
Everaert et al. Biological Procedures Online            (2023) 25:7  
https://doi.org/10.1186/s12575-023-00193-3

METHODOLOGY

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Biological Procedures Online

Blocking Abundant RNA Transcripts 
by High‑Affinity Oligonucleotides 
during Transcriptome Library Preparation
Celine Everaert1,2†, Jasper Verwilt1,2†, Kimberly Verniers1,2, Niels Vandamme2,3, Alvaro Marcos Rubio1,2, 
Jo Vandesompele1,2† and Pieter Mestdagh1,2*† 

Abstract 

Background  RNA sequencing has become the gold standard for transcriptome analysis but has an inherent limita-
tion of challenging quantification of low-abundant transcripts. In contrast to microarray technology, RNA sequencing 
reads are proportionally divided in function of transcript abundance. Therefore, low-abundant RNAs compete against 
highly abundant - and sometimes non-informative - RNA species.

Results  We developed an easy-to-use strategy based on high-affinity RNA-binding oligonucleotides to block reverse 
transcription and PCR amplification of specific RNA transcripts, thereby substantially reducing their abundance in 
the final sequencing library. To demonstrate the broad application potential of our method, we applied it to different 
transcripts and library preparation strategies, including YRNAs in small RNA sequencing of human blood plasma, mito-
chondrial rRNAs in both 3′ end sequencing and long-read sequencing, and MALAT1 in single-cell 3′ end sequencing. 
We demonstrate that the blocking strategy is highly efficient, reproducible, specific, and generally results in better 
transcriptome coverage and complexity.

Conclusion  Our method does not require modifications of the library preparation procedure apart from simply add-
ing blocking oligonucleotides to the RT reaction and can thus be easily integrated into virtually any RNA sequencing 
library preparation protocol.

Keywords  RNA sequencing, Oxford nanopore technologies, Single-cell RNA sequencing, Depletion

Introduction
RNA sequencing has become the gold standard for tran-
scriptome characterization. Numerous RNA sequencing 
library preparation procedures have been developed to 
quantify various RNA biotypes, including amongst others 
polyA+ RNA sequencing, total RNA sequencing, 3′ end 
RNA sequencing and small RNA sequencing. Regardless 
of the library preparation method, RNA sequencing reads 
are distributed across RNA transcripts proportionally to 
their abundance. Consequently, highly abundant RNA 
species, often deemed non-informative, can dominate 
the RNA sequencing library and hamper the detection 
of lower abundant transcripts. A well-known example 
is ribosomal RNA (rRNA), which typically accounts for 
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was higher in the case of RNY4 blocking (Fig.  3B). At 
0.7 M reads, the average concordance of four random 
subsamples was 64.9% for RNY4 blocking and 60.0% 
without RNY4 blocking. When using 7 M reads, the 
concordance was 100% for both methods. This obser-
vation suggests that, at shallow sequencing depth, 
RNY4 blocking increases the robustness of differential 
miRNA analysis.

LNA Is the most Efficient Modification to Block Library 
Incorporation
As fully modified LNA oligonucleotides are relatively 
expensive, we evaluated the RNY4 blocking potency of 
cheaper base modifications known to improve oligonu-
cleotide binding affinity such as 2′-O-methyl (2’OME) 
and 2′-methoxy-ethoxy (2’MOE) in PRP. We observed 
that an LNA-modified RNY4 oligonucleotide is equally 
efficient (median reduction of 6.45-fold) compared to a 
2’MOE modified oligonucleotide (median reduction of 
6.11-fold) (p = 0.14). The 2’OME modification, however, 
is less efficient and resulted in a  reduction of just 1.22-
fold (p = 0.005) compared to the LNA modification. In 
addition, we investigated the potency of partially modi-
fied (i.e., every other nucleotide) oligonucleotides for 
both LNA, 2’OME, and 2’MOE. We observed that the 
partially modified LNA RNY4 oligonucleotide was as 
potent as a fully modified LNA RNY4 oligonucleotide 
(RNY4 fold change reduction of 6.90, p = 0.383) and still 
outperforms fully modified 2’OME RNY4 oligonucleotides 
(p  = 0.0005) (Fig.  3C). The partially 2’OME and 2’MOE 
modified oligonucleotides performed the worst (Fig. 3C).

rRNA Blocking in 3′ End Sequencing Data
During reverse transcription, oligo (dT) primers can 
bind internal poly(A) sequences of mitochondrial and 
nuclear ribosomal RNA species, which eventually get 
incorporated in the RNA sequencing library (up to 2% of 
all reads, as found in previous sequencing data (Fig. 1C-
E)). Although the abundance of MT-rRNA in this data 
is not necessarily problematic, it does provide a good 
test case for eliminating multiple transcript fragments 
in a poly(A)-primed library prep procedure. There-
fore, we designed fully modified LNA oligonucleotides 
to inhibit the reverse transcription of three mitochon-
drial rRNA fragments (MT-RNR1 and two fragments 

from MT-RNR2) and one fragment from nuclear rRNA 
RNA45S (Fig.  1). We added all four oligonucleotides to 
the RT reaction of a 3′ end library preparation on eight 
cell lysates and compared the data to that of a standard 3′ 
end library preparation workflow. Adding LNA oligonu-
cleotides resulted in an average reduction of the counts 
per million of 16.2x, 19.2x, 8.6x, and 3.2x for RNA45S, 
MT-RNR1, MT-RNR2 fragment  1, and MT-RNR2 frag-
ment 2, respectively (Fig. 4A). To evaluate the reproduc-
ibility of the method, we compared the abundance of all 
detected genes between biological replicates for both 
the standard and the LNA spike protocols. The Pearson 
(0.982–0.997) and Spearman (0.852–0.879) correlation 
coefficients were high for every comparison (Supple-
mental Fig. 3), and there was no significant difference in 
reproducibility between the standard and blocking proto-
col. We evaluated the number of detected genes for dif-
ferent sequencing depths to investigate whether blocking 
RNA45S and the MT-RNR1/2 fragments is beneficial for 
gene detection (Fig.  4B). For shallow sequencing depth 
(1–2 million reads), the number of detected genes was 
higher in the blocking protocol compared to the standard 
protocol. Finally, we investigated the potential off-target 
effects of the blocking oligonucleotides by comparing 
gene expression values between the control and blocking 
protocol. Out of 12,077 detected genes, we identified two 
genes that showed divergent gene expression values for 
all biological replicates: MT-ATP8 and H4C3 (Fig.  4C). 
We did not observe significant sequence complementarity 
between the LNA oligonucleotides and these presumed 
off-targets. In conclusion, LNA oligonucleotides can effi-
ciently and specifically block the incorporation of a variety 
of transcript fragments in 3′ end RNA-seq libraries.

rRNA Blocking for Long‑Read polyA+ Transcript 
Sequencing
Additionally, we explored whether the previously 
described rRNA (RNA45S, MT-RNR1, MT-RNR2) 
blocking strategy can also be applied to Oxford Nanop-
ore Technologies (ONT) sequencing of poly(A)-primed 
cDNA libraries. More specifically, we performed direct-
cDNA sequencing to investigate the blocking effect on 
just the reverse transcription step. We added three differ-
ent concentrations (0.25 μM, 2.5 μM, and 25 μM, referred 
to as LNA1x, LNA10x, and LNA100x) of the rRNA LNA 

(See figure on next page.)
Fig. 4  LNA oligonucleotide blocking of mtrRNA fragments (mitochondrially encoded 16S rRNA (two fragments), 45S pre-ribosomal RNA and 
mitochondrially encoded 12S rRNA) in QuantSeq 3′ end sequencing. A Counts per million (CPM) of the targeted transcripts for noLNA and LNA100x 
samples after QuantSeq 3′ end sequencing. Lines are drawn between samples originating from the same lysate. B Average number of detected 
genes for subsampled noLNA and LNA100x samples. A gene is ‘detected’ if it has at least 10 counts. Each point is a biological replicate and is colored 
by treatment. C Scatter plot between noLNA and LNA100x samples for each biological replicate are highly correlated (Spearman = 0.853–0.905). 
Each dot corresponds to a gene. The green dots are MT-RNR1 and MT-RNR2, while the red dots indicate the genes likely affected by off-target 
binding: H4C3 and MT-ATP8
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oligonucleotides (as used in the 3′ end library prepara-
tion) to the reverse transcription reaction of four differ-
ent samples. For all targeted fragments, we observed a 
substantial decrease in counts per million with increasing 
concentration of LNA oligonucleotides, except for 45S 
pre-ribosomal RNA in the LNA100x condition (Fig.  5). 
Unexpectedly, we also observed a mild but consistent 
decrease in overall read length distribution with increas-
ing concentration of LNA oligonucleotides (Supplemen-
tal Fig.  4). The quality scores of the reads did not vary 
(Supplemental Fig.  5). These results show the potential 
of LNA oligonucleotides to prevent reverse transcription 
(and thus sequencing) of specific RNA molecules in ONT 
long-read sequencing experiments.
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Fig. 5  LNA oligonucleotide blocking of mtrRNA fragments (mitochondrially encoded 16S rRNA (two fragments), 45S pre-ribosomal RNA and 
mitochondrially encoded 12S rRNA) in Oxford Nanopore direct-cDNA sequencing. Counts per million (CPM) of the targeted transcripts for noLNA 
and LNA1x, LNA10x and LNA100x samples after Oxford Nanopore direct-cDNA sequencing. Fractions of CPM for LNA oligonucleotide treated 
samples relative to noLNA samples are shown as percentages

MALAT1 Blocking in Single‑Cell 3′ End Sequencing 
of PBMCs
We finally evaluated if our method would also be appli-
cable to single-cell RNA sequencing. More specifically, 
we designed two half-modified LNA oligonucleotides to 
block MALAT1 in single-cell 3′ end sequencing librar-
ies of PBMCs. In PBMCs, MALAT1 can consume > 40% 
percent of reads through priming of internal poly(A) 
stretches (Supplemental Fig.  6). The LNA oligonucleo-
tides were added either before reverse transcription 
(pre-RT), which occurs in the gel bead-in-emulsion 
(GEMs), or before cDNA amplification, when the GEMs 
are pooled (pre-PCR). Both protocols show a decrease 
in MALAT1 reads (6-fold for the pre-RT and 4-fold for 
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the pre-PCR blocked libraries) (Fig.  6A). For some cell 
types, e.g., erythrocytes and regulatory T-cells, the initial 
MALAT1 proportions were higher, resulting in a more 
drastic reduction (Supplemental Fig.  7). We observed a 
higher mitochondrial-derived RNA fraction for the pre-
RT sample, which may indicate cell death (Fig. 6A). The 
LNAs are, in this case, combined with living cells for 
18 min. We, therefore, focused our analysis on the pre-
PCR protocol. UMAP representation of cells based on 
single-cell RNA-seq data from both the pre-PCR block-
ing and standard protocol revealed tight clustering of cell 
types independent of protocol (Fig.  6B), implying that 
the MALAT1 LNA oligonucleotide in the pre-PCR pro-
tocol has minimal impact on gene expression. This was 
further demonstrated by a perfect correlation (Spearman 
and Pearson correlation = 1.00) of gene expression values 
between the pre-PCR blocking and standard protocol 
(Supplemental Fig. 8). We observed a significant increase, 
albeit with a small effect size, in the mean number of 
detected genes per cell in the pre-PCR protocol; 1173 
genes with at least two counts in the control sample and 
1192 in the pre-PCR blocking sample (pt-test = 5.751e-05) 
(Fig.  6A). The higher gene detection sensitivity might 
be related to the initial MALAT read fraction, the 
number of genes detected in the cells and the fraction 
of other highly abundant genes. The highest impact 
was seen in B memory cells where the mean number 
of detected genes increased from 1131 to 1235 (9.2% 
increase, padj, t-test = 0.026).

LNA Blocking Simulation in Whole Blood 3′‑End 
Sequencing
Although our wet-lab experiments indicate that high-
affinity binding oligonucleotide blocking can efficiently 
deplete transcripts of interest, it remains to be deter-
mined what the relationship is between initial abundance 
and level of depletion in order to offer substantial benefit 
(such as increased library complexity). Some of our appli-
cations had a more significant impact on the number of 
additionally detected genes and on coverage increase than 
others. We assume that this impact is highly dependent 
on the initial fraction of targeted reads, the depletion effi-
ciency, and the sequencing saturation. In order to inves-
tigate in detail, we simulated different abundances and 
depletion efficiencies of beta-globin (HBB) using publicly 
available whole blood 3′-end sequencing data, in which 
HBB accounted for 20.8% of all reads [68]). Figure  7 
shows how the number of detected genes (with at least 10 
counts) increases linearly with increasing depletion effi-
ciency at shallow sequencing depth but increases expo-
nentially at higher sequencing depths. The linear relation 
for low sequencing depths probably results from unsatu-
rated sequencing. The relation becomes more linear as 

the initial unwanted fraction lowers in higher sequenc-
ing depths. We conclude that even inefficient depletion 
of high-abundant transcripts provides a substantial gain 
in the number of detected genes.

Discussion
We demonstrate that high-affinity binding oligonucleo-
tides can be applied to block reverse transcription and 
PCR amplification of various RNA transcripts in differ-
ent RNA-seq library preparation protocols. We present a 
flexible and robust method that can drastically increase 
the detection and coverage of (low abundant) genes in 
the library. While LNA oligonucleotides have been used 
before to block PCR amplification [45], we provided evi-
dence that such oligonucleotides can block both reverse 
transcription and PCR amplification, indicated by evi-
dent fragment depletion in the PCR-independent Oxford 
Nanopore Technologies protocol and the post-RT sin-
gle-cell sample, respectively. Moreover, we demonstrate 
that the impact of blocking specific RNA fragments on 
gene detection and coverage strongly depends on the 
abundance of the blocked fragments, the transcriptome 
complexity and the sequencing depth. For example, the 
impact of RNY4 blocking on gene (i.e., miRNA) detection 
and coverage was much more significant for PRP than 
PFP, most likely because of higher RNY4 abundance in 
PRP. We expect a more pronounced impact in PFP sam-
ples at lower sequencing depths. We provide support for 
this hypothesis using simulated depletion experiments.

Our method has several advantages compared to exist-
ing protocols. First, the method only requires a single 
additional step that can be implemented in any RNA-seq 
library preparation workflow. Second, no nucleic acid 
sample or library material is lost because of enrichment 
or washing steps, which we believe has a positive impact 
on detection sensitivity, especially for low-input samples.

While we generally observe potent blocking of tar-
geted transcripts, we also observe a few minor unwanted 
effects. First, in single-cell RNA sequencing, adding LNA 
oligonucleotides to the GEMs during 3′ end sequencing 
resulted in a higher fraction of mtRNA reads. As living 
cells are incubated with LNA oligonucleotides for 18 min, 
the oligonucleotides may enter the cells and induce cell 
death. A large fraction of mtRNA co-occurred with few 
detected genes. Since adding the LNA oligonucleotides 
post-PCR also results in potent target blocking, we pro-
pose to use this approach instead. Second, the optimal 
concentration of LNA oligonucleotide may be application 
and target-dependent. A dedicated optimization step 
is warranted for optimal performance. This necessity is 
reflected in the single-cell RNA sequencing experiment, 
where the benefit (in terms of the number of detected 
genes) depends on the cell type. Factors to consider are 
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the original fraction of the targeted RNA transcript and 
the input RNA concentration of the library preparation 
protocol. We advise to combine samples in one sin-
gle library prep to exclude batch effects, as is generally 
advised for RNA-seq experiments. Third, we observed a 
limited number of off-target effects upon adding specific 
LNA oligonucleotides (for instance, MT-AT8 and H4C3 
in the 3′ end sequencing experiment). We did not observe 
significant sequence complementarity between the LNA 
oligonucleotides and the presumed off-targets. Neverthe-
less, off-target effects are not entirely unexpected given 
the relatively short length of the LNAs, their high RNA-
binding capacity, and the small design space. The lat-
ter lowers the number of possible oligonucleotides and 
thereby the chances of designing one without off-target 
effects. Increasing oligonucleotide length or reducing the 
number of LNA nucleotides to lower binding affinity may 
improve specificity. A fourth limitation of the method is 

that it may only be applicable to small RNA sequencing 
or RNA-sequencing library prep methods employing an 
oligo(T) or a gene-specific RT primer. When the prim-
ing is random, it is impossible to design a single LNA oli-
gonucleotide to block reverse transcription of the whole 
fragment. One option would be to design multiple LNA 
oligonucleotides spanning the entire transcript, but this 
could become prohibitively expensive, depending on the 
length of the fragment. Fifth, LNA synthesis is costly. 
Nevertheless, the amount of oligo that is required for effi-
cient blocking is limited. Even at low synthesis scale, sev-
eral hundreds of reactions can be performed, resulting 
in a limited per-sample cost. As fully and partially modi-
fied LNA oligonucleotides are equally efficient for YRNA 
depletion, partially modified LNA oligonucleotides could 
be used to further reduce oligo synthesis cost (although 
additional validation would be required as we only dem-
onstrated this for a single RNA target sequence). Notably, 

Fig. 7  Simulations of HBB LNA oligonucleotide blocking in 3-end RNA sequencing data from whole blood. Each separate figure shows the 
number of genes with a count higher than 10 for each simulation with varying HBB depletion efficiency (0% means no depletion, 100% mean total 
depletion). The lines are colored by the initial fraction of HBB counts (of the total amount of counts). The graphs are separated by the number of 
counts the data was subsampled to
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blocking unwanted transcripts may also help reduce the 
sequencing cost. Finally, the observed shortening in read 
length with increasing LNA concentration in the Oxford 
Nanopore Technologies experiment is problematic, as 
it suggests off-target binding of the LNAs. Although 
the LNA oligonucleotides are expected to preferentially 
bind sequences with a lower number of mismatches, the 
steady decline in coverage towards the 5′-end of RNA 
transcripts points towards close to non-specific binding 
of the LNA oligonucleotides when supplied at high con-
centration. The possibility of the LNA oligonucleotides 
inhibiting the sequencing by binding to the final library 
can be dismissed by investigating the adaptor-to-adaptor 
reads (which signify complete sequencing of the read).

We believe the method presented here is versatile and 
can be used for other applications not investigated here, 
including hemoglobin mRNA blocking in whole blood 
samples (up to 70% of all mRNA in whole blood [69]) or 
trypsin mRNA in pancreatic RNA samples. As we have 
shown, samples dominated by a few fragments have a 
higher potential of benefitting from LNA oligonucleo-
tide-transcript blocking. We suggest the users perform 
an initial computational analysis to define the expected 
benefit prior to implementing and optimizing our pro-
posed method. While we only investigated mixtures of 
up to four different LNA oligonucleotides, it would be 
possible to combine more and block multiple fragments 
in one sample. Such mixtures can be designed specifically 
for unique and challenging sample types, containing sev-
eral highly expressed, uninformative fragments [70].

Conclusion
In conclusion, we present a novel and broadly applicable 
method to specifically block unwanted RNA transcripts 
during RNA sequencing library preparations by simply 
adding a target-specific high-affinity oligonucleotide to 
the RT or PCR reaction.
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