contributes to approaches and

techniques to foster a collaborative defense between different Autonomous Systems

(AS). while covering these four categories of challenges in an integrated manner.

Furthermore, the analysis of legal, economic, and social requirements as well as

the approach as an entire solution, embedded into a prototype, plays the key role to

indicate the effectiveness of BloSS on a technical basis. Through an in-depth analy-

sis, where related work provides data on functionality, performance dimensions (cf.

Sect. 2), it is observed that none of these approaches adopted in practice cover these

challenges.

BloSS relies on BCs and Smart Contracts (SC) [11]. Due to approaches, such as

CoFence [12] and Bohatei [13], it is possible to enforce rules decentrally via BCs

and SCs in a flexible and scalable fashion—at no additional hardware costs or

restrictions to instantiate the cooperative defense. BCs do foster trusted cooperation,

because they not only operate on the principle of decentralization, helping to elimi-

nate third-party intermediaries, but they also provide incentives for stimulating the

cooperative behavior among service providers. Similarly, BC capabilities allow for

not only the mitigation of signaling requests, but also for an immutable platform for

the exchange of mitigation services, where each participant can express their needs

in forms of incentives.

While previous work by the authors presented the initial BloSS architecture of

a collaborative defense based on BCs and SCs [14–16] being deployed as a local

SDN cluster representing the underlying infrastructure (taking blacklisted address

signaled and enforcing black-holing rules via OpenFlow), the extended BloSS design

here includes mechanisms to ensure the provision of incentives for mitigation ser-

vices via SCs, while now assessing the reputation of operators involved actively.

In addition, an evaluation of the reputation system within BloSS was performed

considering different behavior for each participant [17]. For instance, interactions

were mapped based on honest, malicious, lazy, and selfish players (e.g., targets—

the ones under attack—or mitigators—the ones offering collaborative mitigation).

This assessment improved the final design of BloSS, including all on-chain steps

for providing incentives and mapping reputation of members of such a collaborative

defense, as well as front-end design presented in [18, 19].

957

1 3

Journal of Network and Systems Management (2020) 28:953–989

Another aspect of cooperative defense is concerned with the impact of the size of

blacklisted address lists on latency for signaling [20]. This work verified the benefit

of the establishment of an off-chain P2P network based on IPFS (Inter Planetary File

System) [21], in which nodes are exclusive participants in the collaborative defense

as for BloSS. In this study the impact of confidentiality of data being exchanged off-

chain was highlighted, impacting the design for a key exchange in the overall archi-

tecture (cf. security in Sect. 4.6).

This step is complemented in this work by the evaluation of performance aspects

in a world-wide experiment, such as information propagation latency and proto-

col execution time. Therefore, in combination with the tracking and evaluation of

reputation in a collaborative defense [17] and an off-chain transfer of blacklisted

addresses [20] BloSS has reached herewith a practical and deployable approach for

security management, especially in terms of DDoS mitigation in a cooperative, dis-

tributed manner.

The remainder of this article is organized as follows. While Sect. 2 presents back-

ground and related work, Sect. 3 outlines the assumptions and requirements taken

into consideration. Section 4 describes the cooperative logic implemented in SCs

and the decentralized application based on SDNs. While evaluations are contained

in Sects. 5, 6 draws conclusions.

2 Related Work

As a response to the increasing number of DDoS attacks, research sees an increasing

number of proposals to counter DDoS attacks based on both centralized and dis-

tributed (cooperative) perspectives. While centralized proposals target the optimiza-

tion of detection and mitigation processes at a single domain, cooperative proposals

broaden this scope by including mechanisms and protocols to perform the signaling

of attacks between two or more domains, i.e., a gossip-based protocol and an archi-

tecture supporting its functioning.

As identified in [9, 10], main challenges of existing approaches are identified as:

(a) the high complexity of operation and coordination; (b) the need for trusted and

secure communication; (c) a lack of incentives for service providers to cooperate;

and (d) the understanding on how operations of these systems are affected by differ-

ent legislation, regions, and countries. They are categorized:

– Technical: The Internet is a heterogeneous environment whose underlying

infrastructure is composed of many different protocols, systems, and network-

ing equipment. The challenge is to abstract hardware/software differences of

the underlying infrastructure or operate based on existing standards, avoiding to

impose additional software or hardware requirements.

– Social: The public image of a service provider is often its most valuable asset.

Thus, all the communication of such defense also needs a trusted channel to

make sure that the attack information provided to all members is not only reli-

able, but also private to its members. Furthermore, trust needs to be established

and reputation needs to be managed.

958 Journal of Network and Systems Management (2020) 28:953–989

1 3

– Economic: Solely relying on voluntary contributions creates a favorable envi-

ronment for free-riding (consuming resources without contributing). Incentives

among the participating members need to be provided. Costs are in the form of

CAPital EXpenditures (CAPEX) to configure and maintain the communication

infrastructure as well as OPErating EXpenditures (OPEX) to cover resource uti-

lization costs for the actual attack mitigation.

– Legal: It is necessary to understand and react upon the differences in the legal

aspects of each region or country, which can influence the cooperation among

members. For example, for legal reasons a member may be prevented from

blocking traffic of a suspected host.

Secure Overlay Services (SOS) [22], COSSACK [23], and DefCOM [24] paved the

way for cooperative defenses in the early 2000s. While SOS focused on identifying

legitimate sources for time-sensitive networks (i.e., requiring peers to authenticate

to the overlay network), COSSACK and DefCOM based their approach on detec-

tion and enforcement points in access networks. However, these approaches required

changes in routers [23, 24] or required sources to be registered [22], thus, showing

complexity of coordination and operation.

Another typical, although non-cooperative approach is to use cloud-based protec-

tion services. These serve as a proxy receiving, analyzing, and redirecting traffic to

the target, which delegate detection and mitigation tasks to the protection provider

(e.g., Akamai [1] or CloudFlare [25]). However, despite having dedicated resources

to mitigate DDoS attacks and relying on incentives to perform this service, these

are still centralized approaches and, therefore, vulnerable to large-scale attacks as

observed in the DynDNS attack [26].

Guangsen and Manish [27] applies a gossip-based communication protocol to

exchange attack information between independent detection points to aggregate

information about observed attacks. The system is built as a peer-to-peer overlay

network to disseminate attack information rapidly to other listening users or sys-

tems. A similar approach as of [28] formalizes a gossip-based protocol to exchange

information in an overlay network using intermediate network routers. Also, [29]

deploys a similar architecture, but uses an advertising protocol based on the FLEX

(FLow-based Event eXchange) format, which is used to simplify the integration and

deployment of the solution and facilitates communication process between domains

involved.

More recent approaches, such as CoFence [12] and Bohatei [13], are based on

relatively new technologies. For example, NFV and SDN can reduce the complexity

of coordination and operation and based on essentially software approaches, decou-

ple specific functions previously performed in hardware to a central point with a

global view of the network as well as virtualize specific functions to be executed

on servers. As a result, there is greater flexibility in the deployment and operation

of these solutions, typically including the performance trade-off. Thus, the greater

the level of abstraction or the generalization of the network function, the greater

the loss of performance. In case of SDN, there is an issue of latency between the

decision taken at the controller and the switches, and in case of VNF, the bottleneck

can become the processing capacity of the server that typically accumulates various

959

1 3

Journal of Network and Systems Management (2020) 28:953–989

functions. Similarly, [30] proposes a collaborative framework that allows the cus-

tomers to request DDoS mitigation from ASes. The proposal is based on an SDN

controller implemented at customer side interfaced with the AS, which can change

the label of the anomalous traffic and redirect them to security middle-boxes.

The implementation of Bohatei, for example, does not directly incorporate inter-

domain DDoS defense, which employing a scheme such as Pushback [31], would

allow edge and access routers to relay traffic filtering to routers further upstream.

Thus, expanding the approach for a multi-domain cooperative defense with the flex-

ibility of SDN and NFV. Pushback relies on a Aggregate-based Congestion Con-

trol (ACC) concept, in which ACC imposes a traffic shaping on subsets of traffic

(i.e., aggregations) defined by some characteristics such as specific destination port

or source Internet Protocol (IP) address. It is a router-based solution that allows a

router to request adjacent upstream routers to rate-limit the specified aggregates, and

prevents upstream bandwidth (i.e., outbound traffic) from being wasted on packets

that are only going to be dropped downstream.

Further, many proposals for a cooperative defense are not only limited to the sign-

aling of attack information, offering a complete framework including attack detec-

tion, signaling, and mitigation. On the one hand, a complete solution has a positive

side by offering the entire defense framework not only for the single domain but

also in a cooperative fashion. On the other hand, this imposes hardware and soft-

ware requirements that may restrict the widespread adoption of the solution. As an

example, the IETF DOTS [32] proposal has a complex architecture that can make its

widespread adoption an issue. However, it also has a high power of standardization,

which can facilitate the adoption of the Protocol in standard networking hardware.

Related work (cf. Table 1) addresses a collaborative defense schemes facilitating

communications among peers. This can be achieved either by using a novel technol-

ogy (e.g., SDN and NFV) or a novel architecture, such as IETF DOTS [32] and Def-

COM [24]. DOTS shows the major advantage of engaging the industrial community

(through IETF) in forming a standard protocol for exchanging information about

attacks. In this sense, the social aspect can be addressed in the creation of communi-

ties of mutually trustworthy entities, however, following a client-server model for

the exchange of information.

However, challenges as of economic and social nature are not fully addressed.

Thus, a technical solution based on BC has to avoid additional costs regarding hard-

ware and software and needs to be simple to be deployed and operated. Therefore,

BloSS encompasses the support for incentives based on BCs that can be safely and

reliably distributed among participants and their legal/conformity options can be

selected, too, e.g., restricting the operation to specific regions/countries or members.

Therefore, cooperative defenses can benefit from BCs in different dimensions.

While BCs can (a) reduce the complexity of operations and coordination by using

existing infrastructures to distribute rules without any specialized registries or

protocols, they also can foster a (b) trusted cooperation due to their transparency

and decentralized characteristics. Also, they can provide (c) financial incentives

fostering the cooperative behavior among service providers [33]. Thus, BC capa-

bilities can be leveraged for signaling mitigation requests across a BC network in

a similar approach as for DefCOM [24] and BCs serve as an immutable platform

960 Journal of Network and Systems Management (2020) 28:953–989

1 3

for the exchange of mitigation services, where participants express their needs in

forms of incentives.

3 BloSS Design Considerations

BloSS allows for the distribution of incentives to boost the cooperative behavior

of participating entities and to track the reputation of operators involved. Thus,

SCs are deployed in the underlying permissioned Ethereum [34] BC infrastruc-

ture [deploying a Proof-of-Authority (PoA) consensus mechanism] used to sig-

nal attacks over several domains, while at the same time managing incentives.

E.g., a Computer Security Incident Response Team (CSIRT) within the same

region is able to establish a private network, which is transparent only for its

cooperative members (i.e., the CSIRT consortium). The consortium-based BC

deployed provides trust by definition, i.e., assuming that shared information on

an attacks signalled will not be exposed externally. However, trust is the key, as

it involves sharing of data between CSIRTs [35]. Thus, a BC-based solution can

provide through its natural transparency a higher degree of transparency and trust

between collaborative instances (Table 2).

Table 1 Comparison of related work

 = property provided; = property provided partially; ✗ = property not provided

Related work Cooperative defense challenges Capabilities

Technical Social Economical Legal

DefCOM [24] ✗ ✗ Signaling

SOS [22] ✗ ✗ Signaling

COSSACK [23] ✗ ✗ Signaling

Mitigation

Zhang et al. [27] ✗ ✗ ✗ Signaling

Pushback [31] ✗ ✗ Signaling

Mitigation

Steinberger et al. [29] ✗ ✗ Signaling

Mitigation

Sahay et al. [30] ✗ ✗ Signaling

Mitigation

Velauthapillai et al. [28] ✗ ✗ Signaling

Mitigation

Bohatei [13] ✗ ✗ Signaling

Mitigation

CoFence [12] ✗ ✗ Signaling

Mitigation

IETF-DOTS [32] ✗ Signaling

BloSS Signaling

961

1 3

Journal of Network and Systems Management (2020) 28:953–989

3.1 Performance—Block Size and Delay

A limiting factor in a BC-based cooperative defense is performance, that involves

the relation between the block size and the propagation delay, i.e., latency. The BC

throughput is defined as [36]:

Considering a blockSize of 1 MB and a propDelay of 10 s, the throughput would be

of t 0.1 MB/s delivered in epochs defined by the block generation time. Similarly, a

blockSize of 2 MB and a propDelay of 10 s would result in a twice better through-

put t 0.2 MB/s. In addition, it should be noted that increasing block size can also

negatively influence propagation time, the larger the file size being transferred, the

greater the transfer time (cf. Fig. 2).

The effects of an increasing block size on the propagation delay is shown in

Fig. 2. It has been shown a strong correlation between the size and its influence on

(1)TP =

blockSize

propDelay

Table 2 Benefits and drawbacks of a BC-based collaborative platform in a cyber-security context

Dimension Benefits Drawbacks

Performance Relatively simple to deploy and operate Lack of performance in terms of transactions per

second and storage capacity

Incentives Platform to distribute incentives Incentives may not be required by the CSIRT

community

Trust Enhancement of trust through full

transparency and decentralization

Excess of transparency may impair confidential-

ity

Fig. 2 Influence of block size on propagation delay [37]

962 Journal of Network and Systems Management (2020) 28:953–989

1 3

the propagation time through the delay cost, which is defined by the authors as the

time delay each kilobyte causes to the propagation of a transaction or block [37]. As

reported, for sizes below 20 kB the round trip delay caused by the Protocol (Bitcoin

used as example) causes a major influence on delay, whereas in blocks larger than

20 kB, each kilo byte represents an additional of 80 ms. The number of available

blocks in a period of time can be determined by relation between the block gen-

eration time blockGenTime and the period of time T. Thus, considering a blockGen-

Time of 15 s based on the Ethereum, and a period of time in a day (in seconds) T

= 86,400 s, the number of available blocks in a day is given by T/blockGenTime,

resulting in this case in 5760 blocks. The maximum amount of information that can

be Storage Available in the Period (SAP) is described by:

In the case of a blockSize of 1 MB, the SAP considering a blockGenTime of 15 s

would be 5.76 GB of storage available in a day, and 11.52 GB for a 2 MB blockSize

for the same blockGenTime. Another negative aspect observed in a BC solution is

the need for storage of BC history. This is to ensure that data previously entered into

the BC is verified by all members, and also to prevent modifications being made for

any malicious purpose. Alternatively, it is possible to define times (e.g., monthly or

yearly), in which organizations of the alliance can save the BC state into a snapshot

(which needs to be hashed and compared by all members) and start a new fork of

the same BC [38]. However, such an approach does not reduce by itself the need for

storage, requiring snapshot compression and storage at a more efficient media.

3.2 Financial Incentives

The CSIRT community currently shares information based on trusted contacts [39],

i.e., the exchange of information between CSIRTs works at the confidence level that

is defined by each CSIRT’s individual relationship with other members in a region,

group, or alliance. Currently, no exchange of financial incentives exists for shared

information or cooperative mitigation actions.

The use of BC as a collaborative platform allows the creation of a marketplace

to exchange mitigation services, financially rewarding actors involved in the mitiga-

tion of requests. While, to the best of the authors knowledge, there is no financial

reward for these services (nor their needs explicitly evidenced by CSIRTs), there are

proposals to formalize an incentive model associated with sharing, analyzing and

delivering cybersecurity services [40]. There are arguments both for and against the

use of financial incentives [39, 41]:

– Against: changing the current model of how information is shared could impact

the trust model among CSIRTs.

– Favor: incentives could allow for greater engagement of collaborative organiza-

tions, working similarly to a bug bounty program.

(2)SAP =
T

blockGenTime
× blockSize

963

1 3

Journal of Network and Systems Management (2020) 28:953–989

The lack of financial incentives could discourage cooperation, which involves the

use of resources and possible legal consequences of future mitigation acts in cases

of false positives. The argument in favor is “a lot to lose and little to gain” [39] in

effecting collaborative mitigation, and incentives are required to increase engage-

ment. Naturally, by requiring resources from third parties, financial incentives are

the most effective way to cover these costs.

3.3 Blockchain as an Enabler of Trust

Trust is the fundamental aspect of any cooperative environment and difficult to

obtain, since it may rely on many non-technical aspects [42]. Also, the process of

building trust between entities has no relation to a specific technology and several

non-technical and specific aspects of each organization are required. BCs operate as

a “trust-enabler”, providing transparency and trust between cooperative organiza-

tions. However, it is not possible to quantify the role of BCs as a trust enabler, since

it is not possible to determine a “probability” in which the use of BC is a determin-

ing factor in ensuring trust between organizations. The role of BCs in building trust

has been studied by [43], in which solutions are addressed on how these conflicting

notions may be solved, while exploring the potential of BCs for dissolving the trust

problem. According to [44, 45], the main characteristics of trust are defined as:

– Dynamic: as it applies only in a given time period and maybe change as time

goes by. For example, a history of security data sharing between two or more

companies does not guarantee that these companies will always share data at any

time. Trust can only be built during a time-frame.

– Context-dependent: the degree of trust on different contexts is significantly dif-

ferent. E.g., organization A may share threat indicators, but may not disclose

actual malware intelligence due to, e.g., legal issues. Thus, trust may exist

between organizations A and B only for sharing a “threat indicators” context.

– Non-transitive: if A trusts B and B trusts C, A may not trust C. However, A may

trust any organization that B trusts in a given context.

– Asymmetric: trust is a non-mutual reciprocal in nature. That means if entity A

trusts B, the statement entity B trusts entity A is not always true.

Among the various (non-technical) facets of trust, in the cooperative platform it

plays a crucial role. This has been demonstrated in different e-commerce studies

[46, 47], where online shoppers must necessarily rely on the functioning mechanism

of the online store to make the purchase (i.e., use the credit card in a potentially

unknown online store). These studies suggest to measure trust as the belief that a

platform is honest, reliable, and competent.

Mapping these dimensions to BCs, a permissioned deployment model with a con-

sensus necessarily open to the participation of all members within the cooperative

defense meets these requirements. The capability to create an immutable and pub-

licly (within this context) available record of transactions is seen as an enabler of

trust [43]. In addition, the definition of rules between participants through SCs does

964 Journal of Network and Systems Management (2020) 28:953–989

1 3

allow to verify the execution of the SC defining the cooperation. However, algorith-

mic trust is not limited to the correct functioning of the algorithm, but also includes

a variety of socio-technical factors, such as its formal and legal correctness beyond

the technical solution.

3.4 Truthfulness of Mitigation Proofs

After the acceptance of the service mitigation terms by both parties (T and M) and

T send funds to be locked in the SC, a period begins in which M must send proof of

service mitigation. At this stage, a technical challenge is the absence of guarantees

that the service was performed as requested since it is performed outside the prem-

ises of T. This problem was detailed in a previous work [48] and this subsection

presents an overview (cf. Fig. 3) on the challenge of verifying the quality of the

mitigation service.

VNF Marketplace: Allows for a T to encapsulate mitigation actions as a software

that can be directly deployed on commodity hardware running on M’s site. In such

an approach, a marketplace for VNFs can be built for all entities involved in the

cooperative defense. Then, a M loads the VNF certified by T directly from the mar-

ketplace to perform the mitigation service using a cookbook with negotiated on

chain e.g., list of attacking addresses and a mitigation action. While this approach

provides a high degree of isolation, it does not guarantee that M would not tamper

with its execution environment. Solely deploying a VNF is not a reliable proof of

(a) (b)

(c) (d)

Fig. 3 Approaches toward a verifiable mitigation proof [48]: a VNF marketplace, b trusted platform, c

secure logging, and d network slicing

965

1 3

Journal of Network and Systems Management (2020) 28:953–989

mitigation and T still needs to trust that M will run untampered VNFs directly from

the VNF marketplace.

Trusted Platform Module: A TPM allows to extend the chain of trust up to the VNF

itself. In combination with a VNF marketplace, it is possible to provide a mitigation

service in which VNF requests are always handled by known and trusted hardware.

However, this approach imposes scalability concerns once TPM modules are a fea-

ture available only as a standalone chip or as a solution integrated into the mother-

board, but it does not come pre-installed on networking equipment. Still, it would

not be possible to ensure the truthfulness of the mitigation once a malicious M

would be able to change the network flow to the system running the mitigation VNF

and lead it to believe that it is seeing all the traffic while in reality, parts or all of the

attack traffic have been rerouted and no mitigation seems to be required anymore.

Secure Logging: Is the production of a log outputting the effect of a mitigation

action, which can be leveraged by previous approaches, where a VNF certified by

T and running on a TPM module does store logs inside a BC to ensure immutable

evidences. However, similarly to previous approaches, it is still not possible to guar-

antee the truthfulness of a mitigation test, since underlying traffic flows can be tam-

pered before reaching VNFs required by T.

Network Slicing: An approach leveraged by SDN networks in which it is possible

to virtualize network segments and allow T to install specific flows to perform the

mitigation. Therefore, instead of allowing a virtual network function (whose source

code may not be known by M), controlled access to the infrastructure (specified in

the slice) is allowed to T. However, it is still possible that the slice provided by a

malicious M is tampered with so that actions defined by T have no real effect on the

underlying traffic.

4 BloSS Protocols Design and Application

The design of BloSS considers an on-chain part, where the cooperation logic is

implemented in SCs, and an off-chain part, whose prototype was based on SDN to

facilitate with the network management system signaling attacks and the implemen-

tation of mitigation actions. In addition, BloSS is based on am Ethereum Proof-of-

Authority (PoA) consensus, i.e., access to the overlay network is restricted to the

alliance of cooperative members in certain countries or regions.

4.1 Incentives and Fairness

While providing many benefits, a cooperative defense also poses many challenges e.g.,

why often competing organizations would help each other. In a competitive environ-

ment, trust needs to be established. Solely relying on a voluntary contribution (i.e.,

966 Journal of Network and Systems Management (2020) 28:953–989

1 3

accepting defense requests) creates a favorable environment for free riding peers (con-

suming resources without contributing). This situation, and the social dilemma that the

business partners find themselves in is illustrated in Fig. 4. First, the attack T publishes

malicious IP addresses. Second, multiple Ms adjust the configuration of their network

devices to filter and drop the malicious packets. In a third step, the attack T evaluates

the effectiveness of the mitigation service.

A reputation scheme allows contributors and consumers of the network to rate enti-

ties that request protection in a cooperative defense. These systems have already been

proven useful for e-commerce websites to incentivize peers to contribute with relevant

information and establish fairness among peers. A basic scenario illustrating fairness

problems in the DDoS mitigation process can be divided into three stages, as depicted

in Table 3. Firstly, between the mitigation request by the DDoS attack target T and the

actual blocking of the malicious IP addresses by a M domain M. Secondly, after the

delivery of the mitigation service and the payment by domain T. Table 3 illustrates

three possible mitigation histories and outcomes, depending on how T and M act.

Whenever a M submits a proof of mitigation, there is no automated way for other

peers to build a consensus on the quality of the service delivered [48]. In other words,

the receipt in a “payment-for-receipt” exchange process cannot be automatically issued

by an SC, because in the worst case, any upload is accepted as successful delivery and

the DDoS T domain would pay for a worthless receipt. Attack size and amount of pay-

ment are relevant factors that could result in severe financial losses for the attack T. In

order to avoid this problem, the reputation process depends on the attack T to validate

and rate the outcome of the mitigation service within an a priori agreed deadline.

Fig. 4 Social dilemma of false-reporting and free-riding in collaborative DDoS defenses [17]

Table 3 Cooperative defense

scenarios with DDoS attack

target T and mitigator M

Stage 1. Request 2. Service 3. Payment

Behavior T requests M blocks T pays

T requests M blocks T refuses

T requests M refuses –

967

1 3

Journal of Network and Systems Management (2020) 28:953–989

It is reasonable to assume that T’s costs inflicted by the attack are higher than the

costs of domain M, which is providing the mitigation service. A rational M would be

better off not providing the costly mitigation service in the short term (i.e., betray).

Also, T has strong incentives to refuse payment (i.e., betray). Since in a repeated game,

the roles of T and M could be swapped, they are better cooperating in view of future

attacks. A reputation and incentive scheme can incentivize the peers because it records

and stores past behavior. This data can be analyzed by other peers before committing

new transactions and can help them to make better decisions. The peers will preferably

transact with reputable colleagues. This leads to an increase in successful transactions

overall, i.e., it increases social welfare. The percentage of successful interactions can

serve as a useful performance measure to evaluate a reputation and reward scheme [49].

Furthermore, reputation points used to rate T and M are preferably not the same,

because a task owner with a good rating does not necessarily need to be a good

M and vice-versa. Therefore, reputation earned as M is stored separately from the

reputation earned as attack target or task owner. A simple metric gives the analyzing

peers a clear understanding of a peers reputation. Added to this, a complex metric

might lead to feedback loops. There are two types of reputation sources, subjective

and objective. While the subjective reputation is composed of positive and negative

ratings from other peers, the objective, historical metrics can be obtained from the

public BC history. For example, the reputation system prototype in this thesis allows

to compute the following metrics (among others):

– Customer age: The customer age can be derived from the block timestamp when

the customer ID was created.

– Number of interactions: Completed tasks (negative, positive and unknown rat-

ing) and the number of interactions for a customer are obtained through the pub-

lic task states.

– Average satisfaction: The average satisfaction with a peer (ratio of positive and

negative ratings) signals the general satisfaction with this customer.

– Number of completed tasks: Observing the amount of completed tasks over time

helps to compare historical with current customer performance.

4.2 BloSS Cooperative Protocol

Figures 5 depicts possible states and transitions depending on the message sender

(i.e., caller) of the function, including the rating of both, the mitigation service per-

formed by an M entity accepting a mitigation request and a T entity, the T of the

attack.

After the deployment of the SC, the default state Request is set until the T requests

defense from a M by initializing, which changes the state to Approve. The initializa-

tion contains important variables (e.g., network information, deadline interval, or

minimal amount of funds), which are not changed during the following process until

the SC is reused through initializing or re-initializing. During Approve, the chosen

M may cooperatively accept or is uncooperative deny the request which either leads

to the state Funding or the end-state Abort. The negotiation of SC parameters can

968 Journal of Network and Systems Management (2020) 28:953–989

1 3

take place off-chain through a direct communication channel if needed. For exam-

ple, the Whisper protocol (Ethereum) could be used to agree on these SC param-

eters. This negotiation phase could as well be designed two-ways, allowing T to sub-

mit an actively “request for service” to M. Once the offer reaches T, the domain

under attack can draft a valid mitigation SC.

While in the Abort state, the T may choose to initialize with a different M or

re-initialize with the same M to reach Approve again. However, if the M is coop-

erative, the Funding state begins, and after sending the required incentives, the

state switches to uploadProof and the funds are locked into the SC until com-

pletion. T writes the attack information (e.g., IP address ranges, packet captures,

request headers, notes, and other patterns [20]) to the external off-chain storage

(e.g., IPFS [21]). During the service time window (t0), M is supposed to upload

a proof of service. M will have an incentive to submit a proof (even a forged one)

since time works against M. T is obliged to validate the effectiveness of the ser-

vice and rate M during the validation time window. T will have the interest to vote

and proceed in the mitigation process since the clock works against T during this

time window.

Fig. 5 BloSS SC for a collaborative, on-chain DDoS signaling

969

1 3

Journal of Network and Systems Management (2020) 28:953–989

The M can upload proof in the form of a report that is used as evidence for

work that has been done by the M to mitigate the DDoS attack. In the best-case

scenario, both parties keep their promises and deliver money and service on time.

The offers and SC proposals can be made repeatedly by the two domains until

they find an agreement. During this process, M and T also agree on the deadlines

for service delivery, validation, payment, and rating. Playing against the rules will

result in a financial loss for both parties, as depicted in Fig. 6. For example, if T

misses to acknowledge or reject the proof in response to the delivered service, M

will be rewarded.

Fig. 6 Payout process: T is refunded, if no proof was uploaded and M is rewarded, if T does not validate

in time

970 Journal of Network and Systems Management (2020) 28:953–989

1 3

Therefore, T is penalized and has no chance to retrieve the payment. Both parties

are free to abort the protocol, if the counter-party did not deliver the result expected

during the agreed time-frame. The decision flow that shows who gets rewarded on

abort is visible in Fig. 6. If M did not deliver the service, T will retrieve the payment.

Similarly, if T did not respond during the validation time window, M will be reim-

bursed. M is not allowed to rate, if no proof was uploaded. This ensures that a user’s

reputation is only changed through valid interactions, which impedes bad-mouthing

[50]. In order to bad-mouth a competing domain and deteriorate its reputation, the

attacker needs to buy at least as many mitigation services from this competitor. This

increases the competitors’ profit and is irrational [50]. In contrast to M, the process

allows T to rate, even if no proof was uploaded during the service window.

However, even if the BC preserves a transparent audit trail for all transactions,

it cannot compensate for lack of ground-truth. This holds for the uploaded proof of

service as well as for user-defined, subjective ratings, in which there is no automated

way to fully determine the truthfulness of a proof or rating. If the defined the dead-

line interval is missed, or there is no upload of a proof, the M is marked as lazy, and

the updated state is Abort. If a proof is uploaded, the rating process of the T and the

M begins. During rating, only the case where both actors are dissatisfied leads to the

Escalate end-state in which the actors themselves must manually find a solution to

find consensus upon the service and incentive. All other combinations of the T or M

rating satisfied, selfish or dissatisfied, lead to the end-state Complete. When Com-

plete is reached, the locked funds from BloSS are released and transferred to either

the T or the M, depending on missed deadlines and ratings.

4.3 Implementation

Storing participating Targets (T), Mitigators (M), and their respective addresses in a

Register SC (i.e., a meeting point for participants of the collaborative defense), ena-

bles a search for Ms and an efficient management of active processes. This registry

type SC extension is important to facilitate the process of finding a known M, which

is already registered, waiting for a T to interact.

When M is not be found in the Register, the default address value is received by T

and further searching for a specific M can be done. However, in case the required M

is found, T addresses can be observed by M in order to interact with the SC itself. At

this point, an SC has stored the address of T and M in order to either allow or disal-

low access to functionality or a change of SC states.

971

1 3

Journal of Network and Systems Management (2020) 28:953–989

Retrieving an M (i.e., retrieving an M from the Register SC) requires to know

its identifier by the Target T. If the identifier and the M address exist without hav-

ing an SC address assigned to the same struct, the address of this SC is assigned

and registered and that M address is returned to the SC instance. A protocol is

created by associating addresses of T with M in a verifiable on-chain SC. Ena-

bling both Register and BloSS SCs to interact, offers advantages, such as calling

methods or retrieving information from each other. The logic in the SC can be

separated from the registration process. Thus, a single deployment of a Register

972 Journal of Network and Systems Management (2020) 28:953–989

1 3

is needed whereas many SCs can be created, allowing every T to deploy BloSS

and search for an M in the Register.

By storing these pairs of addresses in an efficiently verifiable data structure, a

mapping allows for a usable client-side implementation, where only one instantia-

tion of BloSS is needed for the interaction between the T and the M and one key

with which a search on the map can be done. And because the instantiation of the

protocol references the same SC on both sides, the storage, states, and fields are the

same as well, and the interaction on the BloSS may proceed. In order for a client to

access the BloSS instance the Application Binary Interface (ABI) and the address of

the BloSS is required.

Listing 1 summarizes main functions in the BloSS SC, which maps initial steps of

the SC initialization, such as setting funds and deadlines to complete the mitigation

service (e.g., methods init and approval). Thus, the execution of the SC prevents one

to return states before the SC reaches its final stage (completion). For instance, it is

not possible for an M to send another mitigation proof after the proof rating by the

T (e.g., each method verifies the previous state with the require statement). Another

important aspect of the BloSS SC is the rating by T and M (cf. Listing 2).

973

1 3

Journal of Network and Systems Management (2020) 28:953–989

Rating actions in Listing 2 consider both, rational and irrational behavior from M

and T. Whereas a rational action means that one of the two parties acts as expected

(best scenario) within the possible protocol alternatives, an irrational action means

that either party loses a deadline or acts maliciously. The rating is the last step before

completing the protocol, in which the call returns another function to complete the

protocol, e.g., endProcess().

4.4 Discussion of Scenarios

At scenarios 1 and 2 T is dissatisfied as a result of M not uploading a proof, leading

to funds being refunded to T. Even without a reply from T, T is refunded (cf. sce-

nario 2). To remove the possibility of ballot stuffing, where T would rate satisfied in

case no proof being uploaded, T is not allowed to rate positively here. However, if

a proof is uploaded before the service deadline ends, T can rate satisfied, be selfish,

or dissatisfied. M can always react and rate rational, be selfish, or irrational, which

enables further possibilities, although only three ending states can be reached after

locking the funds.

Scenario 3 shows T rating satisfied and M reacts rationally with a positive rating,

leading to funds being transferred to M. Similarly, scenarios 4 to 8 of T rating satis-

fied or being selfish (i.e., missing the service deadline) lead to M being rewarded,

regardless of the rating by M. Case T is dissatisfied with the proof uploaded by M

and M reacts in a rational way by rating dissatisfied as well (cf. scenario 9). The case

escalates and further investigations are needed for resolving it. Scenarios 10 and 11

lead to T being refunded due to rating dissatisfied and M being selfish or rating irra-

tionally satisfied.

4.5 Decentralized BloSS Application

An overview of the BloSS Decentralized Application (dAPP) is provided in Fig. 7

detailing connections between all its modules. The BloSS is the component where

each service provider taking part in the cooperative defense, can post information

about an ongoing attack to the Ethereum, i.e., the connector to the on-chain con-

tracts. It uses a REST interface to facilitate the isolation of the BloSSmodule, encap-

sulating the entire module together with Pollen BC and Pollen data store as SDN

applications and, possibly, as a VNF running on commodity hardware. The goal of

this design is not to impose restrictions on the underlying networking hardware, fur-

ther simplifying the interaction with the BloSS and its modules via REST interfaces.

Data exchange is accomplished with the “Pollen” set of modules, and the “Stalk”

module handles network-related tasks. Pollen is divided into dedicated modules

for the specific data exchange duties of the BloSS, which includes a BC module for

access to the Ethereum, a data storage module managing information on the IPFS.

Attack information posted to the BC is not directly stored on the BC due to limited

block sizes and to maintain the information confidential. For this purpose, IPFS is

used as a decentralized and highly scalable storage solution to hold attack informa-

tion. Each service provider running the BloSS also maintains an IPFS node to enable

974 Journal of Network and Systems Management (2020) 28:953–989

1 3

the decentralized storage. Whenever a new set of attack information is posted to the

BC, the data is first stored in IPFS, and only the hash as a unique identifier of the

storage location within IPFS is stored in a block on the Ethereum.

The Pollen data store also includes an encryption component. The encryption of

attack information posted to IPFS ensures the confidentiality and the integrity of the

attack information based on a per-message signature bundled with the attack infor-

mation. Confidentiality is an essential attribute of the data exchange between ser-

vice providers, since the attack information can be sensitive in regards to implicating

individuals both as victims of an ongoing DDoS attack or as perpetrators of said

attack.

Verifying the integrity of attack information allows for holding each service pro-

vider accountable for the information posted to the BC and makes forgery of attack

information impossible. The integrity-check is enabled through a public key pub-

lished by each service provider to the BC and, therefore, available to all providers

participating in the BloSS defense alliance. Without this measure, forgery of attack

information would allow a malevolent party to indicate specific IP addresses as

being the source of an ongoing attack and to block flows from these addresses to the

T address specified in the attack information.

4.6 Security Considerations

Figure 8 shows a prototypical defense scenario involving an M as well as T’s AS.

Attack detection is outside the scope of the BloSS so the first step includes compiling

Fig. 7 Architecture of the blockchain signaling system (BloSS)

975

1 3

Journal of Network and Systems Management (2020) 28:953–989

the attack information and encrypting it to later store to IPFS and post the IPFS hash

to the Ethereum. To minimize access to IPFS as well as Ethereum to access attack

information and the public key of T’s AS, the attack information hash is connected

to a Boolean indicating whether the information has already been accessed by M’s

AS in order to block the attackers. However, incentive schemes necessary to real-

ize a true Mitigation-as-a-Service (MaaS) offering as outlined in [48] are out of the

scope of this implementation of BloSS.

Encryption and decryption is built with the Python Cryptography library [51]

and the choices for cryptographic algorithms as well as key lengths and other cryp-

tographic details are based on an article by Colin Percival [52]. PollenEncryption

uses both asymmetric cryptography through RSA with 2048 bit keys and symmetric

cryptography through Fernet, which is essentially the Advanced Encryption Stand-

ard (AES) block cipher in Cipher Block Chaining (CBC) mode using a 128 bit key

[51].

Asymmetric encryption is used for two tasks in PollenEncryption: To encrypt the

symmetric key as well as to cryptographically sign the unencrypted attack report

with the private key of the sender. Signing the attack report with the private key

allows the receiver to verify the authenticity of the attack report by using the public

key available on the BC for cryptographic verification. Instead of directly encrypt-

ing the attack report through asymmetric encryption, the symmetric Fernet scheme

is used. Asymmetric encryption is very useful since no secret key exchange has to

occur, however it is not well suited to encrypt large amounts of data since the size of

data to be encrypted cannot exceed the key size of 2048 bit [52] (Fig. 9).

After encrypting the attack report and symmetric key as well as signing the attack

report, all three components, signature, encrypted symmetric key and encrypted

attack report are stored in IPFS as a JavaScript Object Notation (JSON) object for

Fig. 8 BloSS defense scenario including a T and an M AS

976 Journal of Network and Systems Management (2020) 28:953–989

1 3

easier handling through the Stalk and BloSS REST APIs. In addition to encrypting

each set of attack information when posted to IPFS, all communication between the

Pollen datastore module and IPFS is encrypted with the libp2p-secio [53] stream

security transport, which is based on TLS 1.2. Transport encryption would not be

strictly necessary since the data being transported is already encrypted, however this

allows a certain degree of anonymization for the defense system users since it is

not possible to ascertain which AS accessed which attack information when sim-

ply looking at the communication between IPFS and AS. This added anonymity can

also be seen as an additional factor contributing towards increased confidentiality.

Communications between individual Ethereum nodes is also encrypted as

detailed in the DEVp2p [34], which contributes to an increased confidentiality.

However, due to the distributed ledger characteristics of Ethereum, transactions can

be traced back to the party responsible for the chain. The last part of the commu-

nication chain with the REST interface between BloSS and Stalk is not encrypted.

This is by design since the REST interface is designed to only be accessible on the

same machine to allow for simple communication between BloSS and Stalk while

enabling a high degree of encapsulation for the BloSS module in order to allow the

implementation of Proof-of-Mitigation schemes.

5 Experimental Evaluations

The goal of an experimental evaluation is to measure quantifiable parameters,

such as the gas usage and the performance. Based on those outcomes and within

a global evaluation, it is possible to label BloSS a feasible approach. However, to

Fig. 9 Encryption Procedure for Off-chain Data Transfer via IPFS

977

1 3

Journal of Network and Systems Management (2020) 28:953–989

achieve a global BloSS deployment, a simulation based on Truffle and Ganache

Suite and a local deployment on a test net was performed. Since Truffle and

Ganache are simulation environments, they allow for a verification of the correct-

ness of SCs running on Ethereum. Since previous results from local deployments

on hardware were published in [33], this evaluation discloses the global evalua-

tion results.

Hardware Setup: BloSS’ evaluation was based on Amazon Web Service (AWS)

instances deployed in Ohio, Tokyo, and São Paulo. These EC2 Amazon t2 medium

instances were configured with two threads on either an Intel Xeon or an AMD

EPYC-Core running at up to 3.0 GHz and with 4 GByte of RAM. All instances

were synchronized with the Ethereum Rinkeby BC in order to enable separation

of the Target T and Mitigator M. Each location was tested separately between the

target in Zürich and São Paulo and the mitigator set to Ohio and Tokyo, respec-

tively. Table 4 lists Round Trip Time (RTT) results executed on AWS instances in

Zurich, São Paulo, Tokyo and Ohio. RTT times can be used to evaluate, whether

a potential statistical significance across RTT may be found during execution of

BloSS.

Software Setup: A synchronized BloSS node utilizes Geth to interact with a SC

deployed. Instead of relying on one full node offered by Infura with two accounts,

the BloSS tests with the Geth client are executed on two synchronized nodes in

Zürich and Ohio to measure the gas usage and the performance.

To rectify the problem of non “full” block times, a synchronization process

before the actual registration or signaling process can be completed. By synchro-

nizing the measured time-frame closer to the beginning of the starting block, i.e.,

maximizing x, global results become comparable to results on a previously con-

figured local Rinkeby. A second approach to retrieve the correct time measure-

ment on the global performance tests was to run tests n = 20 times, such that

the first run acts as a synchronization step. Thus, depending on the scenario and

the deadlines missed, full block times represent the worst case in terms of BloSS

performance.

By running the target script on an AWS instance in Ohio and a M script on a

node located in Zürich (both synchronized to the Rinkeby network), the average

global Rinkeby processing time with n = 20 is 96.950 s and the average standard

deviation is 1.146 s (cf. Table 5). Since the control condition has been tested and

Table 4 Average RTT between

nodes (ms)
From To

Tokyo São Paulo Ohio Zürich

Tokyo – 270 159 223

São Paulo 270 – 130 130

Ohio 159 130 – 119

Zürich 276 223 119 –

978 Journal of Network and Systems Management (2020) 28:953–989

1 3

evaluated as well, similar results in terms of average processing time and average

standard deviation are expected. However, similar results were reached as shown

in Tables 5 and 6, while the nodes were not synchronized at all times due to time-

outs, i.e., missed deadlines. This is due to the full nodes, which are geographi-

cally in close proximity of the AWS instances in Tokyo and São Paulo, but not

being synchronized at all times [54].

For both global averages, average times measured show a similar result,

with a slight difference in the average processing time of 0.668 s representing

the difference of approximately 0.7%. By reaching these similar results in both

global Rinkeby tests and removing the corresponding RTT shown in Table 4 the

Table 5 BloSS global Rinkeby

processing times (s) (Zürich-

Ohio)

Scenario Average time (s) Standard

deviation

(s)

1 88.938 3.025

2 88.616 1.099

3 87.973 2.110

4 104.090 0.509

5 88.006 1.361

6 104.358 1.340

7 118.900 0.442

8 103.932 0.458

9 89.265 0.711

10 103.331 1.038

11 88.956 0.509

Average 96.950 1.146

Table 6 BloSS control condition

processing times (s) (Tokyo-São

Paulo)

Scenario Average time (s) Standard

deviation

(s)

1 89.267 1.543

2 89.579 0.830

3 89.661 0.851

4 104.661 0.966

5 89.427 0.658

6 105.187 1.358

7 120.136 1.204

8 104.924 0.921

9 89.149 0.785

10 103.572 0.718

11 88.235 1.611

Average 97.618 1.040

979

1 3

Journal of Network and Systems Management (2020) 28:953–989

difference in average processing times for the scenarios is only 0.5171 s. It should

be noted that 20 test runs per case may not lead to exact average values. Also,

every test on the global Rinkeby network was tested with varying (not precise)

average block times of 15 s.

Average Gas Cost: The Gas used in the global Rinkeby tests show slight differ-

ences compared to Ganache and local Rinkeby tests, which were all based on the

Table 7 BloSS global Rinkeby

gas use (Gwei)
Scenario Total gas T gas used M gas used

Deployment 3,795,264 3,795,264 –

1 253,999 192,836 61,163

2 253,999 193,236 61,163

3 314,438 169,225 145,213

4 314,490 169,225 145,265

5 315,050 169,225 145,825

6 314,370 168,928 145,442

7 314,508 168,928 145,580

8 315,154 168,928 146,226

9 291,401 169,139 122,262

10 314,716 169,139 145,577

11 315,362 169,139 146,223

Average 301,626 173,450 128,176

Fig. 10 Comparison of global average times on ganache and localRinkeby

980 Journal of Network and Systems Management (2020) 28:953–989

1 3

same truffle test scripts. While the registration gas usage does not differ in any

test, the total BloSS gas used on average differs at 15,366 Gwei compared to local

Rinkeby and Ganache. All global Rinkeby gas used results are shown in Table 7.

Figure 10 depicts overall average times to complete the execution of BloSS for

the three infrastructures and eleven scenarios, where each scenario had n = 20

test runs. In total, 660 scenarios were executed to assess the worst-case time to

complete the execution of BloSS. Similar processing times were observed as in

local and simulated deployments, and it could be shown that by using Infura as a

proxy, the behavior of the public test net Rinkeby with a simulated actor in Ohio

could be mimicked. This implies that the performance of BloSS is stable and can

be accessed in a similar way through the Truffle framework and the Geth client.

Even the controlling condition, where actors are located in São Paulo and Tokyo,

showed similar results, when both nodes were synchronized. Thus, the confidence

in the cooperative signaling is enhanced.

The overall gas used to deploy and utilize the Register SC is the same, whereas

BloSS shows slight differences. On average an M needs to pay gas costs ranging

from 0.04 US$ for the gas price of 1 Gwei to 0.8 US$, when prioritizing transac-

tions with a gas price of 20 Gwei. A T is required to pay more gas on average,

which ranges from 0.06 US$ to 1.13 US$. However, the deployment of BloSS

must be paid for as well and one-time costs for a deployment of BloSS range

from 0.82 US$ to 16.40 US$. Thus, the total costs to deploy both SCs require

a payment from 1.03 US$ to 20.51 US$ (cf. Table 8 with a conversion rate of

216.00 US$/Ether).

6 Discussions and Conclusions

DDoS defense mechanisms see an increasing number of cooperative approaches.

The DOTS architecture by the IETF is a prominent proposal built on top of a

gossip-protocol crafted for DDoS defense signaling [32]. Other approaches, such

as DefCOM, are based on lightweight overlay networks to enable signaling in a

peer-to-peer (P2P) fashion [24]. Therefore, BloSS is more akin to DefCOM, since

it builds on Ethereum instead of developing new communications from scratch.

By leveraging the distributed nature of BCs, BloSS scales to the demand of mod-

ern distributed DDoS defense systems. Conversely, DefCOM relies on complex

Table 8 Total average global

Rinkeby costs in US$ per BloSS

instance

Deployment Target Mitigator

Register (Gwei) 952,459 88,866 56,343

BloSS [Gwei] 3,795,264 173,450 128,176

Total Gas Used (Gwe) 4,747,723 262,316 184,519

Total Costs max. (US$) 20.51 1.13 0.80

Total Costs min. (US$) 1.03 0.06 0.04

981

1 3

Journal of Network and Systems Management (2020) 28:953–989

P2P message exchanges, which are more prone to failure within distributed set-

tings than a BC consensus mechanism as BloSS deploys.

6.1 Robustness of the Reputation System

By analyzing the design of the cooperative protocol it is possible to make an analysis

of different types of possible fraud. An evaluation with customers M and T with dif-

ferent profiles (e.g., honest, malicious, lazy, and others) is performed in the authors’

previous work [17]. Table 9 summarizes the analysis, which is followed by a discus-

sion on each type of fraud.

Free-riding: This type of activity is prevented by design in BloSS by requiring T’s to

deposit the incentive required by M’s into the SC. Since the SC is designed as a state

machine, it is not possible to circumvent this step making the mitigation service start

before funds are locked into the SC.

False-reporting: Fraud can happen when a malicious M assigns a false rate to an

honest T at the end of the interaction. Although the protocol allows for this, no

rational incentive exists, since actions are recorded on the BC. Thus, future interac-

tions of a malicious M can be tracked by all T’s.

Sybil- and Collusion Attacks: BloSS excludes the possibility where a customer can

boost its reputation by creating mitigation SCs with itself. A possible deployment

on a public ledger would enable actors, i.e., a M or T, to maintain multiple account

pseudonyms on the BC and transacting between them to inflate reputation (Sybil

attack). Therefore, it would be necessary to implement within the BloSS SCs an

access control mechanism to prevent whitewashing or re-entry attacks on reputation

systems.

Ballot Stuffing: BloSS is not immune against ballot stuffing. Besides transactions

recorded on the BC, customers can agree on discounts and benefits over alternative

communication channels. For instance, two malicious T and M would be able rate

each other positively independently from the mitigation outcome in rounds where

both can perform the role of T and M.

Bad-mouthing: A BC-based reputation system design impedes bad-mouthing in

which a T or M can only provide feedback for transactions completed. This elevates

costs of bad-mouthing a competitor, since a transaction has to be committed for each

fraudulent reputation statement.

6.2 Discussion of Achievements

Overall, the technical, social, economic, and legal aspects of BloSS have been

achieved. BloSS is a relevant solution as a defense strategy in cases of DDoS

982 Journal of Network and Systems Management (2020) 28:953–989

1 3

Ta
b

le
 9

 A

ss
es

sm
en

t
o
f

re
p
u
ta

ti
o
n
 f

ra
u
d
s

=
p
ro

p
er

ty
 ;

=

p
ro

p
er

ty
 p

ar
ti

al
ly

 p
ro

v
id

ed
;
✗

 =
p
ro

p
er

ty
n
o
t

p
ro

v
id

ed

T
ar

g
et

F
ra

u
d

S
h
o
rt

 d
es

cr
ip

ti
o
n

A
ch

ie
v
ed

S
y
st

em
F

re
e-

ri
d
in

g
In

ce
n
ti

v
es

 a
re

 r
eq

u
ir

ed
 t

o
 r

eq
u
es

t
m

it
ig

at
io

n
 s

er
v
ic

es

F
al

se
-r

ep
o
rt

in
g

M
 i

s
n
o
t

in
ce

n
ti

v
iz

ed
 t

o
 p

ro
v
id

e
fa

ls
e-

re
p
o
rt

s
o
n
 T

 b
u
t

th
e

p
ro

to
co

l
al

lo
w

s
su

ch
 b

eh
av

io
r,

 w
h
ic

h
 c

an
 b

e
tr

ac
k
ed

o
n
 f

u
tu

re
 i

n
te

ra
ct

io
n
s

R
at

in
g

S
y
b
il

 a
n
d
 c

o
ll

u
si

o
n

W
h
it

ew
as

h
in

g
 (

re
-e

n
tr

y
)

o
f

id
en

ti
ti

es
 i

s
n
o
t

p
re

v
en

t
in

 a
 p

er
m

is
si

o
n
le

ss
 d

ep
lo

y
m

en
t

B
al

lo
t

st
u
ffi

n
g

M
al

ic
io

u
s

M
’s

 a
n
d
 T

’s
 c

an
 c

o
ll

u
d
e

to
 e

le
v
at

e
th

ei
r

re
p
u
ta

ti
o
n

✗
B

ad
-m

o
u
th

in
g

U
n
fa

ir
 r

at
in

g
s

ar
e

n
o
t

in
ce

n
ti

v
iz

ed
 b

y
 d

es
ig

n
 o

n
ce

 a
 s

er
v
ic

e
is

 p
ai

d
 u

p
fr

o
n
t

b
y
 T

 a
n
d
 M

 o
n
ly

 r
at

es
,
w

h
en

 t
h
e

se
rv

ic
e

is
 c

o
m

p
le

te
d

983

1 3

Journal of Network and Systems Management (2020) 28:953–989

large-scale attacks, such as the Memcached attack on GitHub servers surpassing

1.35 TBit/s [8] and DynDNS which peaked 1.2 TB/s resulting in the unavailabil-

ity of significant Internet services [6]. In such cases, traditional centralized defenses

can be easily overloaded, and cooperation between organizations is useful to lessen

the impact of attacks. Hence, BloSS addresses different challenges of a coopera-

tive defense such as providing incentives and tracking reputations among members.

This not only encourages participation, but also punishes malicious behavior by

members.

Technical: By designing the BloSS dApp with SDN and NFV-capabilities the key

advantage of a quick deployment was engineered into BloSS, inherent to competing

systems like CoFence [12] or Bohatei [13]. However, due to BloSS’ modular archi-

tecture, it is neither limited to SDN-based networking infrastructures nor limited to

an NFV-based solution. On the contrary, the networking module of BloSS termed

Stalk can be adapted to various infrastructure deployments, while still maintaining

connectivity over the RESTful interface to BloSS modules.

Social: Reputation and reward schemes integrated into BloSS prevent free-riding

(attack targets) and false-reporting (mitigators). These mechanisms incentivize the

rational behavior of operators in the long run. Selfish members are identified by

looking at their past interactions on the BC. Furthermore, the payment of rewards

provides a highly suitable countermeasure to dis-incentivize selfish customers. Miti-

gators are incentivized to execute the final service rating step, since otherwise they

would deprive themselves of payments. In addition, it is possible to create circles by

connecting different BloSS instances through interoperability between blockchains.

This could be achieved employing a Notary-based agnostic solution such as [55, 56].

Economic: As incentives already stipulate social behavior, by providing a platform

to exchange incentives, BloSS creates a new scenario for mitigation defenses [17].

By extending cloud-based protection services, a decentralized marketplace for pro-

tection services based on BCs is foreseen. In such a model it will be possible for

members to create strategic regional alliances and use a portion of their infrastruc-

ture to perform mitigation services. Therefore, in combination with recommender

services [57] as selection of a suitable protection provider based on specified

requirements can optimize costs.

Legal: Legal and regulatory aspects are often intertwined. In addition to the possi-

bility of creating circles of trust, which depends on the social requirements, multiple

BloSS networks can be defined for national or regional circles of trust, respectively.

Also, such circles make it possible to discriminate selection criteria based on the

legal settings of each operator, possibly restricting the participation or interaction

with certain regions or operators.

984 Journal of Network and Systems Management (2020) 28:953–989

1 3

6.3 Conclusions

BloSS contributes to the modern security management for DDoS mitigation

approaches with a cooperative defense logic and prototype as a proof-of-concept

(available in [33]). It enables a flexible and efficient DDoS mitigation solution

across multiple domains based on a permissioned PoA Ethereum [34], in which only

pre-selected operators participate in the cooperative defense. Therefore, based on

recently validated technical tools, such as BCs and SDNs, it became possible to pro-

vide a practically deployable, collaborative defense mechanism capable of overcom-

ing the main challenges as stated above and in [9, 10].

The BC-based approach does not only enable the cooperative signaling of attacks,

but also provides for an immutable and transparent platform allowing for incentives

to be exchanged for mitigation services as well as tracking reputation. BloSS man-

ages network operations and deploys service functions for the detection and mitiga-

tion of malicious traffic. The definition of contracts, especially SCs, stipulates the

cooperative logic based on BCs and allows for the increase of trust among coopera-

tive operators due to their transparent exchange of selected information and respec-

tive incentives on a per request basis.

Furthermore, execution times and costs of BloSS as presented are based on the

worst-case scenario, i.e., a public BC infrastructure. For example, Target and Miti-

gators were configured to react to requests close to the deadlines configured in the

contract. Therefore, it has to be noted that a PoA-based deployment of BloSS will

reach a much lower, almost neglectable cost basis and an even further reduced

block creation time. This was shown for the case of simulated and local Rinkeby

deployments.

Overall, the main achievement and advantages reached with the design and pro-

totypical implementation as well as the evaluation of BloSS include (a) the use of

an existing public and distributed infrastructure, the BC, to flare white- or black-

listed IP addresses and to distribute incentives related to the mitigation activities

requested. Furthermore, it provides a proof-of-concept for (b) a cooperative, opera-

tional, and efficient decentralization of DDoS mitigation services, and (c) a compat-

ibility of BloSS with existing networking infrastructures, such as SDN and BC.

6.4 Future Work

Based on an even further increase in traffic and the frequency of DDoS attacks, it

is expected that future network and service management operations will also have

to encounter alternatives equally distributed. While existing cooperative approaches

present operational challenges, future work for BloSS involves the analysis of how

actors (especially targets and mitigators) (a) would interact based on different pro-

files (e.g., with malicious or honest properties) and (b) are impacted by different

incentive values required to perform a mitigation service and, thus, simulating

a DDoS protection market. Also, instead of storing raw names and strings in the

BloSS register, hashes of data or even hashes of the storage address could be per-

sisted within the BC, since transparency has to be taken into account. Based on

985

1 3

Journal of Network and Systems Management (2020) 28:953–989

those mechanisms ratings of the mitigator or the target the BloSS register can be

extended, too, to enable a ranking and to separate positively rated actors from nega-

tively rated ones.

Acknowledgements This paper was supported partially by (a) the University of Zürich UZH, Switzer-

land and (b) the European Union’s Horizon 2020 Research and Innovation Program under Grant Agree-

ment No. 830927, the CONCORDIA Project.

Funding Open access funding provided by University of Zurich.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen

ses/by/4.0/.

References

 1. Akamai. How to protect against ddos attacks—stop denial of service

 2. Felici, M., Wainwright, N., Cavallini, S., Bisogni, F.: What’s new in the economics of cybersecu-

rity? IEEE Secur. Privacy 14, 11–13 (2016)

 3. IoTAnalytics. State of the IoT 2018: number of IoT devices now at 7B—Market accelerating, Fev

(2018)

 4. Akamai. The state of the internet (2020)

 5. Maglaras, L., Kim, K.H., Janicke, H., Ferrag, M.A.,Rallis, S., Fragkou, P., Maglaras, A., Cruz, T.J.:

Cyber security of critical infrastructures, vol. 4. ICT Express,, SI: CI and Smart Grid Cyber Secu-

rity, pp. 42–45, (2018)

 6. The Associated Press. Hackers Used ’Internet of Things’ Devices to Cause Friday’s Massive DDoS

Cyberattack (2016)

 7. Gu, G., Yegneswaran, V., Porras, P., Stoll, J., Lee, W.: Active botnet probing to identify obscure

command and control channels. In: 2009 annual computer security applications conference, pp.

241–253. IEEE, New York (2009)

 8. Kotey, S.D., Tchao, E.T., Gadze, J.D.: On distributed denial of service current defense schemes.

Technologies 7(1), 19–25 (2019)

 9. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial of ser-

vice (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013)

 10. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mechanisms countering

the DoS and DDoS problems. ACM Comput. Surv. CSUR 39(1), 03–15 (2007)

 11. Bocek, T., Stiller, B.: Smart contracts-blockchains in the wings. Digital marketplaces unleashed, pp.

169–184. Springer, Berlin (2018)

 12. Rashidi, B., Fung, C.: CoFence: a collaborative ddos defence using network function virtualization.

In: 12th international conference on network and service management (CNSM 16) (2016)

 13. Fayaz, S., Tobioka, Y., Sekar, V., Bailey, M.: Bohatei: flexible and elastic DDoS defense. In: 24th

USENIX security symposium (USENIX Security 15), pp. 817–832 (2015)

 14. Rodrigues, B., Bocek, T., Lareida, A., Hausheer, D., Rafati, S., Stiller, B.: A blockchain-based archi-

tecture for collaborative DDoS mitigation with smart contracts. In: IFIP international conference on

autonomous infrastructure, management, and security (AIMS 2017). Lecture notes in computer sci-

ence, vol. 10356, pp. 16–29. Springer, Zurich (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

986 Journal of Network and Systems Management (2020) 28:953–989

1 3

 15. Rodrigues, B., Bocek, T., Stiller, B.: Enabling a cooperative, multi-domain DDoS defense by a

blockchain signaling system (BloSS). In: Demonstration track, pp. 1–3, Singapore, IEEE, Singapore

(2017)

 16. Rodrigues, B., Trendafilov, S., Scheid, E.J., Stiller, B.: SC-FLARE: cooperative DDoS signaling-

based on smart contracts. In: IEEE international conference on blockchain and cryptocurrency

(ICBC 2020), pp. 1–3, IEEE, Toronto, (2020)

 17. Gruhler, A., Rodrigues, B., Stiller, B.: A reputation scheme for a blockchain-based network coop-

erative defense. In: 2019 IFIP/IEEE symposium on integrated network and service management (IM

2019), pp. 71–79, Washington, United States of America (USA) (2019)

 18. Killer, C., Rodrigues, B., Stiller, B.: Security management and visualization in a blockchain-based

collaborative defense. In: 2019 IEEE international conference on blockchain and cryptocurrency

(ICBC), pp. 108–111. IEEE, New York (2019)

 19. Killer, C., Rodrigues, B., Stiller, B.: Threat management dashboard for a blockchain collaborative

defense. In: 2019 IEEE globecom workshops (GC Wkshps), pp. 1–6. IEEE, New York (2019)

 20. Rodrigues, B., Eisenring, L., Scheid, E., Bocek, T., Stiller, B.: Evaluating a blockchain-based coop-

erative defense. In: 2019 IFIP/IEEE symposium on integrated network and service management (IM

2019), pp. 533–538, Washington, United States of America (USA) (2019)

 21. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint arXiv :1407.3561

(2014)

 22. Keromytis, A., Misra, V., Rubenstein, D.: SOS: secure overlay services. ACM SIGCOMM Comput.

Commun. Rev. 32(4), 61–72 (2002)

 23. Papadopoulos, C., Lindell, R., Mehringer, J., Hussain, A., Govindan, R.: COSSACK: coordinated

suppression of simultaneous attacks. In: Proceedings DARPA information survivability conference

and exposition, vol. 1, pp. 2–13. IEEE, New York (2003)

 24. Oikonomou, G., Mirkovic, J., Reiher, P., Robinson, M.: A framework for a collaborative DDoS

defense. In: 2006 22nd annual computer security applications conference (ACSAC’06), pp. 33–42.

IEEE, New York (2006)

 25. CloudFare. CloudFlare advanced DDoS protection (2016)

 26. Khalimonenko, A., Kupreev, O., Badovskaya, E.: DDoS attacks in Q1 2018. https ://secur elist .com/

ddos-repor t-in-q1-2018/85373 /, April 2018. last visit March 6 (2020)

 27. Zhang, G., Parashar, M.: Cooperative defence against DDoS attacks. J. Res. Pract. Inf. Technol.

38(1), 69–84 (2006)

 28. Velauthapillai, T., Harwood, A., Karunasekera, S.: Global detection of flooding-based DDoS attacks

using a cooperative overlay network. In: 2010 4th international conference on network and system

security (NSS), pp. 357–364. IEEE, New York (2010)

 29. Steinberger, J., Kuhnert, B., Sperotto, A., Baier, H., Pras, A.: Collaborative DDoS defense using

flow-based security event information. In: NOMS 2016–2016 IEEE/IFIP network operations and

management symposium, pp. 516–522 (2016)

 30. Sahay, R., Blanc, G., Zhang, Z., Debar, H.: Towards autonomic DDoS mitigation using software

defined networking. In SENT 2015: NDSS workshop on security of emerging networking technolo-

gies. Internet society (2015)

 31. Ioannidis, J., Bellovin, S.M.: Implementing PushBack: router-based defense against DDoS attacks

(2002)

 32. Mortensen, A., Andreasen, F., Reddy, T., Gray, C., Compton, R., Teague, N.: Distributed-denial-

of-service open threat signaling (DOTS) architecture. Internet-draft draft-ietf-dots-architecture-06,

internet engineering task force. Work in Progress (2018)

 33. Rodrigues, B., Stiller, B.: Cooperative signaling of DDoS attacks in a blockchain-based network. In:

Proceedings of the ACM SIGCOMM 2019 conference posters and demos, SIGCOMM Posters and

Demos ’19, pp. 39–41, ACM, New York (2019)

 34. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yel-

low Paper 151, 1–32 (2014)

 35. Bada, M.: Sadie Creese. Chris Mitchell, and Elizabeth Phillips. Improving the Effectiveness of

CSIRTs, Michael Goldsmith (2014)

 36. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E.,

Sirer, E.: On scaling decentralized blockchains. In: International conference on financial cryptogra-

phy and data security, pp. 106–125. Springer, Berlin (2016)

 37. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: IEEE P2P 2013

proceedings, pp. 1–10. IEEE, New York (2013)

http://arxiv.org/abs/1407.3561
https://securelist.com/ddos-report-in-q1-2018/85373/
https://securelist.com/ddos-report-in-q1-2018/85373/

987

1 3

Journal of Network and Systems Management (2020) 28:953–989

 38. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a sur-

vey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

 39. Skierka, I., Morgus, R., Hohmann, M., Maurer, T.: CSIRT basics for policy-makers. Types & cul-

ture of computer security incident response teams, the history (2015)

 40. PolySwarm. A decentralized cyber threat intelligence market (2019)

 41. Just, S., Premraj, R., Zimmermann, T.: Towards the next generation of bug tracking systems. In:

2008 IEEE symposium on visual languages and human-centric computing, pp. 82–85. IEEE, New

York (2008)

 42. Henshel, D., Cains, M., Hoffman, B., Kelley, T.: Trust as a human factor in holistic cyber security

risk assessment. Procedia Manuf. 3, 1117–1124 (2015)

 43. Hawlitschek, F., Notheisen, B., Teubner, T.: The limits of trust-free systems: a literature review on

blockchain technology and trust in the sharing economy. Electron. Commer. Res. Appl. 29, 50–63

(2018)

 44. Um, T.W., Lee, G.M., Choi, J.K.: Strengthening trust in the future social-cyber-physical infrastruc-

ture: an ITU-T perspective. IEEE Commun. Mag. 54, 36–42 (2016)

 45. Pranata, I., Skinner, G., Athauda, R.: A holistic review on trust and reputation management systems

for digital environments. Int. J. Comput. Inf. Technol. 1, 44–53 (2012)

 46. Kim, J., Yoon, Y., Zo, H.: Why people participate in the sharing economy: a social exchange per-

spective. In: PACIS, pp. 76 (2015)

 47. Yaobin, L., Zhao, L., Wang, B.: From virtual community members to C2C E-commerce buyers:

trust in virtual communities and its effect on consumers’ purchase Intention. Electron. Commer.

Res. Appl. 9(4), 346–360 (2010)

 48. Stephan, M., Bruno, R., Eder, S., Salil, K., Burkhard, S.: Toward mitigation-as-a-service in coop-

erative network defenses. In 2018 IEEE 4th international conference on big data intelligence and

computing and cyber science and technology congress (CyberSciTech 2018), pp. 362–367, Athens,

Greece (2018)

 49. Yao, W. Julita, V.: Trust and reputation model in peer-to-peer networks. In: Proceedings third inter-

national conference on peer-to-peer computing (P2P2003), pp. 150–157, 00604 (2003)

 50. Cai, Y., Zhu, D.: Fraud detections for online businesses: a perspective from blockchain technology.

Fin Innov 2(1), 20 (2016)

 51. Cryptography developers. Python cryptography library. https ://crypt ograp hy.io/en/lates t/ (2017).

Accessed 28 July 2018

 52. Percival, C.: Cryptographic right answers. http://www.daemo nolog y.net/blog/2009-06-11-crypt

ograp hic-right -answe rs.html (2009). Accessed 28 July 2018

 53. Protocol Labs. IPFS stream security transport (libp2p-secio). https ://githu b.com/libp2 p/go-libp2

p-secio (2018). Accessed 29 July 2018

 54. Rinkeby. Rinkeby testnetwork, voluntarely listed full nodes (2019)

 55. Scheid, E., Rodrigues, B., Stiller, B.: Toward a policy-based blockchain agnostic framework. In:

IFIP/IEEE symposium on integrated network and service management (IM 2019), pp. 609–613,

Washington, DC, USA (2019)

 56. Scheid, E., Hegnauer, T., Rodrigues, B., Stiller, B.: Bifröst: a modular blockchain interoperability

API. In: IEEE conference on local computer networks (LCN 2019), pp. 332–339, Osnabrück, Ger-

many (2019)

 57. Franco, M., Rodrigues, B., Stiller, B.: MENTOR: the design and evaluation of a protection services

recommender system. In: 2019 15th international conference on network and service management

(CNSM), pp. 1–7 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Bruno Rodrigues is a Junior Researcher and PhD student in Informatics currently pursuing his PhD

degree at the University of Zürich UZH, Switzerland, within the Communication Systems Group CSG

of the Department of Informatics IfI under the supervision of Prof. Dr. Burkhard Stiller. He received

his MSc from the Polytechnic School of University of São Paulo, Brazil, in 2016, where he worked on

research projects in partnership with Ericsson Research focused on network management based on SDN

https://cryptography.io/en/latest/
http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
https://github.com/libp2p/go-libp2p-secio
https://github.com/libp2p/go-libp2p-secio

988 Journal of Network and Systems Management (2020) 28:953–989

1 3

and energy efficiency. Bruno focuses his research on collaborative network defenses based on Blockchain,

working on research projects like CONCORDIA in the scope of cybersecurity and PasWITS.

Eder Scheid is a Junior Researcher pursuing his PhD since December 2017 under the supervision of Prof.

Dr. Burkhard Stiller at the University of Zürich UZH, Switzerland, within the Communication Systems

Group CSG of the Department of Informatics IfI. Eder holds an MSc degree in Computer Science from

the Federal University of the Rio Grande do Sul (UFRGS), Brazil, which he obtained in 2017 under the

supervision of Prof. Dr. Lisandro Zambenedetti Granville. His master’s thesis was entitled “INSpIRE: an

Integrated NFV-baSed. Intent Refinement Environment”.

Christian Killer joined the Communication Systems Group CSG, Department of Informatics IfI at the

University of Zürich UZH, Switzerland, in February 2019 as a Junior Researcher and PhD student in

Informatics to obtain his PhD degree under the supervision of Prof. Dr. Burkhard Stiller. He finished

his MSc Degree in Informatics at the University of Zürich UZH, focusing on Security Management and

Visualization in a Blockchain-based Collaborative Defense. During his Master Studies he also completed

a Master Project on “Provotum–Privacy, Verifiability, and Auditability in Blockchain-based E-Voting”.

Christian focuses his research on the security of electoral processes and blockchain-based remote elec-

tronic voting systems.

Muriel Franco is a Junior Researcher and PhD student in Informatics under the supervision of Prof. Dr.

Burkhard Stiller at the University of Zürich UZH, Switzerland, within the Communication Systems

Group CSG of the Department of Informatics IfI. Since September 2018 Muriel is working in Zürich on

cybersecurity, economics, blockchains, Software-defined Networking (SDN), and Network Function Vir-

tualization (NFV), participating and driving the work of the CONCORDIA project within a team of net-

working, security, and economic researchers. Besides that, from 2017 to 2020, Muriel developed jointly

a federated ecosystem for offering, distributing, and execution of Virtual Network Functions (FENDE

project). Muriel holds an MSc from 2017 in Computer Science from the Federal University of the Rio

Grande do Sul (UFRGS), Brazil, under the supervision of Prof. Dr. Lisandro Zambenedetti Granville and

obtained a BSc from 2014 in Computer Science from the Federal University of Pelotas (UFPEL), Brazil.

Burkhard Stiller received the Informatik-Diplom (MSc) in Computer Science and the Dr. rer.-nat. (PhD)

degree from the University of Karlsruhe, Germany, in 1990 and 1994, respectively. In his research career

he was with the Computer Lab, University of Cambridge, U.K. (1994–1995), ETH Zürich, Switzerland

(1995–2004), and the University of Federal Armed Forces Munich, Germany (2002–2004). Since 2004

he chairs the Communication Systems Group CSG, Department of Informatics IfI, University of Zürich

UZH, Switzerland. Besides being a member of the editorial board of the IEEE Transactions on Network

and Service Management, Springer’s Journal of Network and Systems Management, and the KICS’ Jour-

nal of Communications and Networks, Burkhard is the past Editor-in-Chief of Elsevier’s Computer Net-

works journal. His main research interests are published in well over 300 research papers and include

systems with a fully decentralized control (Blockchains, clouds, peer-to-peer), network and service man-

agement (economic management), Internet-of-Things (security of constrained devices, LoRa), and tel-

ecommunication economics (charging and accounting).

A�liations

Bruno Rodrigues1 · Eder Scheid1 · Christian Killer1 · Muriel Franco1 ·

Burkhard Stiller1

 Eder Scheid

 scheid@ifi.uzh.ch

 Christian Killer

 killer@ifi.uzh.ch

 Muriel Franco

 franco@ifi.uzh.ch

http://orcid.org/0000-0003-3277-3799

989

1 3

Journal of Network and Systems Management (2020) 28:953–989

 Burkhard Stiller

 stiller@ifi.uzh.ch

1 Communication Systems Group CSG, Department of Informatics IfI, University of Zürich

UZH, Binzmühlestrasse 14, 8050 Zurich, Switzerland

	Blockchain Signaling System (BloSS): Cooperative Signaling of Distributed Denial-of-Service Attacks
	Abstract
	1 Introduction
	1.1 Botnets
	1.2 Toward Cooperative Defenses
	1.3 Cooperative Blockchain Signaling System (BloSS)

	2 Related Work
	3 BloSS Design Considerations
	3.1 Performance—Block Size and Delay
	3.2 Financial Incentives
	3.3 Blockchain as an Enabler of Trust
	3.4 Truthfulness of Mitigation Proofs

	4 BloSS Protocols Design and Application
	4.1 Incentives and Fairness
	4.2 BloSS Cooperative Protocol
	4.3 Implementation
	4.4 Discussion of Scenarios
	4.5 Decentralized BloSS Application
	4.6 Security Considerations

	5 Experimental Evaluations
	6 Discussions and Conclusions
	6.1 Robustness of the Reputation System
	6.2 Discussion of Achievements
	6.3 Conclusions
	6.4 Future Work

	Acknowledgements
	References

