Blocked All-Pairs Shortest Paths Algorithm for Hybrid CPU-GPU System

Kazuya Matsumoto, Naohito Nakasato, Stanislav G. Sedukhin
The University of Aizu, Japan, e-mail: d8121101Qu-aizu.ac.jp

AMD Cypress GPU (Radeon HD 5870) APSP Implementation on Hybrid CPU-GPU System

> Bloc_ked algorithm for the all-pairs shortest (APSP) paths problem for a » 1600 single-precision (SP) Configuration of the Hybrid System
hybrid CPU-GPU system. floating-point units [@%és} [122&] [1%”311] [1%”321] é
» Applicable to solve the APSP problem even when the required memory size is larger » 3200 SP flops/clock by using | | | | » AMD Cypress GPU (Radeon HD 5870)
than GPU'’s memory capacity. MAD (fused multiply-add) S Sl st AR » Intel Gulftown CPU (Core i7 970)
» Fastest among existing APSP solutions on large dense graphs. instructions i ! ! » 6-core processor at 3.2 GHz
> Discussion on required memory bandwidth for the blocked algorithm. » SP peak perf.: 2720 GFlop/s J e J o) J B e » CPU and GPU are connected through PCl-Express buses
(= 3200 [flops/clock] -0.85 [GHz]) - - - » Aggregate peak bandwidth: 8 GB/s
All-Pairs Shortest Paths (APSP) Problem > Memory bandwidth: w} arry]| w}
» L1 cache read: 1088 GB/s L 8 @&&m
The all-pairs shortest paths problem is to compute the shortest path > L2 cache read: 435 GB/s e Nm Required Bandwidth for Efficient APSP

» Global memory: 154 GB/s

length between all-pairs of vertices in a weighted graph. The input can
be represented with an adjacency matrix and the output is the
shortest-path distance matrix. The APSP problem is one of fundamental Separating Matrix Operations » Required bandwidth (RBapsp) = _ _ _
graph problems. We can find applications of the APSP problem such as Peak Performance / Arithmetic Intensity

implementation

in bioinformatics, social networking, and traffic routing In our matrix “multiply-add” implementation, the matrix “multiplication” » Peak Performance (APSP kernels’ perf.) = 1068 GFlop/s
1 ’ . . . - - u T .. . : : e, 3 2\ _
(arithmetic addition) and matrix “addition” (minimum) operations are > Arithmetic Intensity = 2b°/(4b°) = b/4
_ ted » b is the blocking factor, the latter 2 means that 2 blocks of b x b submatrices are required to
Input: Welghted graph Output: Shortest—path S€parated. send /receive during a single APSP kernel execution, and 4 means the size of a single-precision
(adjacency matrix) distance matrix \ \ floating-point variable in byte.

Host memory CPU (4. “Addition”)

D /’ D["J «— |:| D["J . .
/| O | r el Required and Measured Bandwidth
'/ —1 3. Send back 5 Required ——
Dix o | ((GrU (2. “Multiplication”) . easuied
« D O | Dgy @ > When. using 1536 or larger
L \ I 2 ol 2 3 blocking factor, RBapsp
N / s | becomes lower than
1 1. Load % measured bandwidth
. . Load
Floyd-Warshall Algorithm e 1y - (about 3 GB/s).
» Solution of APSP problem. Matrix “Multiplication” Kernel on GPU ° 512 1olg4 1536 2048
» O(n3) operations on O(n?) data, where n _ _ o Blocking factor [b]
: : ’ d%1(k, j)
> Three-nested-loop algorithm structure is » SGEMM (Single-precision General Matrix-Matrix Multiply) kernel for the : : :
similar to the standard matrix AMD Cypress GPU Maximum Performance for Different Blocking
multiplication, but has stricter data d*1G, J) » Ref.: N. Nakasato, A fast GEMM implementation on the Cypress GPU, ACM SIGMETRICS FaCtOrS
dependencies. Performance Evaluation Review, vol. 38, no. 4, pp. 50-55, Mar. 2011.
» The kernel was written in assembler-like language called Intermediate Language (IL).
Algorithm 1 FLOYD-WARSHALL(n, W) > Max perf.: 2137 GFlop/s (79% SP efficiency) 1000
(0) » Performance comparison: w
D\Y) «— W, > 660 GFlop/s (65% efficiency) on an NVIDIA Fermi GPU (Tesla C2050) by MAGMA BLAS § &0y » When the blocking factor
for k < 1ton do % 600 |k b Is 1536 or |arger, the
forall1 </ <ndo § maximum performance is
forall1 <;<ndo Tiling in the Kernel g saturated in around 1
d(k)(i,j) < min(d(k_l)(i,j), d(k_l)(i, k) + d(k_l)(kaj)) . . . L e, e 200 | TFIop/s_
» Further blocking (tiling) in the matrix “multiplication” kernel for the
end for I
p APSP problem 0
end tor » To alleviate the required memory bandwidth within the kernel. 512 1024 1536 2048
end for » Tile size (t,, t.) determines the amount of workload of a single thread on the GPU. Blocking factor [b] (n=45000)
return D(”); _
Blocked APSP Algorithm Performance of APSP Implementation with Optimal
Tile tr Block y Matrix . Blocking Factor
» Partitions an initial n X n matrix into (n/b) x (n/b) blocks of b x b ! i
submatrices, where b is a blocking factor. te 1000 | | _
» Designed for an efficient solution for hybrid systems. b _ g Choo§|ng an optimal _
. . o . y L n £ 800 | - blocking factor can avoid
» Most computations are in matrix “multiply-add” (MMA) operations in a S -
. 5 significant performance
min-plus algebra. — 600 | deoradation
Algorithm 2 BLOCKED APSP(n, b, W) 00 Thg ' | blocki
i] : : g - |
sor> SRV 2 Required Bandwidth 5 > 1 he optimal blocking
Let O be a “zero” matrix whose elements are all oc; £ ool _ factor suited for every
N < n/b; » Required bandwidth (RBgnel) = | | | problem size is empirically
p0) W Peak Performance / Arithmetic Intensity 0 T T T found.
for(ii(([;)— 1to N do (K ; b) g i‘eal;] Perforlman(:? for A2PSP/|((ZEne| - 1):)360 GFIOP/S (:2720/2) Problem size [n] (granularity=128)
: -b— _ » Arithmetic Intensity = 2t,t. t, + t.
DK,K — FLDYD—WARSHALL(b7 DK,K)' > t,, t. are the tile size and 4 means the size of a single-precision floating-point variable in byte.
forall1 </ <N (/+#K)do
K-b K-b—b) ~(K-b) = | | | :
D/(K) APSP MMA(b, D/(K)7 D;((K)> 0); » When using 4x8 or larger tiles, RBjg,,.j becomes lower than the GPU's Performance Comparison
end for L1 cache read bandwidth (1088 GB/s). o
for all 1 S J S N (J 7é K) do Processor SpECIflcatlon
(K-b) (K-b) H(K-b=b) = +oR0 | | Required Bandwidth s
Dy ;7 <= APSP MMA(b, Dy, ", D) ;= 7, O); [equirec pancwicth e Processor SP Peak Perf. Clock Speed Num. of
end for | | +000 ‘ [GFlop/s] [GHZ] Cores
forall 1</, J< N (/ # K and J# K) do 1400 1 AMD Radeon HD 5870 2720 0.85 1600
D\"®) wpsp wma(p, D\ P DY) DINP0)y, - 1200 - NVIDIA GeForce GTX 280, 933 1296 240
end for | | | O ol MR ; Intel Core i7 970 153.6 3.2 6
end for (n) % 800 1 1e+06 ——
return D\": = j j
M 600 .
For N=4 K=2 400 1 B _; » Fastest when
200 - B | . n > 2048
2 0 £ 10000] » Not fast when
2x8 4x4- | 4x8 (8x4) 8x8 g | n S 1024
Tile size [tr x tc] % 1000 |
£
e g 100 |
Performance of the APSP Kernel
> 4X8 t||e |S Opt|ma| w0 _ _ LOku]FT. ()Bljuy?(m;}:/F.clln‘c/)‘) K}7 I-/I/aii/—
» 1068 GFlop/s (78% efficiency) | _ gortthm on the GPU, 1PSJ Trans
. . . . Adv. Computing Systems, vol.3, no.
v > ChOOS”]g tOO |arge t||e SIZe IS nOt gOOd 1 5:;_2 10|24 20I48 40I96 81I92 162;84 2, pp. 57—6p6, 20g10 {in Japanese].
» Not enough number of threads launched. Problem size [n]

Intel Core i7 970 ——
NVIDIA GeForce GTX 280 [Oku] —#—

Our result (AMD Radeon HD 5870 + Core i7 970) —=—
1000 |

Matrix-Matrix Multiplication for APSP Problem .
» Matrix multiply-add in linear algebra ;ol » Blocked APSP algorithm for hybrid system

»C+— C+AxB O so0 L » Matrix “multiplication” is the compute intensive part.

> c(i,j) < c(i,j) +>20_, a(i, k) - b(k,) S » Implementation is fast when the problem size (number of vertices) is

. . . . @©

» Matrix multiply-add in min-plus algebra £ large.

» Replace + by min and x by +. £ 4007 » Maximum performance (n = 43776): 1 TFlop/s

»C— CBARB » Future work: blocked APSP algorithm for cluster systems consisting of

- (i,) < min(e(i,j) ming_y (a(i, k) + b(k.)) 200 1 multiple CPU-GPU nodes.

0 | | | | | |

512 1024 1536 2048 2560 3072
Blocking factor [b]

Reference: Blocked All-Pairs Shortest Paths Algorithm for Hybrid CPU-GPU System, K. Matsumoto, N. Nakasato, S. G. Sedukhin, In Proc. the 13th IEEE International Conference on High Performance Computing and Communications (HPCC-2011), pp. 145-152, Sep. 2011.

