
Blocked All-Pairs Shortest Paths Algorithm for Hybrid CPU-GPU System
Kazuya Matsumoto, Naohito Nakasato, Stanislav G. Sedukhin
The University of Aizu, Japan, e-mail: d8121101@u-aizu.ac.jp

Contribution

◮ Blocked algorithm for the all-pairs shortest (APSP) paths problem for a
hybrid CPU-GPU system.
◮ Applicable to solve the APSP problem even when the required memory size is larger
than GPU’s memory capacity.

◮ Fastest among existing APSP solutions on large dense graphs.

◮ Discussion on required memory bandwidth for the blocked algorithm.

All-Pairs Shortest Paths (APSP) Problem

The all-pairs shortest paths problem is to compute the shortest path
length between all-pairs of vertices in a weighted graph. The input can
be represented with an adjacency matrix and the output is the
shortest-path distance matrix. The APSP problem is one of fundamental
graph problems. We can find applications of the APSP problem such as
in bioinformatics, social networking, and traffic routing.

A

B

C

DE

�

�

�

�

�

�
�

�

�

�

�

	

� � � � 	

� �

� � �

� � �

� �
 �

� �

� � �

�

�

������ �������� � !��

"!�#!$��$% &!� �'(

)������ *�+ ��*�,�!��

��*�!�$� &!� �'

Floyd-Warshall Algorithm

◮ Solution of APSP problem.

◮ O(n3) operations on O(n2) data, where n
is the number of vertices.

◮ Three-nested-loop algorithm structure is
similar to the standard matrix
multiplication, but has stricter data
dependencies.

i

k

j

d(k-1)(i, k)
d(k-1)(k, j)

d(k-1)(i, j)

Algorithm 1 FLOYD-WARSHALL(n,W)

D(0)← W ;
for k ← 1 to n do
for all 1 ≤ i ≤ n do
for all 1 ≤ j ≤ n do
d (k)(i , j)← min

(

d (k−1)(i , j), d (k−1)(i , k) + d (k−1)(k , j)
)

end for
end for
end for
return D(n);

Blocked APSP Algorithm

◮ Partitions an initial n × n matrix into (n/b)× (n/b) blocks of b × b

submatrices, where b is a blocking factor.

◮ Designed for an efficient solution for hybrid systems.

◮ Most computations are in matrix “multiply-add” (MMA) operations in a
min-plus algebra.

Algorithm 2 BLOCKED APSP(n, b,W)

Let Ō be a “zero” matrix whose elements are all ∞;
N ← n/b;

D(0)← W ;
for K ← 1 to N do
D
(K ·b)
K ,K ← FLOYD-WARSHALL(b,D

(K ·b−b)
K ,K);

for all 1 ≤ I ≤ N (I 6= K) do

D
(K ·b)
I ,K ← APSP MMA(b,D

(K ·b−b)
I ,K ,D

(K ·b)
K ,K , Ō);

end for
for all 1 ≤ J ≤ N (J 6= K) do

D
(K ·b)
K ,J ← APSP MMA(b,D

(K ·b)
K ,K ,D

(K ·b−b)
K ,J , Ō);

end for
for all 1 ≤ I , J ≤ N (I 6= K and J 6= K) do

D
(K ·b)
I ,J ← APSP MMA(b,D

(K ·b)
I ,K ,D

(K ·b)
K ,J ,D

(K ·b−b)
I ,J);

end for
end for
return D(n);

D1,1 D1,3 D1,4D1,2

D3,2

D4,2

D2,1 D2,3 D2,4

D3,1 D3,3 D3,4

D4,1 D4,3 D4,4

D2,2

n

n

b

b

For N = 4, K = 2

Matrix-Matrix Multiplication for APSP Problem

◮ Matrix multiply-add in linear algebra
◮ C ← C + A× B
◮ c(i , j)← c(i , j) +

∑n
k=1 a(i , k) · b(k , j)

◮ Matrix multiply-add in min-plus algebra
◮ Replace + by min and × by +.
◮ C ← C ⊕ A⊗ B

◮ c(i , j)← min
(

c(i , j) minnk=1

(

a(i , k) + b(k , j)
)

)

AMD Cypress GPU (Radeon HD 5870)

◮ 1600 single-precision (SP)
floating-point units
◮ 3200 SP flops/clock by using
MAD (fused multiply-add)
instructions

◮ SP peak perf.: 2720 GFlop/s
(= 3200 [flops/clock] ·0.85 [GHz])

◮ Memory bandwidth:
◮ L1 cache read: 1088 GB/s
◮ L2 cache read: 435 GB/s
◮ Global memory: 154 GB/s

-./0123 45627-48
-4 99: ;-<

...

-=.<<>?=

@9A?AB3 @9A?AB3 @9A?AB3 @9A?AB3

@CA?AB3

D3/.=E -B?553F9

@CA?AB3

D3/.=E -B?553FC

G=623A?AB3

...

G=623A?AB3 @CA?AB3

D3/.=E -B?553FH

G=623A?AB3

-4 C9: ;-< -4 9I9: ;-< -4 CJ9: ;-<
;- ;-
;- ;-
;- ;-
;- ;-
;- ;-
;- ;-
;- ;-
;- ;-

;2=3?/ -.=3 7;-8
K3L6<23=<

MNOPQRSTTUVWXYSZSV[OPQRSTTUVWXYSZSV[

Separating Matrix Operations

In our matrix “multiply-add” implementation, the matrix “multiplication”
(arithmetic addition) and matrix “addition” (minimum) operations are
separated.

Host memory

\]^_

_^`

\]^` GPUGPU (2. “Multiplication”)

\]^_ _^`\a]^` ←

⊕\a]^`\]^` \]^`

⊗

←

CPUCPU (4. “Addition”)

bc defg

bc defg

hc ijkg lfmn

oc ipeqj

Matrix “Multiplication” Kernel on GPU

Matrix-Matrix Multiplication Kernel

◮ SGEMM (Single-precision General Matrix-Matrix Multiply) kernel for the
AMD Cypress GPU
◮ Ref.: N. Nakasato, A fast GEMM implementation on the Cypress GPU, ACM SIGMETRICS

Performance Evaluation Review, vol. 38, no. 4, pp. 50-55, Mar. 2011.

◮ The kernel was written in assembler-like language called Intermediate Language (IL).
◮ Max perf.: 2137 GFlop/s (79% SP efficiency)
◮ Performance comparison:

◮ 660 GFlop/s (65% efficiency) on an NVIDIA Fermi GPU (Tesla C2050) by MAGMA BLAS

Tiling in the Kernel

◮ Further blocking (tiling) in the matrix “multiplication” kernel for the
APSP problem
◮ To alleviate the required memory bandwidth within the kernel.
◮ Tile size (tr , tc) determines the amount of workload of a single thread on the GPU.

rstuvwxyz{|}vy~ ��

��

�

�

�

�

Required Bandwidth

◮ Required bandwidth (RBkernel) =
Peak Performance / Arithmetic Intensity

◮ Peak Performance for APSP kernel = 1360 GFlop/s (=2720/2)
◮ Arithmetic Intensity = 2trtc/(4(tr + tc))

◮ tr , tc are the tile size and 4 means the size of a single-precision floating-point variable in byte.

◮ When using 4x8 or larger tiles, RBkernel becomes lower than the GPU’s
L1 cache read bandwidth (1088 GB/s).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

2x8 4x4 4x8 (8x4) 8x8

B
an

dw
id

th
 [G

B
/s

]

Tile size [tr x tc]

Required Bandwidth
L1 Cache Bandwidth

Performance of the APSP Kernel

◮ 4x8 tile is optimal.
◮ 1068 GFlop/s (78% efficiency)

◮ Choosing too large tile size is not good.
◮ Not enough number of threads launched.

 0

 200

 400

 600

 800

 1000

512 1024 1536 2048 2560 3072

P
er

fo
rm

an
ce

 [G
F

lo
p/

s]

Blocking factor [b]

2x8
4x4
4x8
8x4
8x8

APSP Implementation on Hybrid CPU-GPU System

Configuration of the Hybrid System

◮ AMD Cypress GPU (Radeon HD 5870)
◮ Intel Gulftown CPU (Core i7 970)

◮ 6-core processor at 3.2 GHz

◮ CPU and GPU are connected through PCI-Express buses
◮ Aggregate peak bandwidth: 8 GB/s

Required Bandwidth for Efficient APSP
implementation

◮ Required bandwidth (RBAPSP) =
Peak Performance / Arithmetic Intensity

◮ Peak Performance (APSP kernels’ perf.) = 1068 GFlop/s
◮ Arithmetic Intensity = 2b3/(4b2) = b/4

◮ b is the blocking factor, the latter 2 means that 2 blocks of b × b submatrices are required to

send/receive during a single APSP kernel execution, and 4 means the size of a single-precision

floating-point variable in byte.

Required and Measured Bandwidth

 0

 1

 2

 3

 4

 5

512 1024 1536 2048

B
an

dw
id

th
 [G

B
/s

]

Blocking factor [b]

Required
Measured

◮ When using 1536 or larger
blocking factor, RBAPSP
becomes lower than
measured bandwidth
(about 3 GB/s).

Maximum Performance for Different Blocking
Factors

 0

 200

 400

 600

 800

 1000

512 1024 1536 2048

P
er

fo
rm

an
ce

 [G
F

lo
p/

s]

Blocking factor [b] (n≈45000)

◮ When the blocking factor
b is 1536 or larger, the
maximum performance is
saturated in around 1
TFlop/s.

Performance of APSP Implementation with Optimal
Blocking Factor

 0

 200

 400

 600

 800

 1000

10000 20000 30000 40000

P
er

fo
rm

an
ce

 [G
F

lo
p/

s]

Problem size [n] (granularity=128)

◮ Choosing an optimal
blocking factor can avoid
significant performance
degradation.

◮ The optimal blocking
factor suited for every
problem size is empirically
found.

Performance Comparison

Processor Specification

Processor SP Peak Perf. Clock Speed Num. of
[GFlop/s] [GHz] Cores

AMD Radeon HD 5870 2720 0.85 1600
NVIDIA GeForce GTX 280 933 1.296 240
Intel Core i7 970 153.6 3.2 6

 1

 10

 100

 1000

 10000

 100000

 1e+06

512 1024 2048 4096 8192 16384

R
un

ni
ng

 ti
m

e
[m

ill
is

ec
on

ds
]

Problem size [n]

Intel Core i7 970
NVIDIA GeForce GTX 280 [Oku]

Our result (AMD Radeon HD 5870 + Core i7 970)

◮ Fastest when
n ≥ 2048

◮ Not fast when
n ≤ 1024

[Oku] T. Okuyama, F. Ino, K. Hagi-
hara, Fast Blocked Floyd-Warshall Al-

gorithm on the GPU, IPSJ Trans.
Adv. Computing Systems, vol.3, no.
2, pp. 57-66, 2010 [in Japanese].

Conclusion

◮ Blocked APSP algorithm for hybrid system
◮ Matrix “multiplication” is the compute intensive part.

◮ Implementation is fast when the problem size (number of vertices) is
large.
◮ Maximum performance (n = 43776): 1 TFlop/s

◮ Future work: blocked APSP algorithm for cluster systems consisting of
multiple CPU-GPU nodes.

Reference: Blocked All-Pairs Shortest Paths Algorithm for Hybrid CPU-GPU System, K. Matsumoto, N. Nakasato, S. G. Sedukhin, In Proc. the 13th IEEE International Conference on High Performance Computing and Communications (HPCC-2011), pp. 145-152, Sep. 2011.

