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Entity Resolution (ER), a core task of Data Integration, detects different entity profiles that correspond to the
same real-world object. Due to its inherently quadratic complexity, a series of techniques accelerate it so that
it scales to voluminous data. In this survey, we review a large number of relevant works under two different
but related frameworks: Blocking and Filtering. The former restricts comparisons to entity pairs that are
more likely to match, while the latter identifies quickly entity pairs that are likely to satisfy predetermined
similarity thresholds. We also elaborate on hybrid approaches that combine different characteristics. For each
framework we provide a comprehensive list of the relevant works, discussing them in the greater context.
We conclude with the most promising directions for future work in the field.
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1 INTRODUCTION

Entity Resolution (ER) is the task of identifying different entity profiles that describe the same real-
world object [29, 47]. It is a core task for Data Integration, applying to any kind of data, from the
structured entities of relational databases [24] to the semistructured entities of the Linked Open
Data Cloud (https://lod-cloud.net) [29, 38] and the unstructured entities that are automatically
extracted from free text [148]. ER consists of two parts: (1) the candidate selection step, which
determines the entities worth comparing, and (2) the candidate matching step, or simply Matching,
which compares the selected entities to determine whether they represent the same real-world
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object. The latter step involves pairwise comparisons, i.e., time-consuming operations that typically
apply string similarity measures to pairs of entities, dominating the overall cost of ER [24, 29, 38].

In this survey, we focus on the candidate selection step, which is the crucial part of ER with
respect to time efficiency and scalability. Without it, ER suffers from a quadratic time complexity,
O(n?), as every entity profile has to be compared with all others. Reducing this computational
cost is the goal of numerous techniques from two dominant frameworks: Blocking and Filter-
ing. The former attempts to identify entity pairs that are likely to match, restricting comparisons
only between them, while the latter attempts to quickly discard pairs that are guaranteed to not
match, executing comparisons only between the rest. The former operates without knowledge of
the Matching step, while the latter is based on it, assuming that two entities match if their sim-
ilarity exceeds a specified threshold. Hence, Blocking and Filtering share the same goal but are
complementary, as they operate under different settings and assumptions. So far, though, they
have been developed independently of one another: their combination and, more generally, their
relation have been overlooked in the literature, with the exception of very few works (e.g., [82]).

Moreover, the rise of Big Data poses new challenges for both Blocking and Filtering approaches
[29, 38]: Volume requires techniques to scale to millions of entities, while Variety calls for tech-
niques that can cope with an unprecedented schema heterogeneity. Both Blocking and Filtering
address Volume primarily through parallelization. Existing techniques were adapted to split their
workload into smaller chunks that are distributed across different processing units so that they are
executed in parallel. This can be done on a cluster (distributed methods) or through the modern
multicore and multisocket hardware architectures. Variety, though, is addressed differently in each
field. For Blocking, the schema-aware methods are replaced by schema-agnostic techniques, which
disregard any schema information, creating blocks of very high recall but low precision. Addition-
ally, a whole new category of methods, called Block Processing, intervenes between Blocking and
Matching to refine the original blocks, significantly increasing precision at a negligible (if any)
cost in recall. For Filtering, techniques that employ more relaxed matching criteria (e.g., fuzzy
set matching or local string similarity join) are proposed, while the case of low-similarity thresh-
olds is also considered.

To the best of our knowledge, this is the first survey to comprehensively cover the aforemen-
tioned aspects and to jointly review the two frameworks for efficient ER. We formally define Block-
ing, Block Processing, and Filtering, introducing a common terminology that facilitates their un-
derstanding. For each field, we propose a new taxonomy with categories that highlight the distin-
guishing characteristics of the corresponding methods. Based on these taxonomies, we provide a
broad overview of every field, elucidating the functionality of the main techniques as well as the
relations among them. As a result, established techniques are now seen in a different light; Canopy
Clustering [97], for instance, may now be viewed as a Block Processing method. We also elabo-
rate on the parallelization methods for each field. Most importantly, this survey attempts to place
Blocking and Filtering under a common context, taking special care to stress hybrid methods that
combine features from both Blocking and Filtering, to analyze works that experimentally compare
the two frameworks (e.g., [154]) and to qualitatively outline their commonalities and differences.
We also investigate the ER tools that incorporate established efficiency techniques and propose a
series of open challenges that constitute promising directions for future research.

Parts of the material included in this survey have been presented in tutorials at WWW
2014 [157], ICDE 2016 [123], ICDE 2017 [156], and WWW 2018 [124]. A past survey [25] also
covers efficiency ER techniques but is restricted to the schema-aware Blocking methods. Other sur-
veys [47] and textbooks [24, 29, 38] provide a holistic overview of ER, merely examining the main
Blocking and Block Processing techniques. Closer to our work is a recent survey on Blocking [111],
which, however, offers a more limited coverage and refers neither to parallelization nor to Filtering
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works. Recent surveys on string and set similarity joins also exist, but they focus exclusively on
centralized [64, 95, 187] or distributed approaches [50], with the purpose of experimental compar-
ison, and without covering approximate techniques that allow for more relaxed matching criteria.
Most importantly, none of these surveys considers similarity joins in the broader context of ER.
The rest of the article is structured as follows: Section 2 provides background knowledge on
ER and its efficiency techniques, while Sections 3 and 4 delve into Blocking and Block Processing,
respectively. Section 5 is devoted to Filtering, whereas Section 6 elaborates on works that com-
bine Blocking with Filtering. Section 8 enumerates the main ER tools that incorporate efficiency
methods, Section 7 provides a high-level discussion of the relation between Blocking and Filtering,
Section 9 provides the main directions for future work, and Section 10 concludes the paper.

2 PRELIMINARIES

At the core of ER lies the notion of entity profile, which constitutes a uniquely identified description
of a real-world object in the form of name-value pairs. Assuming infinite sets of attribute names
N, attribute values V, and unique identifiers 7, an entity profile is formally defined as follows
[29, 120]:

Definition 1 (Entity Profile). An entity profile eq is a tuple (id, A;4), where id € I is a unique
identifier, and A;; is a set of name-value pairs (n, v), withn € N and v € (V U I). A set of entity
profiles & is called entity collection.

This definition is simple but flexible enough to accommodate a wide variety of (semi-)structured
representations; e.g., nested attributes can be transformed into a flat set of name-value pairs, while
links may be represented by assigning the id of one entity as the attribute value of the other.

Definition 2 (Entity Resolution). Two entity profiles e; and e; match, e; = e;, if they refer to the
same real-world entity. Matching entities are also called duplicates. The task of Entity Resolu-
tion (ER) is to find all matching entities within an entity collection or across two or more entity
collections.

In particular, we distinguish between the following two cases [24, 25]:

(1) Deduplication receives as input an entity collection & and produces as output the set of all
pairs of matching entity profiles within &, i.e., D(E) = {(ei,ej) 1 e; € E, ¢; € &, e; = ¢j}.

(2) Record Linkage receives two duplicate-free entity collections, &; and &,, and returns the
pairs of matching entity profiles between them, i.e.,, D(E4, E2) = {(ei,ej) 1 €; € Eq, €5 €
82, e = ej}.

Multisource Entity Resolution involves three or more entity collections and can be performed
by applying Deduplication to the union of all collections or by executing a sequence of pairwise
Record Linkage tasks, provided that every input collection is duplicate-free.

ER performance is characterized by its effectiveness and its efficiency. The former refers to how
many of the actual duplicates are detected, while the latter expresses the computational cost for
detecting them—usually in terms of the number of performed comparisons, which is referred to as
cardinality and denoted by ||&||. The naive, brute-force approach performs all pairwise compar-
isons between the input entity profiles, having a quadratic complexity that does not scale to large
datasets; for Record Linkage, [|E]| = |&4] X |E;|, while for Deduplication, ||E]| = [E] - (|&E] — 1)/2.

Blocking. To tackle ER’s inherently quadratic complexity, Blocking trades slightly lower ef-
fectiveness for significantly higher efficiency. Its goal is to reduce the number of performed com-
parisons, while missing as few matches as possible. Ideally, one would compare only the pairs of
duplicates, whose number grows linearly, with the number of the input entity profiles [53, 156].
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To this end, Blocking clusters potentially matching entities in common blocks and exclusively
compares entity profiles that co-occur in at least one block.

Internally, a blocking method employs a blocking scheme, which applies to one or more entity
collections to yield a set of blocks B, called block collection. Cardinality ||B]| denotes the number
of comparisons in B, given that only entity pairs within the same block are compared, i.e., || B]|
= X p;e ||bill, where [|b;|| stands for the number of comparisons contained in an individual block
b;. We denote the set of detectable duplicates in B as D(B), while D(E) stands for all existing
duplicates. Since B reduces the number of performed comparisons, D (B) € D(E).

A common assumption in the literature is the oracle, i.e., a perfect matching function that, for
each pair of entity profiles, decides correctly whether they match or not [25, 38, 120, 121, 156].
Using an oracle, a pair of duplicates is detected as long as they share at least one block. This allows
for reasoning about the performance of blocking methods independently of matching methods:
there is a clear tradeoff between the effectiveness and the efficiency of a blocking scheme [25, 38,
156]: the more comparisons are contained in the resulting block collection 8B (i.e., higher ||8B]]),
the more duplicates will be detected (i.e., higher |D(8B)]), raising effectiveness at the cost of lower
efficiency. Thus, a blocking scheme should achieve a good balance between these two competing
objectives as expressed through the following measures [16, 33, 100, 116]:

(1) Pair Completeness (PC) corresponds to recall, estimating the portion of the detectable du-
plicates in 8 with respect to those in &: PC(B) = |D(B)|/|D(E)| € [0,1].

(2) Pair Quality (PQ) corresponds to precision, estimating the portion of comparisons in B
that correspond to real duplicates: PQ(8B) = |D(8B)|/||8B]| € [0, 1].

(3) Reduction Ratio (RR) measures the reduction in the number of pairwise comparisons in B
with respect to the brute-force approach: RR(8B,8) = 1 —||8]|/||E]] € [0, 1].

Higher values for PC indicate higher effectiveness of the blocking scheme, while higher values
for PQ and RR indicate higher efficiency. Note that PC provides an optimistic estimation of recall,
presuming the existence of an oracle, while PQ provides a pessimistic estimation of precision,
treating as false positives the repeated comparisons between duplicates (i.e., only the nonrepeated
duplicate pairs are considered as true positives). In this context, we can define Blocking as follows:

Definition 3 (Blocking). Given an entity collection &, Blocking clusters similar entities into a
block collection 8B such that PC(8B), PQ(8), and RR(B, E) are simultaneously maximized.

This definition refers to Deduplication but can be easily extended to Record Linkage. Simul-
taneously maximizing PC, PQ, and RR necessitates that the enhancements in efficiency do not
affect the effectiveness of Blocking, carefully removing comparisons between nonmatching enti-
ties. Conceptually, Blocking can be viewed as an optimization task, but this implies that the real
duplicate collection D(E) is known, which is actually what ER tries to compute. Hence, Blocking
is typically treated as an engineering task that provides an approximate solution for the data at
hand.

A blocking-based ER workflow may comprise several stages. First, Block Building (BIBu) applies
a blocking scheme to produce a block collection B from the input entity collection(s). This step
may be repeated several times on the same input, applying multiple blocking schemes, in order
to achieve a more robust performance in the context of highly noisy data. Often, there is a sec-
ond, optional stage, called Block Processing, which refines B through additional optimizations that
further reduce the number of performed comparisons. This may involve discarding entire blocks
that primarily contain unnecessary comparisons, called Block Cleaning (BICl), and/or discarding
individual comparisons within certain blocks, called Comparison Cleaning (CoCl). The former may
be applied repeatedly, each time enforcing a different, complementary method to discard blocks,
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Fig. 1. (a) The internal functionality of Blocking modeled as a deterministic finite automaton with three
states: Block Building (BIBu), Block Cleaning (BICI), and Comparison Cleaning (CoCl). (b) The end-to-end
workflow for nonlearning Entity Resolution [82]. (c) The relative computational cost for the brute-force ap-
proach, Blocking, Filtering, and the ideal solution (Duplicate Pairs) over Deduplication.

but the latter can be performed only once; CoCl comprises competitive methods that serve exactly
the same purpose and, once applied to a block collection, they alter it in such a way that turns all
other methods inapplicable. Figure 1(a) models this workflow as a deterministic finite automaton
with three states, where each state corresponds to one of the blocking subtasks.

Filtering. Given two entity collections &; and &, a similarity function fs : &; X &, — R, and
a similarity threshold 0, a similarity join identifies all pairs of entity profiles in &; and &; that have
similarity at least 0, i.e., &1 > E; = {(ei, €j) € E1 X Ey : fs(ei, ej) = 0}.

Similarity joins can be used for defining ER under the intuitive assumption that matching entity
profiles are highly similar. In fact, the above formulation corresponds to Record Linkage, while
Deduplication can be defined analogously as a self-join operation, where &; = &.

To avoid exhaustive pairwise comparisons, similarity joins typically follow the filter-verification
framework, which involves two stages [10, 64]:

(1) Filtering computes a set of candidates for each entity e;, excluding all those that cannot
match with e;. In other words, it prunes all true negatives but allows some false positives.

(2) Verification computes the actual similarity between candidates (or a sufficient upper
bound) to remove the false positives.

Due to the relatively straightforward implementation of Verification, in the following we ex-
clusively focus on Filtering. The relevant techniques are defined with respect to three parameters:
(i) the representation for each entity, (ii) the similarity function between entity pairs under this
representation, and (iii) the similarity threshold above which two entities are considered to match.

The representation typically relies on signatures extracted from each entity such that two entities
match only if their signatures overlap. Given that we address ER over entities described by one
or more textual attributes, we focus on string similarity joins, which can be character or token
based. The former compare two strings by representing them as sequences of characters and by
considering the character transformations required to transform one string into the other. The
latter are also called set similarity joins, since they transform the strings into sets, typically via
tokenization or g-gram extraction, and then compare strings using a set-based similarity measure.

Regarding the similarity function, the most common one for character-based similarity joins is
Edit Distance, which measures the minimum number of edit operations (i.e., insertions, deletions,
and substitutions) that are required to transform one string to the other [10]. For token-based
similarity joins, the most commonly used similarity measures include Overlap, Jaccard, Cosine, or
Dice. The last three are normalized variants of the Overlap [10, 64, 95].
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Type of Joins Measure Definition Equivalent Overlap Threshold

character-based | Edit Distance | # character transformations | max(|x|, |y|)+1—(1+8) X q

Overlap IxNy]| 0

Cosine xNyl/Vixl - Iyl 8 xVIx| Iyl
token-based .

Dice 2+ xNyl/xl + lyD 0 x (Ix| +lyh/2

Jaccard [xNy|/ (x| + Iyl = Ixnyl) | 8 x (Ix] +lyl)/(1 + )

Fig. 2. Definition of the main similarity measures used by string similarity join algorithms, and how the
input threshold 6 for each measure can be transformed into an equivalent Overlap threshold 7.

Finally, the similarity threshold depends on the data at hand. Note, though, that the join al-
gorithms do not operate directly with thresholds on Jaccard, Cosine, or Dice similarity, but first
translate the given threshold € into an equivalent set overlap threshold 7 that depends on the size
of the sets, as shown in Figure 2. A similar transformation is also possible for Edit Distance, which
means that set similarity joins may be applied to this measure as well [10].

Blocking vs. Filtering. The relation between the two frameworks is illustrated in Figure 1(b).
Blocking, in the sense of the entire process in Figure 1(a), is applied first, reducing the pairwise
comparisons that are considered by Matching. These comparisons are further cut down by Filter-
ing, which is subsequently applied, as the initial part of Matching, given that it requires specifying
both a similarity measure and a similarity threshold. Next, Verification is applied to estimate the
actual similarity between the compared attribute values. The Entity Resolution process concludes
with Match Decision, which synthesizes the estimated similarity between multiple attribute values
to determine whether the compared entity profiles are indeed duplicates.

Both Blocking and Filtering are optional steps, but at least one of them should be applied in
order to tame the otherwise quadratic computational cost of ER. As shown in Figure 1(c), Blocking
yields a superlinear but subquadratic time complexity, lying between the two extremes: the brute-
force solution and the ideal one (i.e., Duplicate Pairs). The same applies to the computational cost
of Filtering, except that it typically constitutes an exact procedure that produces no false negatives,
i.e., missed duplicates. It exclusively allows false positives, which are later removed by Verification
[10]. For this reason, Filtering corresponds to a superset of Duplicate Pairs in Figure 1(c). In con-
trast, Blocking constitutes an inherently approximate solution that increases ER efficiency at the
cost of allowing both false positives and false negatives [29]. Thus, it intersects Duplicate Pairs,
such that the area of their intersection is inversely proportional to the duplicates that are missed
by Blocking, while the relative complement of the Duplicate Pairs in Blocking is analogous to the
executed comparisons between nonmatching entities.

Note that Figure 1(c) corresponds to Deduplication but can be easily generalized to Record Link-
age as well. Moreover, the relative performance of Blocking and Filtering, i.e., the relative position
of their circles, depends on the methods and the data at hand. In most cases, though, the best so-
lution is to use both frameworks, yielding the computational cost that corresponds to their inter-
section. However, this approach is rarely used in the literature (e.g., [82]). Most works on Blocking
typically omit Filtering (e.g., [25, 112, 128]), whereas most works on Filtering disregard Blocking,
applying directly to the input entity collections (e.g., [64, 95]). The goal of the present survey is to
cover this gap, elucidating the complementarity of the two frameworks.

3 BLOCK BUILDING

Block Building receives as input one or more entity collections and produces as output a block
collection B. The process is guided by a blocking scheme, which determines how entity profiles
are assigned to blocks. This scheme typically comprises two parts. First, every entity is processed
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to extract signatures (e.g., tokens), such that the similarity of signatures reflects the similarity of
the corresponding profiles. Second, every entity is mapped to one or more blocks based on these
signatures. Let P (S) denote the power set of a set S and K denote the universe of signatures
appearing in entity profiles. We formally define a blocking scheme as follows:

Definition 4 (Blocking Scheme). Given an entity collection &, a blocking scheme is a function fp :
& — P(B) that maps entity profiles to blocks. It is composed of two functions: (1) a transformation
function fr : & — P(K) that maps an entity profile to a set of signatures (also called blocking keys)
and (2) an assignment function f4 : K — P(8) that maps each signature to one or more blocks.

This definition applies to Deduplication but can be easily extended to Record Linkage.
The set of comparisons in the resulting block collection 8 is called comparison collection and is
denoted by C(8). Every comparison ¢; ; € C(8) belongs to one of the following types [120, 121]:

e Matching comparison, if e; and e; match
o Superfluous comparison, if e; and e; do not match
e Redundant comparison, if e; and e; have already been compared in a previous block

We collectively call the last two types unnecessary comparisons, as their execution brings no
gain.

Note that the resulting block collection $ can be modeled as an inverted index that points from
block ids to entity ids. For this reason, Block Building is also called Indexing [24, 25].

3.1 Taxonomy

To facilitate the understanding of the main methods for Block Building, we organize them into a
novel taxonomy that consists of the following dimensions:

e Key selection distinguishes between nonlearning and learning-based methods. The former
rely on rules derived from expert knowledge or mere heuristics, while the latter require a
training set to learn the best blocking keys using Machine Learning techniques.

e Schema awareness distinguishes between schema-aware and schema-agnostic methods. The
former extract blocking keys from specific attributes that are considered to be more appro-
priate for matching (e.g., more distinctive or less noisy), while the latter disregard schema
knowledge, extracting blocking keys from all attributes.

e Key type distinguishes between hash- or equality-based methods, which map a pair of en-
tities to the same block if they have a common key, and sort- or similarity-based methods,
which map a pair of entities to the same block if they have a similar key. There exist also
hybrid methods, which combine hash- with sort-based functionality.

e Redundancy awareness classifies methods into three categories based on the relation be-
tween their blocks. Redundancy-free methods assign every entity to a single block, thus cre-
ating disjoint blocks. Redundancy-positive methods place every entity into multiple blocks,
yielding overlapping blocks. The more blocks two entities share, the more similar their
profiles are. The number of blocks shared by a pair of entities is thus proportional to their
matching likelihood. Redundancy-neutral methods create overlapping blocks, where most
entity pairs share the same number of blocks, or the degree of redundancy is arbitrary,
having no implications.

e Constraint awareness distinguishes blocking methods into lazy, which impose no constraints
on the blocks they create, and proactive, which enforce constraints on their blocks (e.g.,
maximum block size), or refine their comparisons by discarding unnecessary ones.
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Table 1. Taxonomy of the Block Building Methods Discussed in Sections 3.2 and 3.3.
Key Redundancy Constraint | Matching
Method Type Awareness Awareness | Awareness
Standard Blocking (SB) [49] hash based redundancy free lazy static
Suffix Arrays Blocking (SA) [3] hash based | redundancy positive | proactive static
Extended Suffix Arrays Blocking [25, 112] hash based | redundancy positive | proactive static
Improved Suffix Arrays Blocking [33] hash based | redundancy positive | proactive static
Q-Grams Blocking [25, 112] hash based | redundancy positive lazy static
Extended Q-Grams Blocking [11, 25, 112] hash based | redundancy positive lazy static
MFIBlocks [75] hash based | redundancy positive | proactive static
Sorted Neighborhood (SN) [60, 61, 132] sort based | redundancy neutral | proactive static
Extended Sorted Neighborhood [25] sort based | redundancy neutral lazy static
Incrementally Adaptive SN [185] sort based | redundancy neutral | proactive static
Accumulative Adaptive SN [185] sort based | redundancy neutral | proactive static
Duplicate Count Strategy (DCS) [41] sort based | redundancy neutral | proactive dynamic
DCS++ [41] sort based | redundancy neutral | proactive dynamic
Sorted Blocks [40] hybrid redundancy neutral lazy static
Sorted Blocks New Partition [40] hybrid redundancy neutral | proactive static
Sorted Blocks Sliding Window [40] hybrid redundancy neutral | proactive static
(a) Nonlearning, schema-aware methods
ApproxRBSetCover [16] hash based | redundancy positive lazy static
ApproxDNF [16] hash based | redundancy positive lazy static
Blocking Scheme Learner (BSL) [100] hash based | redundancy positive lazy static
Conjunction Learner [21] (semi-supervised) || hash based | redundancy positive lazy static
BGP [48] hash based | redundancy positive lazy static
CBlock [146] hash based | redundancy positive | proactive static
DNF Learner [54] hash based | redundancy positive lazy dynamic
FisherDisjunctive [72] (unsupervised) hash based | redundancy positive lazy static
(b) Learning-based (supervised), schema-aware methods
Token Blocking (TB) [116] hash based | redundancy positive lazy static
Attribute Clustering Blocking [120] hash based | redundancy positive lazy static
RDFKeyLearner [154] hash based | redundancy positive lazy static
Prefix-Infix(-Suffix) Blocking [119] hash based | redundancy positive lazy static
TYPiMatch [92] hash based | redundancy positive lazy static
Semantic Graph Blocking [109] - redundancy neutral | proactive static
(c) Nonlearning, schema-agnostic methods
Hetero [73] hash based | redundancy positive lazy static
Extended DNF BSL [74] hash based | redundancy positive lazy static
(d) Learning-based (unsupervised), schema-agnostic methods

e Matching awareness distinguishes between static methods, which are independent of the
subsequent matching process, producing an immutable block collection, and dynamic meth-
ods, which intertwine Block Building with Matching, updating or processing their blocks
dynamically, as more duplicates are detected.

Table 1 maps all methods discussed in Sections 3.2 and 3.3 to our taxonomy.
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Standard Blocking (SB) [49] Token Blocking (TB) [116]

Suffix Arrays

Blocking (SA) [3] sorted Attribute RDFKeyLearner Prefix-Infix(- TYPiMatch
. Clustering [154] Suffix) Blocking [92]
ExtendedSA  Improved SA Neighborhood (SN) Blocking [120] [119]
[25,112] [33] [60,61,132]
Sorted Blocks
Extended SN Accumulative [40] Semantic Graph
[25] Adaptive SN Blocking [109]
Qugrams [185] Sorted Blocks
T Duplicate Incrementally New Partition
Blocking Count Strategy ~Adaptive SN [40]
[25,112] (DCs) [41] [185]  Sorted Blocks
New Partition
[40]
Extended Q-grams MFiBlocks  pcsy+ [41]
Blocking [11,25,112] [75]
(a) (b)

Fig. 3. The genealogy trees of nonlearning (a) schema-aware and (b) schema-agnostic Block Building tech-
niques. Hybrid, hash-, and sort-based methods are marked in blue, black, and red, respectively.

3.2 Schema-Aware Block Building

Methods of this type assume that the input entity profiles adhere to a known schema, and based
on this schema and respective domain knowledge, one can select the attributes that are most suit-
able for Blocking. We distinguish between nonlearning methods, reviewed in Section 3.2.1, and
learning-based methods, reviewed in Section 3.2.2.

3.2.1 Nonlearning Methods. The family tree of the methods in this category is shown in
Figure 3(a); a parent-child edge implies that the latter method improves upon the former one.
Below, we elaborate on these methods based on their key type.

Hash-Based Methods. Standard Blocking (SB) [49] involves the simplest functionality: an ex-
pert selects the most suitable attributes, and a transformation function concatenates (parts of)
their values to form blocking keys. For every distinct key, a block is created containing all corre-
sponding entities. In short, SB operates as a hash function, conveying two main advantages: (1) it
yields redundancy-free blocks, and (2) it has a linear time complexity, O(|E[). On the flip side, its
effectiveness is very sensitive to noise, as the slightest difference in the blocking keys of duplicates
places them in different blocks. SB is also a lazy method that imposes no limit on block sizes.

To address these issues, Suffix Arrays Blocking (SA) [3] converts each blocking key of SB into
the list of its suffixes that are longer than a predetermined minimum length [,,,;,. Then, it defines
a block for every suffix that does not exceed a predetermined frequency threshold by, ,x, which
essentially specifies the maximum block size. This proactive functionality is necessary, as very
frequent suffixes (e.g., “ing”) result in large blocks that are dominated by unnecessary comparisons.

SA has two major advantages [33]: (1) it has low time complexity, O(|E|-log|E|) [4], and is very
efficient, as it results in a small but relevant set of candidate matches, and (2) it is very effective, due
to the robustness to the noise at the beginning of blocking keys and the high levels of redundancy
(i.e., it places every entity into multiple blocks). On the downside, SA does not handle noise at the
end of SB keys; e.g., two matches with SB keys “JohnSnith” and “JohnSmith” have no common
suffix if I,;;;, = 4, while for l,;, = 3, they co-occur in a block only if the frequency of “ith” is lower
than by, 4.

This problem is addressed by Extended Suffix Arrays Blocking [25, 112], which uses as keys not
just the suffixes of SB keys, but all their substrings with more than I,,;, characters; e.g., for [,;i,
= 4, SA extracts from “JohnSnith” the keys “JohnSnith,” “ohnSnith,” “hnSnith,” “nSnith,” “Snith,”
and “nith,” while Extended SA additionally extracts the keys “John,” “ohnS,” “hnSn,” “nSni,” and
“Snit,” as well as all substrings of “JohnSnith” ranging from five to eight characters.
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Another extension of SB is Q-grams Blocking [25, 112]. Its transformation function converts
the blocking keys of SB into subsequences of g characters (g-grams) and defines a block for every
distinct g-gram. For example, for g = 3, the key france is transformed into the trigrams fra, ran, anc,
nce. This approach differs from Extended SA in that it does not restrict block sizes (lazy method).
Also, it is more resilient to noise than SB but results in more and larger blocks.

To improve it, Extended Q-Grams Blocking [11, 25, 112] uses combinations of g-grams in-
stead of individual g-grams. Its transformation function concatenates at least | g-grams, where
I = max(1, |k - t]), with k denoting the number of g-grams and ¢ € [0,1) standing for a user-
defined threshold. The larger ¢ is, the larger [ gets, yielding fewer keys from the k g-grams. For
T = 0.9 and q = 3, the key france is transformed into the following four signatures (k = 4 and [
= 3): [fra, ran, anc, nce), [fra, ran, anc], [fra, anc, nce], [ran, anc, nce]. In this way, g-gram-based
blocking keys become more distinctive, decreasing the number and cardinality of blocks.

A more advanced g-gram-based approach is MFIBlocks [75]. Its transformation function con-
catenates keys of Q-Grams Blocking into itemsets and uses a maximal frequent itemset algorithm
to define as new blocking keys those exceeding a predetermined support threshold.

Sort-Based Methods. Sorted Neighborhood (SN) [60] sorts all blocking keys in alphabetical
order and arranges the associated entities accordingly. Subsequently, a window of fixed size w
slides over the sorted list of entities and compares the entity at the last position with all other
entities placed within the same window. The underlying assumption is that the closer the blocking
keys of two entities are in the lexicographical order, the more likely they are to be matching.
Originally crafted for relational data, SN is extended to hierarchical/ XML data based on user-
defined keys in [132].

SN has three major advantages [25]: (1) it has low time complexity, O(|E| - log|E|); (2) it results
in linear ER complexity, O(w - |E|); and (3) it is robust to noise, supporting errors at the end of
blocking keys. However, it may place two entities in the same block even if their keys are dissim-
ilar (e.g., “alphabet” and “apple,” if no other key intervenes between them). Its performance also
depends heavily on the window size w, which is difficult to configure, especially in Deduplication,
where the matching entities form clusters of varying size [25, 40].

To ameliorate the effect of w, a common solution is the Multi-pass SN [61], which applies the
core algorithm multiple times, using a different transformation function in each iteration. In this
way, more matches can be identified, even if the window is set to low size. Another solution is the
Extended Sorted Neighborhood [25, 112], which slides a window of fixed size over the sorted list of
blocking keys rather than the list of entities; this means that each block merges w SB blocks.

More advanced strategies adapt the window size dynamically to optimize the balance between
effectiveness and efficiency. They are grouped into three categories, depending on the criterion
for moving the boundaries of the window [91]:

1) Key similarity strategy. The window size increases if the similarity of the blocking keys
exceeds a predetermined threshold, which indicates that more similar entities should be
expected [91].

2) Entity similarity strategy. The window size relies on the similarity of the entities within the
current window. Incrementally Adaptive SN [185] increases the window size if the distance
of the first and the last element in the window is smaller than a predetermined threshold.
The actual increase depends on the current window size and the selected threshold. Accu-
mulative Adaptive SN [185] creates windows with a single overlapping entity and exploits
transitivity to group multiple adjacent windows into the same block, as long as the last
entity of one window is a potential duplicate of the last entity in the next window. After

ACM Computing Surveys, Vol. 53, No. 2, Article 31. Publication date: March 2020.

RIGHTSE LI MN iy



Blocking and Filtering 31:11

expanding the window, both algorithms apply a retrenchment phase that decreases the
window size until all entities are potential duplicates.

3) Dynamic strategy. The core assumption is that the more duplicates are found within a
window, the more are expected to be found by increasing its size. Duplicate Count Strategy
(DCS) [41] defines a window w for every entity in SN’s sorted list and executes all its
comparisons to compute the ratio d/c, where d denotes the newly detected duplicates and
c the executed comparisons. The window size is then incremented by one position at a
time as long as d/c > ¢, where ¢ € (0, 1) is a threshold that expresses the average number
of duplicates per comparison. DCS++ [41] improves DCS by increasing the window size
with the next w — 1 entities, even if the new ratio becomes lower than ¢. Using transitive
closure, it skips some windows, saving part of the comparisons.

Hybrid Methods. Sorted Blocks [40] combines the benefits of SB and SN. First, it sorts all block-
ing keys and the corresponding entities in lexicographical order, like SN. Then, it partitions the
sorted entities into disjoint blocks, like SB, using a prefix of the blocking keys. Next, all pairwise
comparisons are executed within each block. To avoid missing any matches, an overlap parameter
o defines a window of fixed size that includes the o last entities in the current block together with
the first entity of the next block. The window slides by one position at a time until reaching the
o'" entity of the next block, executing all pairwise comparisons between entities from different
blocks.

Sorted Blocks is a lazy approach that does not restrict block sizes. Thus, it may result in large
blocks that dominate its processing time. To address this, two proactive variants set a limit on the
maximum block size. Sorted Blocks New Partition [40] creates a new block when the maximum size
is reached for a (prefix of) blocking key; the overlap between the blocks ensures that every entity
is compared with its predecessors and successors in the sorting order. Sorted Blocks Sliding Window
[40] avoids executing all comparisons within a block that is larger than the upper limit; instead, it
slides a window equal to the maximum block size over the entities of the current block.

Finally, Improved Suffix Arrays Blocking [33] employs the same blocking keys as SA but sorts
them in alphabetical order, like SN. Then, it compares the consecutive keys with a string similarity
measure. If the similarity of two suffixes exceeds a predetermined threshold, the corresponding
blocks are merged in an effort to detect duplicates even when there is noise at the end of SB
keys or their sole common key is too frequent. For example, Improved SA detects the high string
similarity of the keys “JohnSnith” and “JohnSmith,” placing the corresponding entities into the
same block.

3.22 Learning-Based Methods. We distinguish these methods into supervised and unsuper-
vised ones. Both rely on a labeled dataset that includes pairs of matching and nonmatch-
ing entities, called positive and negative instances, respectively. This dataset is used to learn
blocking predicates, i.e., combinations of an attribute name and a transformation function (e.g.,
{title, First3Characters}). Entities sharing the same output for a particular blocking predicate
are considered candidate matches (i.e., hash-based functionality). Disjunctions of conjunctions of
predicates, i.e., composite blocking schemes, are learned by optimizing an objective function.

Supervised Methods. ApproxRBSetCover [16] learns disjunctive blocking schemes by solving a
standard weighted set cover problem. The cover is iteratively constructed by adding in each turn
the blocking predicate that maximizes the ratio of the previously uncovered positive pairs over the
covered negative pairs. This is a “soft cover,” since some positive instances may remain uncovered.

ApproxDNF [16] alters ApproxRBSetCover so that it learns blocking schemes in Disjunctive
Normal Form (DNF). Instead of individual predicates, each turn greedily learns a conjunction of
up to k predicates that maximizes the ratio of positive and negative covered instances.
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A similar approach is Blocking Scheme Learner (BSL) [100]. Based on an adaptation of the Se-
quential Covering Algorithm, it learns blocking schemes that maximize RR, while maintaining PC
above a predetermined threshold. Its output is a disjunction of conjunctions of blocking predicates.

BSL is improved by Conjunction Learner [21], which minimizes the candidate matches not only
in the labeled but also in the unlabeled data, while maintaining high PC. The effect of the unlabeled
data is determined through a weight w € [0, 1]; w = 0 disregards unlabeled data completely, falling
back to BSL, while w = 1 indicates that they are as equally important as the labeled ones.

In another line of research, Blocking based on Genetic Programming (BGP) [48] employs a tree
representation of supervised blocking schemes, where every leaf node corresponds to a blocking
predicate. In every turn, a set of genetic programming operators, such as copy, mutation, and
crossover, are applied to the initial, random set of blocking schemes. Then, a fitness function infers
the performance of the new schemes from the harmonic mean of PC and RR, and the best ones are
returned as output. Yet, BGP involves numerous internal parameters that are hard to fine-tune.

Another tree-based approach is CBLOCK [146]. In this case, every edge is annotated with a
hash (i.e., transformation) function and every node n; comprises the set of entities that result
after applying all hash functions from the root to n;. CBLOCK is the only proactive learning-based
method, restricting the maximum size of its blocks. Every node that exceeds this limit is split into
smaller, disjoint blocks through a greedy algorithm that picks the best hash function based on the
resulting PC. To minimize the human effort, a drill down approach is proposed for bootstrapping.

Unsupervised Methods. FisherDisjunctive [72] uses a weak training set generated by the TF-
IDF similarity between pairs of entities. Pairs with very low (high) values are considered as nega-
tive (positive) instances. A Boolean feature vector is then associated with every labeled instance.
The discovery of DNF blocking schemes is finally cast as a Fisher feature selection problem.

Similarly, DNF Learner [54] applies a matching algorithm to a sample of entity pairs to automat-
ically create a labeled dataset. Then, the learning of blocking schemes is cast as a DNF learning
problem. To scale it to the exponential search space of possible schemes, their complexity is re-
stricted to manageable levels (e.g., they comprise at most k predicates).

3.3 Schema-Agnostic Block Building

Methods of this type make no assumptions about schema knowledge, disregarding completely
attribute names; they extract blocks from all attribute values. Thus, they inherently support noise
in both attribute names and values and are suitable for highly heterogeneous, loosely structured
entity profiles, such as those stemming from the Web of Data [116, 119, 120].

Nonlearning Methods. The family tree of this category appears in Figure 3(b). The cornerstone
approach is Token Blocking (TB) [116]. Assuming that duplicates share at least one common token,
its transformation function extracts all tokens from all attribute values of every entity. A block b,
is then defined for every distinct token t. Hence, two entities co-occur in block b, if they share
token t in their values, regardless of the associated attribute names.

To improve TB, Attribute Clustering Blocking [120] requires the common tokens of two entities
to appear in syntactically similar attributes. These are attribute names that correspond to similar
values but are not necessarily semantically matching (unlike Schema Matching). First, it clusters
attributes based on the similarities of their aggregate values. Each attribute is connected to its most
similar one and the transitive closure of the connected attributes forms disjoint clusters. A block
b+ is then defined for every token ¢t in the values of the attributes belonging to cluster k.

RDFKeyLearner [154] applies TB independently to the values of specific attributes, which are
selected through the following process: each attribute is associated with a discriminability score,
which amounts to the portion of distinct values over all values in the given dataset. If this is
lower than a predetermined threshold, the attribute is ignored due to limited diversity; i.e., too
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many entities have the same value(s). For each attribute with high discriminability, its coverage is
estimated, i.e., the portion of entities that contain it. The harmonic mean of discriminability and
coverage is then computed for all valid attributes and the one with the maximum score is selected
for defining blocking keys as long as its score exceeds another predetermined threshold. If not, the
selected attribute is combined with all other attributes and the process is repeated.

Prefix-Infix(-Suffix) Blocking [119] exploits the naming pattern in entity URIs. The prefix de-
scribes the domain of the URI, the infix is a local identifier, and the optional suffix contains details
about the format, or a named anchor [114]; e.g., in the URI https://en.wikipedia.org/wiki/
France#History, the prefix is https://en.wikipedia.org/wiki, the infix is France, and the
suffix is History. In this context, this method uses as keys all (URI) infixes along with all tokens
in the literal values.

TYPiMatch [92] improves TB by automatically detecting the entity types in the input data. It
creates a co-occurrence graph, where every node corresponds to a token in any attribute value
and every edge connects two tokens if both conditional probabilities of co-occurrence exceed a
predetermined threshold. The maximal cliques are extracted and merged if their overlap exceeds
another threshold. The resulting clusters correspond to the entity types, with every entity partic-
ipating in all types to which its tokens belong. TB is then applied independently to the profiles of
each type.

Finally, Semantic Graph Blocking [109] is based exclusively on the relations between entities, be it
foreign keys in a database or links in RDF data. It completely disregards attribute values, building
a collaborative graph, where every node corresponds to an entity and every edge connects two
associated entities. For instance, the collaborative graph for a bibliographic data collection can be
formed by mapping every author to a node and adding edges between coauthors. Then a new block
b; is formed for each node n;, containing all nodes connected with n; through a path, provided that
the path length or the block size does not exceed predetermined limits (proactive functionality).

Learning-Based Methods. Hetero [73] converts the input data into heterogeneous structured
datasets using property tables. Then, it maps every entity to a normalized TF vector and applies
an adapted Hungarian algorithm with linear scalability to produce positive and negative feature
vectors. Finally, it applies FisherDisjunctive [72] with bagging to achieve robust performance.

Similarly, Extended DNF BSL [74] combines an established instance-based schema matcher with
weighted set covering to learn DNF blocking schemes with at most k predicates.

3.4 Parallelization Approaches

To scale Blocking methods to massive entity collections without altering their functionality, the
MapReduce framework [35] is typically used, as it offers fault-tolerant, optimized execution for
applications distributed across a set of independent nodes.

Schema-Aware Methods. The hash-based, nonlearning methods are adapted to MapReduce in
a straightforward way. The map phase implements the transformation function(s), emitting (key,
entity_id) pairs for each entity. Every reducer acts as an assignment function, placing all entities
with blocking key t in block b;. Dedoop [77] provides such implementations for various methods.

For sort-based methods, the adaptation of SN to MapReduce in [79] can be used as a template.
The map function extracts the blocking key(s) from each input entity, while the ensuing partitioning
phase sorts all entities in alphabetical order of their keys. The reduce function slides a window of
fixed size within every reduce partition. Inevitably, entities close to the partition boundaries need
to be compared across different reduce tasks. Thus, the map function is extended to replicate those
entities, forwarding them to the respective reduce task and its successor.

DCS and DCS++ are adapted to the MapReduce framework in [99], using three jobs. The first
one sorts the originally unordered entities of the data partition assigned to each mapper according
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to the selected blocking keys. It also selects the boundary pairs of the sorted partitions. The second
job generates the Partition Allocation Matrix, which specifies the sorted partitions to be replicated,
while the third job performs DCS(++) locally, to the data assigned to every reducer.

Schema-Agnostic Methods. A single MapReduce job is required for parallelizing TB [29, 46].
For every input entity e;, the map function emits a (¢, e;) pair for every token ¢ in the values of e;.
Then, all entities sharing a particular token are directed to the same reducer to form a new block.

For Attribute Clustering Blocking, four MapReduce jobs are required [29, 46]. The first assembles
all values per attribute. The second computes the pairwise similarities between all attributes, even
if they are placed in different data partitions. The third connects every attribute to its most similar
one. The fourth associates every attribute name with a cluster id and adapts TB’s map function to
emit pairs of the form (k.t, i), where k is the cluster id of e;’s attribute name that contains token ¢.

Finally, the parallelization of Prefix-Infix(-Suffix) Blocking involves three MapReduce jobs
[29, 46]. The first parallelizes the algorithm that extracts the prefixes from a set of URIs [114].
The second extracts the URI suffixes. The third applies TB’s mapper to the literal values simulta-
neously with an infix mapper that emits a pair (j, e;) for every infix j that is extracted from e;’s
profile. The final reduce phase ensures that all entities having a common token or infix are placed
in the same block.

Load Balancing. For MapReduce, it is crucial to distribute evenly the overall workload among
the available nodes, avoiding potential bottlenecks. The following methods distribute the execu-
tion of comparisons in a block collection—not the cost of building the blocks.

BlockSplit [78] partitions large blocks into smaller subblocks and processes them in parallel.
Every entity is compared to all entities in its subblock as well as to all entities of its superblock,
even if their subblock is initially assigned to a different node. This yields an additional network
and I/O overhead and may still lead to unbalanced workload, due to subblocks of different size.

To overcome this, PairRange [78] splits evenly the comparisons in a set of blocks into a pre-
defined number of partitions. It involves a single MapReduce job with a mapper that associates
every entity e; in block by with the output key p.k.i, where p denotes the partition id. The reducer
assembles all entities that have the same p and block id, reproducing the comparisons of each
partition.

The space requirements of these two algorithms are improved in [186], which minimizes their
memory consumption by adapting them so that they work with sketches.

Finally, Dis-Dedup [30] is the only method that takes into account both the computational and
the communication cost (e.g., network transfer time, local disk I/O time). Dis-Dedup considers all
possible cases, from disjoint blocks produced by a single blocking technique to overlapping blocks
derived from multiple techniques. It also provides strong theoretical guarantees that the overall
maximum cost per reducer is within a small constant factor from the lower bounds.

3.5 Discussion and Experimental Results

The performance of the above techniques is examined both qualitatively and quantitatively in a se-
ries of individual of papers (e.g., [34, 110, 116, 120]) and experimental analyses (e.g., [25, 112, 128]).
Below, we summarize the main findings in order to facilitate the use of Block Building techniques.
Starting with Standard Blocking (SB), its performance depends heavily on the frequency dis-
tribution of attribute values and, thus, of blocking keys. The best case corresponds to a uniform
distribution, where ||B|| = [|E||/|B| [25]. Due to its lazy functionality, though, all other key distri-
butions yield a portion of large blocks with many superfluous comparisons, i.e., low PQ and RR.
Suffix Arrays Blocking (SA) improves SB’s PC by supporting errors at the beginning of blocking
keys. The higher [,,,;, is and the lower b, 4« is, the lower ||B|| and PC get. For the same settings,
Extended SA raises PC at the cost of higher ||B||, which inevitably lowers both PQ and RR. Improved
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SA is theoretically proven in [34] to result in a PC greater than or equal to that of SA, though at
the cost of a higher computational cost and more comparisons, which lower PQ and RR.

Q-grams Blocking yields higher PC than SB but decreases both PQ and RR. Extended Q-grams
Blocking raises PQ and RR at a limited, if any, cost in PC. MFIBlocks reduces significantly the
number of blocks and matching candidates (i.e., very high PQ and RR) [75], but it may come at the
cost of missed matches (insufficient PC) in case the resulting blocking keys are very restrictive for
matches with noisy descriptions [128].

For Sorted Neighborhood (SN), a small w leads to high PQ and RR but low PC and vice versa for a
large w. For Extended SN, variations in the window size have a large impact on efficiency (PQ and
RR), affecting the portion of unnecessary comparisons, but PC is more stable. Among the other SN
variants, DCS++ is theoretically proven to miss no matches with an appropriate value for ¢, while
being at least as efficient as SN. Sorted Blocks New Partition outperforms most SN-based algorithms
but includes more parameters than SN, involving a more complex configuration.

Most importantly, all these nonlearning schema-aware methods are quite parameter sensitive:
even small-parameter-value modifications may yield significantly different performance [25, 33,
110, 112]. Their most important parameter is the definition of the blocking keys, which requires
fine-tuning by an expert. Otherwise, their PC remains insufficient, placing most duplicates in no
common block [25, 112]. This applies even to methods that employ redundancy for higher recall.

This shortcoming is ameliorated by schema-agnostic methods, which consistently achieve much
higher PC than their schema-aware counterparts [112]. They also simplify the configuration of
Block Building, reducing its sensitivity through the automatic definition of blocking keys [112,
128]. Rather than human intervention or expert knowledge, their robustness emanates from the
high levels of redundancy they employ, placing every entity in a multitude of blocks. On the down-
side, they yield a considerably higher number of comparisons, resulting in very low PQ and RR.
Both, however, can be significantly improved by Block Processing [122, 128].

Regarding the relative performance of schema-agnostic methods, TB yields very high PC, at the
cost of very low PQ and RR. It constitutes a very efficient approach, iterating only once over the
input entities, and it is the sole parameter-free Block Building technique in the literature as well
as the most generic one, applying to any entity collection with textual values. Its performance is
improved by Attribute Clustering and Prefix-Infix(-Suffix) Blocking for specific types of datasets:
highly heterogeneous ones, with a large variety of attribute names [120, 128], and semistructured
(RDF) ones [116], respectively. In these cases, both methods yield a much larger number of smaller
blocks, significantly raising PQ at a minor cost in PC. Both methods, though, involve a much
higher computational cost than TB. The same applies to TYPiMatch, where the detection of entity
types is a rather time-consuming process. Yet, its PC is consistently insufficient, because it falsely
divides duplicate entities into different entity types, due to the sensitivity to its parameter config-
uration [128].

Finally, the learning-based Block Building techniques typically suffer from the scarcity of la-
belled datasets; even if a training set is available for a particular dataset, it cannot be directly used
for learning supervised blocking schemes for another dataset. Instead, a complex transfer learning
procedure is typically required [103, 164]. Regarding their efficiency, BSL is typically faster than
ApproxRBSetCover and ApproxDNF, as it exclusively considers positive instances, thus requiring a
smaller training set. Conjunction Learner requires every supervised blocking scheme to be applied
to the large set of unlabeled data, which is impractical. To accelerate it, a random sample of the
unlabeled data is used in practice. CBLOCK is also the only learning-based method that is suitable
for the MapReduce framework: every entity runs through the learned tree and is directed to the
machine corresponding to its leaf node. In terms of effectiveness, there is no clear winner. BSL and
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FisherDisjunctive achieve the top performance in [110]. The latter addresses the scarcity of labeled
data but is not scalable to large datasets.

4 BLOCK PROCESSING

Block Processing receives as input an existing block collection 8 and produces as output a
new block collection B’ that improves the balance between effectiveness and efficiency, i.e.,
PQ(B) < PQ(B’), RR(B’, B) > 0, while PC(B) ~ PC(B’). We distinguish Block Processing meth-
ods into Block Cleaning ones, which decide whether entire blocks should be retained or modified,
and Comparison Cleaning ones, which decide whether individual comparisons are unnecessary.

4.1 Block Cleaning

We classify Block Cleaning methods into two categories: (1) static, which are independent of
matching results, and (2) dynamic, which are interwoven with the matching process.

Static Methods. A core idea is the assumption that the larger a block is, the less likely it is to
contain unique duplicates, i.e., matches that share no other block. Such large blocks are typically
produced by lazy schema-agnostic techniques and correspond to stop words. In this context, Block
Purging discards blocks that exceed an upper limit on block cardinality [120] or size [119]. Block
Filtering [127] applies this assumption to individual entities, removing every entity from the largest
blocks that contain it. In other words, it retains every entity in r% of its smallest blocks.

In a different line of research, Size-based Block Clustering [51] applies hierarchical clustering to
transform a set of blocks into a new one where all block sizes lie within a specified size range.
It merges recursively small blocks that correspond to similar blocking keys, while splitting large
blocks into smaller ones. A penalty function controls the tradeoff between block quality and block
size. A similar approach is the MapReduce-based dynamic blocking algorithm in [98], which splits
large blocks into subblocks. MaxIntersectionMerge [102] ensures that all blocks involve at least
|| min entities. To this end, it merges each block smaller than |b|,,;,, entities with the block that has
the most entities in common and is larger than |b|,,;,. Similarly, Rollup Canopies [146] receives as
input a training set with positive examples, a limit on the maximum block size, and a set of disjoint
blocks; using a learning-based greedy algorithm, it merges pairs of small blocks to increase PC.

Finally, [139] generalizes Meta-blocking (see Section 4.2) to Multi-source ER: it constructs a
graph, where the nodes correspond to blocks and the edges connect blocks whose blocking keys
are more similar than a predetermined threshold. The edges are weighted using various functions
and all pairs of blocks are then processed in descending edge weights in an effort to maximize the
redundant and superfluous comparisons that are skipped.

Dynamic Methods. Iterative Blocking [179] merges any new pair of detected duplicates, e; and
ej, into a new entity, e; ;, and replaces both e; and e; with e; ; in all blocks that contain them, even
if they have already been processed. The new entity e; ; is compared with all co-occurring entities,
as the new content in e; ; might identify previously missed matches. The ER process terminates
when all blocks have been processed without finding new duplicates.

Iterative Blocking applies exclusively to Deduplication. In Record Linkage, there is no need
for merging two matching entities, due to the 1-1 restriction. Still, the detected duplicates should
be propagated in order to save the superfluous comparisons with their co-occurring entities in
the subsequently processed blocks. The earlier the matches are detected, the more superfluous
comparisons are saved. To this end, Block Scheduling optimizes the processing order of blocks in a
noniterative way, sorting them in decreasing order of the probability p;(d) that a block b; contains
a pair of duplicates. This is set inversely proportional to block cardinality, i.e., p; (d) = 1/||b;|| [152],
or to the minimum size of the inner block, i.e., p;(d) = 1/min|b; 1, |b; 2|, where |b; x| € Ef [116].
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Spectral Neighborhood Comparison Transitive
(SPAN) [149] Propagation [117] LSH [158]

Comparison
Pruning [118]

We\ghtid Edge Comparison
Pruning (WEP) [121] Scheduling [120]

Cardinality Edge Weighted Node Low Entity Co-occurrence
Pruning (CEP) [121,191] Pruning (WNP) [121,127)  Pruning (LECP) [102]
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Node Pruning (ReCNP) [127]

Cooslicer [102]

Low Block Co-occurrence
Excluder (LBCE) [102]

Fig. 4. The genealogy tree of nonlearning Comparison Cleaning methods. Methods in black conform to the
Meta-blocking framework in Figure 5, methods in blue are Meta-blocking techniques following a (partially)
different approach, and methods in red are not part of the Meta-blocking framework.
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Fig. 5. (a) A block collection B with e; = e3 and ez = e4, (b) the corresponding Entity Index, (c) the cor-
responding blocking graph Gp, (d) the weighted Gg, (e) the pruned Gg, and (f) the new block collection
B’

The former definition also applies to Iterative Blocking, which does not specify the exact block
processing order, even though this affects significantly the resulting performance [128].

Block Pruning [116] extends Block Scheduling by exploiting the decreasing density of detected
matches in its processing order (i.e., the later a block is processed, the less unique duplicates it con-
tains). After processing the latest block, it estimates the average number of executed comparisons
per new duplicate. If this ratio falls below a specific threshold, it terminates the ER process.

4.2 Comparison Cleaning

Nonlearning Methods. Figure 4 illustrates the family tree of the methods belonging to this cat-
egory. The cornerstone method is Comparison Propagation [117], which propagates all executed
comparisons to the subsequently processed blocks. In this manner, it eliminates all redundant com-
parisons in a given block collection without losing any pair of duplicates, thus raising PQ and RR
at no cost in PC. It builds an inverted index that points from entity ids to block ids, called Entity
Index, and with its help, it compares two entities e; and e; in block by only if k is their least common
block id. For example, consider the blocks in Figure 5(a) and their Entity Index in Figure 5(b). The
least common block id of e; and es is 2. Thus, they are compared in by, but neither in b4 nor in bs.

Given a redundancy-positive block collection, the Entity Index allows for identifying the blocks
shared by a pair of co-occurring entities. This allows for weighting all pairwise comparisons in
proportion to the matching likelihood of the corresponding entities, based on the principle that
the more blocks two entities share, the more likely they are to be matching. This gives rises to
a family of Meta-blocking techniques [121, 127, 150] that go beyond Comparison Propagation by
discarding not only all redundant comparisons, but also the vast majority of the superfluous ones.

The first relevant method is Comparison Pruning [118], which computes the Jaccard coefficient
of the block lists of two entities. If it does not exceed a conservative threshold that depends on the
average number of blocks per entity, the comparison is pruned, as it designates an unlikely match.
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Meta-blocking was formalized into a more principled approach in [121]. The given redundancy-
positive block collection B is converted into a blocking graph Gp, where the nodes correspond to
entities and the edges connect every pair of co-occurring entities (see Figure 5(c)). Given that no
parallel edges are allowed, all redundant comparisons are discarded by definition. The edges are
then weighted proportionately to the likelihood that the adjacent entities are matching. In Figure
5(d), the edge weights indicate the number of common blocks. Edges with low weights are pruned,
because they correspond to superfluous comparisons. In Figure 5(e), all edges with a weight lower
than the average one are discarded. The resulting pruned blocking graph Gp' is transformed into
a restructured block collection 8’ by forming one block for every retained edge (see Figure 5(f)).
As a result, B’ exhibits a much higher efficiency, PQ(B’) > PQ(B) and RR(B’, B) > 0, for similar
effectiveness, PC(B")~PC(B); in our example, the 12 comparisons in the input blocks of Figure 5(a)
are reduced to two matching comparisons in the output blocks in Figure 5(f).

Four main pruning algorithms exist: (1) Weighted Edge Pruning (WEP) removes all edges that do
not exceed a specific threshold, e.g., the average edge weight [121]; (2) Cardinality Edge Pruning
(CEP) retains the globally top-K top weighted edges, where K is static [121] or dynamic [191];
(3) Weighted Node Pruning (WNP) retains in each node neighborhood the entities that exceed a local
threshold, which may be the average edge weight of each neighborhood [121], or the average of
the maximum weights in the two adjacent node neighborhoods, as in BLAST [150]; (4) Cardinality
Node Pruning (CNP) retains the k weighted edges in each node neighborhood [121]. Reciprocal
WNP and CNP [127] apply an aggressive pruning that retains edges satisfying the pruning criteria
in both adjacent node neighborhoods. WNP and WEP are combined through the weighted sum of
their thresholds in [9].

Another family of pruning algorithms is presented in [102], focusing on the edge weights be-
tween the entities in each block. Low Entity Co-occurrence Pruning (LECP) cleans every block from
a specific portion of the entities with the lowest average edge weights. Large Block Size Pruning
(LBSP) applies LECP only to the blocks whose size exceeds the average block size in the input
block collection. Low Block Co-occurrence Pruning (LBCP) removes every entity from the blocks,
where it is connected with the lowest weights, on average, with the rest of the entities. CooSlicer
enforces a maximum block size constraint, |b|,;4x, to all input blocks. In blocks larger than |b|,;;4x,
all entities are sorted in decreasing order of average edge weight, and the |b|,,4x top-ranked en-
tities are iteratively placed into a new block. Low Block Co-occurrence Excluder (LBCE) discards a
specific portion of the blocks with the lowest average edge weight among their entities.

All these pruning algorithms can be coupled with any edge-weighting scheme [121]. ARCS sums
the inverse cardinalities of the common blocks, giving higher weights to entity pairs that co-occur
in smaller blocks. CBS counts the number of blocks shared by two entities, as in Figure 5(c), with
ECBS extending it to discount the contribution from entities placed in many blocks. JS corresponds
to the Jaccard coeflicient of two block lists, while EJS extends it to discount the contribution from
entities appearing in many nonredundant comparisons. Finally, Pearson’s y? test assesses whether
two adjacent entities appear independently in blocks and can be combined with the aggregate
attribute entropy associated with the tokens forming their common blocks [150].

Note that Meta-blocking covers established methods that are considered as Block Building meth-
ods in the literature: given that Block Building is equivalent to indexing [25], any method based on
indexes is in fact a Meta-blocking technique. For example, Transitive LSH [158] converts the blocks
extracted from LSH into an unweighted blocking graph and applies a community detection algo-
rithm (e.g., [31]) to partition the graph nodes into disjoint clusters, which will become the new
blocks. The process finishes when the size of the largest cluster is lower than a predetermined
threshold. This approach can be applied on top of any Block Building method, not just LSH.
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The generalization principle also applies to Canopy Clustering [97], which places all entities in a
pool, and in every iteration, it removes a random entity e; from the pool to create a new block. Us-
ing a cheap similarity measure, all entities still in the pool are compared with e;. Those exceeding a
threshold t,, are removed from the pool and placed into the new block. Entities exceeding another
threshold t;, (<t.y) are also placed in the new block, without being removed from the pool. As the
cheap similarity measure, we can use any of the above weighting schemes on top of any Block
Building method, thus turning Canopy Clustering into a pruning algorithm for Meta-blocking.

The generalization applies to Extended Canopy Clustering [25, 112], too, which replaces the sen-
sitive weight thresholds with cardinality ones: for each randomly selected entity, the n; nearest
entities are placed in its block, while the ny(<n;) nearest entities are removed from the pool.

In another line of research, SPAN [149] converts a block collection into a matrix M, where the
rows correspond to entities and the columns to the tf-idf of blocking keys (tokens or g-grams).
Then, the entity-entity matrix is defined as A = MM . A spectral clustering algorithm converts A
into a binary tree, where the root node contains all entities and every leaf node is a disjoint subset
of entities. The Newman-Girvan modularity is used as the stopping criterion for the bipartition of
the tree. Blocks are then derived from a search procedure that carries out pairwise comparisons
based on the blocking keys, inside the leaf nodes, and across the neighboring ones.

Finally, the sole dynamic nonlearning method is Comparison Scheduling [120]. Its goal is to
detect most matches upfront so as to maximize the superfluous comparisons that are skipped, due
to the 1-1 restriction. It orders all comparisons in decreasing matching likelihood (edge weight)
and executes a comparison only if none of the involved entities has already been matched.

Learning-Based Approaches. Supervised Meta-blocking [125] treats edge pruning as a binary
classification problem, where every edge is labeled “likely match” or “unlikely match.” Every
edge is represented by a feature vector that comprises five features: ARCS, ECBS, JS, and the Node
Degrees of the adjacent entities. Undersampling is employed to tackle the class imbalance problem:
the training set makes up just 5% of the minority class (“1ikely match”) and an equal number of
majority class instances. Several established classification algorithms are used for WEP, CEP, and
CNP, with all of them exhibiting robust performance with respect to their internal configuration.

BLOSS [15] restricts the labeling cost of Supervised Meta-blocking by carefully selecting a train-
ing set that is up to 40 times smaller, but retains the original performance. Using ECBS weights,
it partitions the unlabeled instances into similarity levels and applies rule-based active sampling
inside every level. Then, it cleans the sample from nonmatching outliers with high JS weights.

Parallelization Approaches. Meta-blocking is adapted to the MapReduce framework in three
ways [45]: (1) The edge-based strategy stores the blocking graph on the disk, bearing a significant
I/O cost. (2) The comparison-based strategy builds the blocking graph implicitly. A preprocessing
job enriches every block with the list of block ids associated with every entity. The Map phase
of the second job computes the edge weights and discards all redundant comparisons, while the
ensuing Reduce phase prunes superfluous comparisons. This strategy maximizes the efficiency of
WEP and CEP and is adapted to Apache Spark in [9]. (3) The entity-based strategy aggregates for
every entity the bag of all entities that co-occur with it in at least one block. Then, it estimates
the edge weight that corresponds to each neighbor based on its frequency in the co-occurrence
bag. This approach offers the best implementation for WNP and CNP and their variations (e.g.,
BLAST). It is adapted to Apache Spark in [151], leveraging the broadcast join for higher efficiency.

To avoid the underutilization of the available resources, these strategies employ MaxBlock [45]
for load balancing. Based on the highly skewed distribution of block sizes in redundancy-positive
block collections, it splits the input blocks into partitions of equivalent computational cost, which
is equal to the total number of comparisons in the largest input block.
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Fig. 6. The relative performance of the main Comparison Cleaning methods.

The multicore parallelization of Meta-blocking is examined in [113]. The input is transformed
into an array of chunks, with an index indicating the next chunk to be processed. Following the
established fork-join model, every thread retrieves the current value of the index and is assigned to
process the corresponding chunk. Depending on the definition of chunks, three alternative strate-
gies are proposed: (1) Naive Parallelization treats every entity as a separate chunk, ordering all
entities in decreasing computational cost (i.e., the aggregate number of comparisons in the associ-
ated blocks); (2) Partition Parallelization uses MaxBlock to group the input entities into an arbitrary
number of disjoint clusters with identical computational cost; and (3) Segment Parallelization sets
the number of clusters equal to the number of available cores.

4.3 Discussion and Experimental Results

The core characteristic of Block Processing methods is their schema-agnostic functionality, which
typically relies on block features, such as size, cardinality, and overlap. This is no surprise, as they
are primarily crafted for boosting the performance of schema-agnostic Block Building methods. In
fact, extensive experiments demonstrate that Block Processing is indispensable for these methods,
raising precision by whole orders of magnitude, at a minor cost in recall [120, 126, 128].

Regarding their relative performance, there is no clear winner among the Block Cleaning meth-
ods. For example, both Block Filtering and Block Purging boost PQ and RR by orders of magnitude,
while exhibiting a low computational cost and a negligible impact on PC [120, 127]. However, the
top performer among them depends not only on their parameter configuration but also on the
data at hand [128]. Most importantly, though, Block Cleaning techniques are usually complemen-
tary in the sense that multiple ones can be applied consecutively in a single blocking workflow,
as depicted in Figure 1(b). For example, Block Filtering is typically applied after Block Purging
by lowering r to 50% instead of 80%, which is the best configuration when applied independently
[126-128].

In contrast, Comparison Cleaning methods are incompatible with each other in the sense that at
most one of them can be part of a blocking workflow. The reason is that applying any Comparison
Cleaning technique to a redundancy-positive block collection deprives it from its co-occurrence
patterns and renders all other techniques inapplicable. These techniques also involve a much
higher computational cost than Block Cleaning methods, due to their finer level of granularity.
Their relative performance is summarized in Figure 6, based on empirical evidence from exper-
imental studies [128] and individual publications [15, 125-127, 150, 151]. Note that we exclude
methods not compared to other Comparison Cleaning techniques (e.g., the techniques presented
in [102]).

In more detail, Figure 6 maps the performance of the main Comparison Cleaning meth-
ods to a two-dimensional space defined by APC = PC(8B’) — PC(8) on the vertical axis and
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APQ = PQ(B’) — PQ(8B) on the horizontal axis, where B and B’ stand for the input and the output
block collections, respectively. Given that Comparison Cleaning techniques trade lower recall (PC)
for higher precision (PQ), APC and APQ take exclusively negative and positive values, respectively.
Therefore, the higher a method is placed, the better recall it achieves, whereas the further to the
right it lies, the better is its precision. This means that the ideal overall performance corresponds
to the upper right corner.

We observe that APC is delimited by two extremes: Comparison Cleaning on the top left corner
and CEP on the bottom right corner. The former has no impact on recall, as it increases precision
only by removing redundant comparisons. All other Comparison Cleaning techniques discard su-
perfluous comparisons too, thus achieving larger APQ at the cost of a negative APC. On the other
extreme, CEP prunes a large portion of superfluous comparisons, yielding very high precision,
but the lowest recall. WEP replaces CEP’s cardinality constraint with a weight threshold, drop-
ping precision to a large extent for a significantly higher recall. Still, WEP’s performance is a
major improvement over the input block collection, while being rather robust across numerous
datasets. WNP moves further toward this direction, shrinking the decrease in recall and the in-
crease in precision. This is further improved by Reciprocal WNP, which significantly raises WNP’s
precision for slightly lower recall. Thus, it dominates WEP, albeit being sensitive to the charac-
teristics of the data at hand. Compared to CEP, CNP confines its pruning inside individual node
neighborhoods. In this way, it achieves a much higher recall for a limited decrease in precision.
This is further improved by Reciprocal CNP, which reduces CNP’s recall slightly for much higher
precision and, thus, it often dominates CEP. WNP, CNP, and their variants are improved by Super-
vised Meta-blocking and BLAST, which achieve comparable recall for significantly higher precision.
BLAST takes a lead in precision, partially because it employs the most effective weighting scheme,
namely Pearson’s y? test. Another advantage is that BLAST requires no labeling effort, due to its
unsupervised functionality. BLOSS, however, achieves almost perfect recall (APC = 0) for the high-
est precision among all Comparison Cleaning techniques, while requiring merely ~50 labeled in-
stances. Note that exceptions to these general patterns of performance are possible for a particular
dataset.

5 FILTERING

Given specific similarity predicates, composing a similarity measure and a corresponding thresh-
old, Filtering techniques receive as input an entity or a block collection and produce as output pairs
of entities satisfying these predicates. Next, we present the main filtering methods in the literature,
organized in four groups: basic filters proposed by earlier works; prefix filtering and its extensions;
partition-based filtering; and methods using tree indexes. An overview of the discussed methods is
presented in Table 2, characterized by the type of operation they perform (e.g., search or join), the
similarity measure they assume (e.g., token or character based), the type of filters they use (e.g.,
prefix or partition based), and the index structure they employ (e.g., inverted index or tree).

Basic Filtering. GramCount [57] focuses on incorporating string similarity joins inside a DBMS
based on g-grams and edit distance. It is the first work to propose the following techniques:

Length filtering states that if two strings r and s are within edit distance 0, their lengths cannot
differ by more than 6. In the case of set similarity joins, the length filter has been adapted to deal
with set sizes [7]; e.g., for Jaccard similarity threshold 0, the condition becomes 0 - |s| < |r| < |s]/6.
Length filtering is a simple but effective criterion that is employed by many other works alongside
more advanced filters. A position-enhanced length filter offers a tighter upper bound [94].

Count filtering states that if two strings r and s are within edit distance 0, they must have at
least max(|rl|,|s|) —1— (6 — 1) - ¢ common g-grams. This filter has also been adapted to sets, in
particular in MergeOpt [144], which proposed various optimizations for applying count filtering
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Table 2. Overview of String and Set Similarity Join Methods

Method Operation Similarity Filters Index
GramCount [57] string join Edit Distance length, count, position g-grams table
MergeOpt [144] set join Overlap count inverted index
FastSS [18] string join Edit Distance deletion neighborhood dictionary

SSJoin [22] set join Overlap prefix DBMS

All-Pairs [12] vector join Cosine prefix inverted index

DivideSkip [83]
Ed-Join [180]
QChunk [133]
VChunkJoin [176]
PPJoin [182, 183]
PPJoin+ [182, 183]
MP]Join [140]
GroupJoin [19]
AdaptJoin [169]
SKJ [177]
TopkJoin [181]
JOSIE [195]

string search
string join
string join
string join
set join

set join

set join

set join

set join

set join
top-k set join
top-k set search

Edit Distance, Overlap
Edit Distance
Edit Distance
Edit Distance
Overlap
Overlap
Overlap
Overlap
Overlap
Overlap
Overlap
Overlap

length, position, prefix
prefix+mismatching g-grams
prefix+g-chunks
prefix+chunks

prefix, positional

prefix, positional, suffix
min-prefix
prefix+grouping

adaptive prefix
prefix-based+set relations
prefix-based

prefix, position

inverted index
inverted index
inverted index
inverted index
inverted index
inverted index
inverted index
inverted index
inverted index
inverted index
inverted index
inverted index

HSTree [188]

string search

Edit Distance

partition based

PartEnum [7] set join Hamming, Jaccard partition based clustered index
PassJoin [84] string join Edit Distance partition based inverted index
PTJ [37] set join Overlap partition based inverted index
B¢ —Tree [194] string search/join Edit Distance string orders B*-tree

PBI [89] string search Edit Distance reference strings B*-tree
MultiTree [192] set search Jaccard tree traversal B*-tree
Trie-Join [168] string join Edit Distance subtrie pruning trie

segment tree

Trans [193] top-k set search Jaccard transformation distance R-tree
(a) Exact, centralized, single-predicate algorithms

FuzzyJoin [2] set/string join Hamming, ED, Jaccard ball-hashing, splitting, anchor points | lookup tables

VernicaJoin [166] || set join Overlap prefix, positional, suffix inverted index
MGJoin [143] set join Overlap multiple prefix inverted index
MRGroupJoin [37] || set join Overlap partition based inverted index
FS-Join [142] set join Overlap segment based inverted index
Dima [160, 161] search, join, top-k Jaccard, ED segment based global & local

(b) Parallel & distributed algorithms

ATLAS [190]
BayesLSH [147]
CPSJoin [28]

vector join
set join

set join

Jaccard, Cosine
Jaccard, Cosine

Jaccard

random permutations
All-Pairs/LSH
LSH based

inverted index
All-Pairs/LSH
sketches

(c) Approximate algorithms

LS-Join [173]
pkwise [174]
pkduck [162]

local string join
local set join

abbreviation matching

Edit Distance
Overlap

Custom

length, count
k-wise signatures

extension of prefix filter

inverted index
inverted index

trie

Fast-Join [170]
SilkMoth [36]
MF-Join [171]

fuzzy set join
fuzzy set join

fuzzy set join

Bipart. graph matching
Bipart. graph matching
Bipart. graph matching

token-sensitive signatures
weighted token signatures

partition based

inverted index
inverted index

inverted index

MultiAttr [85]
Smurf [159]
AU-Join [184]

set search/join
string matching

string join

Overlap
Jaccard, Edit Distance

Syntactic, Synonym, Taxonomy

tree traversal
random forest

pebbles

prefix tree
inverted indexes

inverted indexes

(d) Algorithms for complex matching
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with both character-based and token-based similarity measures, and in DivideSkip [83], which
proposed efficient techniques for merging the inverted lists of signatures.

Position filtering also considers the positions of g-grams in the strings. It states that if two strings
r and s are within edit distance 6, a positional g-gram in one cannot correspond to a positional
g-gram in the other that differs from it by more than 6 positions.

In another line of research, FastSS [18] introduces the concept of deletion neighborhood, a filter-
ing criterion specifically tailored to edit distance. For a string s, its deletion neighborhood contains
substrings of s derived by deleting a certain number of characters. These are then used as signa-
tures for filtering. However, this method is practical only for very short strings.

Prefix-Based Filtering. Prefix filtering has been proposed by SSJoin [22], which focuses on
similarity joins inside a DBMS, and A11-Pairs [12], which is a main memory algorithm. The prefix
filter applies to sets and can also be used for strings represented as sets of g-grams. The elements
of each set are first sorted in a global order, typically in increasing order of frequency. Then, the
m-prefix of each set is formed by selecting its 7 first elements in that order. Prefix filter states that
for two sets to be similar, their prefixes must contain at least one common element. The prefix size
7 of a set r is determined based on the similarity measure and threshold being used; e.g., for edit
distance threshold 0, 7 = q -  + 1, while for Jaccard similarity threshold 8, = = [(1 - 0) - |r|] + 1.
As described next, numerous subsequent algorithms have adopted prefix filtering and proposed
various optimizations and extensions over it, both for edit distance and set-based similarity joins.

For edit distance, DivideSkip [83] uses prefix filtering in combination with length and position
filtering, taking special care to efficiently merge the inverted lists of signatures. Ed-Join [180]
proposes two optimizations based on analyzing the locations and contents of mismatching g-grams
to further reduce the prefix length by removing unnecessary elements. QChunk [133] introduces
the concept of g-chunks, which are substrings of length ¢ that start at 1 + i - g positions in the
string, for i € [0, (|r| — 1)/q]. Given two strings r and s, QChunk extracts g-grams from the one
and g-chunks from the other; if r and s are within edit distance 6, the size of the intersection
between the g-grams of r and the g-chunks of s should be at least [[s|/q] — 0. VChunkJoin [176]
uses nonoverlapping substrings called chunks, ensuring that each edit operation destroys at most
two chunks. This yields a tight lower bound on the number of common chunks that two strings
must share if they match.

For set similarity joins, PPJoin [182, 183] extends prefix filtering with positional filtering. This
takes also into consideration the positions where the common tokens in the prefix occur, thus
deriving a tighter upper bound for the overlap between the two sets. In addition, PPJoin+ [182,
183] further uses suffix filtering. Following a divide-and-conquer strategy, this partitions the suffix
of the one set into two subsets of similar sizes. The token separating the two partitions is called
pivot and is used to split the suffix of the other set. This allows one to calculate the maximum
number of tokens in each pair of corresponding partitions between the two sets that can match.

MPJoin [140] adds a further optimization over PPJoin that allows for dynamically pruning the
length of the inverted lists. This reduces the computational cost of candidate generation, rather
than the number of candidates. GroupJoin [19] extended PPJoin with group filtering, whose can-
didate generation treats all sets with identical prefixes as a single set. Multiple candidates may
thus be pruned in batches. AdaptJoin [169] proposed adaptive prefix filtering, which generalizes
prefix filtering by adaptively selecting an appropriate prefix length for each set. It supports longer
prefixes dynamically, extending their length by n — 1, and then prunes a pair of sets if they contain
less than n common tokens in their extended prefixes. Prefix filtering is a special case where n = 1.

A different perspective for speeding up set similarity joins is proposed by SKJ [177]. The idea is
based on the following observation: existing approaches examine each set individually when com-
puting the join; however, it is possible to improve efficiency through computational cost sharing
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between related sets. To this end, the SKJ algorithm introduces index-level skipping, which groups
related sets in the index into blocks, and answer-level skipping, which incrementally generates the
answer of one set from an already computed answer of another related set.

Finally, there are Filtering techniques for computing top-k results progressively, instead of re-
quiring the user to select a similarity threshold. TopkJoin [181] retrieves the top-k pairs of sets
ranked by their similarity score, based on prefix filtering and on the monotonicity of maximum
possible scores of unseen pairs. JOSIE [195] presents a method for top-k set similarity search. It
exploits prefix and position filtering, but instead of dealing with sets of relatively small size (e.g.,
~100 tokens), it is crafted for finding joinable tables in data lakes, where sets represent the distinct
values of a table column, comprising millions of tokens. This introduces new challenges, which are
tackled by proposing an algorithm that minimizes the cost of set reads and inverted index probes.

Partition-Based Filtering. The algorithms in this category partition each string or set into
multiple disjoint segments in such a way that matching pairs have at least one common segment.
PartEnum [7] generates a signature scheme based on the principles of partitioning and enumeration.
The former states that if two vectors with Hamming distance not higher than k are partitioned into
k + 1 equi-sized partitions, then they must have at least one common partition. The latter states
that if these vectors are partitioned instead into n > k equi-sized partitions, then they must have
in common at least n — k partitions. PassJoin [84] partitions a string into a set of segments and
creates inverted indices for the segments. Then, for each string, it selects some of its substrings and
uses them to retrieve candidates from the index. A method is proposed to minimize the number
of segments required to find the candidate pairs. PTJ [37] proposes an approach to increase the
pruning power of partition-based filtering by using a mixture of the subsets and their one-deletion
neighborhoods, which are subsets derived from a set after eliminating one element.

Essentially, these methods are based on the pigeonhole principle, which states that if n items are
contained in m boxes, at least one box has no more than |n/m] items. This is extended by the
pigeonring principle [134], which organizes the boxes in a ring and constrains the number of items
in multiple boxes rather than a single one, thus offering tighter bounds. Applying it to various
similarity search problems shows that pigeonring always produces fewer or an equal number of
candidates than the pigeonhole principle does and that pigeonring-based algorithms can be im-
plemented on top of existing pigeonhole-based ones with minor modifications [134].

Tree-Based Filtering. Most methods presented so far build inverted indexes on the signatures
extracted from the strings or sets. Next, we present algorithms employing tree-based indexes.

Most approaches are based on the B*-tree. B¢?-Tree [194] proposes a B*-tree-based index for
range and top-k similarity queries as well as similarity joins, using edit distance. It is based on
a mapping from the string space to the integer space to support efficient searching and pruning.
PBI [89] uses a B*-tree index and exploits the fact that edit distance is a metric. The string collection
is partitioned according to a set of selected reference strings. Then, the strings in each partition are
indexed based on their distances to their corresponding reference strings. The proposed approach
supports both range and k-NN queries and can be integrated inside a DBMS. In MultiTree [192],
each element in a set is represented as a vector and is mapped to an integer according to a defined
global ordering, which is then used to insert the element in the B*-tree index. Searching for similar
elements is then done via a range query on the index.

In another line of research, Trie-Join [168] proposes a trie-based technique for string similarity
joins with edit distance. Each trie node represents a character in the string. Thus, strings with a
common prefix share the same ancestors. A trie node is called an active node of a string s if their
edit distance is not larger than the given threshold. This leads to a technique called subtrie pruning:
given a trie T and a string s, if node n is not an active node for every prefix of s, then n’s descendants
cannot be similar to s. HSTree [188] recursively partitions strings into disjoint segments and builds
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a hierarchical segment tree index. This is then used to support both threshold-based and top-k
string similarity search based on edit distance. Finally, a transformation-based framework for top-
k set similarity search is presented in [193]. It transforms sets of various lengths into fixed-length
vectors in such a way that similar sets are mapped closer to each other. An R-tree is then used to
index these records and prune the space during search.

5.1 Parallel and Distributed Algorithms

MapReduce-based approaches have been proposed to tackle scalability issues when dealing with
very large collections of sets or strings. A theoretical analysis of different methods for performing
similarity joins on MapReduce is presented in [2]. It considers algorithms that operate in a single
MapReduce job, avoiding the overhead associated with initiating multiple ones. It shows that dif-
ferent algorithms provide different tradeoffs with respect to map, reduce, and communication cost.

VernicaJoin [166] is based on prefix filtering. It computes prefix tokens and builds an inverted
index on them. Then, it generates candidate pairs from the inverted lists, using additionally the
length, positional, and suffix filters to prune candidates. A deduplication step is finally employed
to remove duplicate result pairs generated from different reducers. MGJoin [143] follows a similar
approach to VernicaJoin but introduces multiple prefix orders and a load balancing technique
that partitions sets based on their length. MRGroupJoin [37] is a MapReduce extension of PTJ [37].
It applies a partition-based technique, where records are grouped by length and are partitioned in
subrecords, such that matching records share at least one subrecord. The process is performed in a
single MapReduce job. FS-Join [142] sorts the tokens in each set in increasing order of frequency,
and then splits each set into disjoint subsets using appropriate pivot tokens. These subsets are then
grouped together so that subsets from different groups are nonoverlapping.

Finally, Dima [160, 161] is a distributed in-memory system built on top of Spark that supports
threshold and top-k similarity search and join with both token-based and character-based similar-
ities. It relies on signature-based global and local indexes for efficiency. The proposed signatures
are adaptively selectable based on the workload, which allows one to balance the workload among
partitions. Dima extends the Catalyst optimizer of Spark SQL to introduce cost-based optimizations.

5.2 Approximate Algorithms

Approximate algorithms for similarity search and join increase the efficiency of the Filtering step at
the cost of allowing both false positives and false negatives, thus missing some matches [10, 172].
They typically rely on locality-sensitive hashing (LSH) [55], which transforms an item to a low-
dimensional representation such that similar items have much higher probability to be mapped to
the same hash code than dissimilar ones. This property allows LSH to be exploited in the filtering
phase to generate candidates [32, 90, 163]. The basic idea is that each object is hashed several times
using randomly chosen hash functions. Then, candidates are those pairs of objects that have been
hashed to the same code by at least one hash function.

ATLAS [190] is a probabilistic algorithm that is based on random permutations both to generate
candidates and to estimate the similarity between candidate pairs. It also proposes a method to
efficiently detect cluster structures within the data, which are then exploited to search for similar
pairs only within each cluster. BayesLSH [147] combines Bayesian inference with LSH to estimate
similarities to a user-specified level of accuracy. It uses LSH for both Filtering and Verification, pro-
viding probabilistic guarantees on the resulting accuracy and recall. CPSJoin [28] is a randomized
algorithm for set similarity joins. It uses a recursive filtering technique, building upon a previously
proposed index for set similarity search [27], as well as sketches for estimating set similarity. The
algorithm has 100% precision and provides a probabilistic guarantee on recall.

ACM Computing Surveys, Vol. 53, No. 2, Article 31. Publication date: March 2020.

RIGHTSE LI MN iy



31:26 G. Papadakis et al.

5.3 Algorithms for Complex Matching

The works discussed so far assume a single similarity predicate; i.e., they apply to the values of
a specific attribute. Moreover, when comparing sets, they assume binary matching between their
elements, while in the case of strings, they compare strings in their entirety. In the following, we
present methods that employ multiple similarity predicates or more complex ones.

Local Matching. A local string similarity join finds pairs of strings that contain similar sub-
strings. Under edit distance constraints, it can be defined as matching any [-length substring with
up to k errors. LS-Join [173] is based on the observation that if two strings are locally similar, they
must share at least one common g-gram, for a suitably calculated gram length q. An inverted index
is constructed incrementally during the search. For every examined string, its g-grams are gener-
ated and the candidates are retrieved from the index by finding those strings that have matching
g-grams.

pkwise [174] detects pieces of text in a given collection that share similar sliding windows, i.e.,
multisets containing w consecutive tokens of a given document. The similarity of two sliding
windows is defined as the overlap of those sets. Prefix filtering is used, but instead of relying on
single tokens to build the signatures, it proposes k-wise signatures, which comprise combinations
of k tokens. Larger values of k increase the signatures’ selectivity but also the cost of signature
generation. An additional optimization is to share common signatures across adjacent windows.

Finally, pkduck [162] matches strings with abbreviations, based on a new similarity measure that
accounts for abbreviations. It also proposes an appropriate signature scheme that extends prefix
filtering and generates signatures without iterating over all strings derived from an abbreviation.

Fuzzy Matching. Rather than assuming a binary match, in this setting, the similarity between
the elements of two sets may take any value between 0 and 1. In fact, it is defined as the maximum
matching score in the bipartite graph representing the matches between their elements.

In Fast-Join [170], edge weights in this bipartite graph denote the edit similarities between
matching elements. The proposed method follows the filter verification framework, creating a
signature for each set such that matching sets have overlapping signatures. The signature of a
set is composed of an appropriately selected subset of its tokens. SilkMoth [36] generalizes and
improves upon this work, providing a formal characterization of the space of valid signatures.
Given that finding the optimal signature is NP-complete, it proposes heuristics to select signatures.
To further reduce candidates, a refinement step is added: it compares each set with its candidates
and rejects those for which certain bounds do not hold. Both edit distance and Jaccard coefficient
are supported for measuring the similarity between elements. MF-Join [171] performs element-
and record-level filtering. The former utilizes a partition-based signature scheme with a frequency-
aware partition strategy, while the latter exploits count filtering and an upper bound on record-
level similarity.

Multiple Predicates. A method for similarity search and join on multiattribute data is pre-
sented in [85]. For instance, given an entity collection where each entity is described by its name
and address, this work identifies pairs of entities having both similar names and similar addresses.
To enable simultaneous filtering on multiple attributes, a combined prefix tree index is built on
these attributes. The construction of the index is guided by a cost model and a greedy algorithm.
In another direction, Smurf [159] performs string matching between two collections of strings
based on multiple-predicate matching conditions in the form of a random forest classifier that is
learned via active learning. Filtering techniques for string similarity joins are exploited to speed up
the execution of the random forest. The focus and novelty of this work is on how to reuse compu-
tations across the trees in the forest to further increase efficiency. Finally, AU-Join [184] presents
a new framework for string similarity joins that supports not only syntactic similarity measures,
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such as Jaccard similarity on g-grams, but also semantic similarities, including synonym-based and
taxonomy-based matching. It partitions strings into segments and applies different types of sim-
ilarity measures on different pairs of segments. A new signature scheme, called pebble, handles
multiple similarity measures: pebbles are g-grams for gram-based similarity, the left-hand side
of a synonym rule for synonym similarity, and ancestor nodes in the taxonomy for taxonomy
similarity.

5.4 Discussion and Experimental Results

Filtering techniques for string and set similarity joins have attracted a lot of research interest over
the past two decades. Early works view this operation as an extension of the standard join oper-
ator in relational databases, where the join condition is based on similarity rather than equality
[22, 57]. The same perspective is shared by more recent works, like those proposing B*-tree-based
indexes, which can be easily integrated into an existing DBMS [89, 192, 194]. Another character-
istic example is Dima [160, 161], which extends the Catalyst optimizer of Spark SQL to support
similarity-based queries. In this sense, similarity joins are sometimes referred to as approximate or
fuzzy joins, although this should not be confused with the approximate algorithms in Section 5.2
or the fuzzy set joins in Section 5.3. Numerous Filtering techniques have been proposed by more
recent works, which focus on main memory execution. Prefix-based filtering is the most popular
approach [12, 19, 22, 83, 133, 140, 169, 176, 180, 182, 183], followed by partition-based filtering (7,
37, 84]. Furthermore, to scale similarity joins to large collections, distributed [2, 37, 142, 143, 160,
161, 166] and approximate [28, 147, 190] algorithms have been proposed.

More recently, there has been increasing focus and interest on works that deal with more com-
plex similarity predicates. These include the matching of strings based on substrings or abbrevi-
ations [162, 173, 174], matching of sets based on fuzzy matching of their elements [36, 170, 171],
and the combination of multiple similarity predicates [85, 159]. These works can be considered as
more closely relevant to matching entity profiles in Entity Resolution.

Regarding performance, a series of experimental analyses provides interesting insights [50, 64,
95]. However, each study focuses on a certain subset of the aforementioned methods. Below, we
briefly summarize their findings, including additional results from individual papers to fill the gaps.

Similarity joins using Edit Distance. A comparison between FastSS, A11-Pairs, DivideSkip,
Ed-Join, QChunk, VChunkJoin, PPJoin, PPJoin+, AdaptJoin, PartEnum, PassJoin, and Trie-
Join is conducted in [64]. The results demonstrate that PassJoin is the most efficient algorithm,
with FastSS providing a reliable alternative in the case of very short strings.

Similarity joins using set-based measures. AdaptJoin and PPJoin+ are reported as the best algo-
rithms in the aforementioned study [64]. Different results, though, are reported in a subsequent
study that compares Al1-Pairs, PPJoin, PPJoin+, MPJoin, AdaptJoin, and GroupJoin. It indi-
cates that the plain prefix filtering, i.e., A11-Pairs, is still quite competitive, winning in the major-
ity of cases. PPJoin and GroupJoin exhibit the best median and average performance, respectively,
while more sophisticated filters are found to provide only moderate improvements in some cases
or even to negatively affect performance. The difference with the results in [64] is attributed to
the more efficient verification step; reducing the cost of Verification means that complex and, thus,
time-consuming filters often do not pay off, despite reducing the number of candidate pairs.

Prefix vs. partition filtering. PTJ is compared against PPJoin+ and AdaptJoin in [37], showing
that it outperforms both methods. The same comparison is performed in [177], showing that PTJ
does not outperform those methods in most cases. As noted in [177], this discrepancy seems to
be caused by differences in implementation; specifically, the comparison in [37] uses the original
implementations of PPJoin+ and AdaptJoin, while the one in [177] uses the optimized imple-
mentations provided by [95]. Overall, PTJ may generate fewer candidates but uses complex index
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Fig. 7. (a) The taxonomy of the hybrid, join-based blocking methods. (b) Timeline of the landmarks in the
evolution of Blocking, Filtering, and their convergence.

structures, thus spending much more time on the filtering phase compared to prefix-based algo-
rithms. Another factor that affects the performance of prefix filtering is the frequency distribution
of the tokens in the dataset. The core idea of prefix filtering is to select rare tokens as signatures so
as to reduce the number of candidates. In [64], an experiment involving different dataset distribu-
tions shows that PPJoin(+) and AdaptJoin perform better in datasets with Zipfian distribution
than a uniform one.

Set relations. Another interesting finding is that set relations can be effectively exploited to speed
up the computation of similarity joins [177]. In the presented experiments, the proposed algorithm,
SKJ, consistently outperforms PPJoin, PPJoin+, AdaptJoin, and PTJ across all datasets.

Tree-based algorithms. These algorithms typically focus on similarity search rather than join.
HSTree and PBI are compared against B¢“-Tree in [188] and [89], respectively, reporting better
performance. Also, Trans shows better performance than MultiTree in [193]. BiTrieJoin, an
improved variant of TrieJoin, is reported in [64] to have comparable performance to PassJoin
for short strings, but it underperforms for medium and long strings.

Distributed algorithms. VernicaJoin, MGJoin, MRGroupJoin, and FS-Join are experimentally
compared in [50]. VernicaJoin exhibits the best performance in most cases, but all algorithms are
often outperformed by nondistributed ones. This should be attributed to the overhead introduced
by the MapReduce framework as well as to high or skewed data replication between map and
reduce tasks. The latter constitutes an inherent limitation of the distributed algorithms that cannot
be overcome by simply increasing the number of nodes in the cluster. In [160], Dima is shown to
outperform the adaptation of VernicaJoin to Apache Spark.

Approximate algorithms. The experimental survey in [64] included a comparison between
BayesLSH-1lite and exact algorithms. Moreover, ATLAS, BayesLSH, and CPSJoin have been com-
pared against A11-Pairs in [190], [147], and [28], respectively. Overall, the experiments indicate
that approximate algorithms are preferable for low-similarity thresholds, e.g., for Jaccard similarity
below 0.5, while exact algorithms perform better for high thresholds.

6 JOIN-BASED BLOCKING METHODS

We now elaborate on Block Building methods that incorporate Filtering techniques, converting
Blocking into a nearest neighbor search. As illustrated in Figure 7(a), we categorize these hybrid
techniques into three major categories according to the filtering techniques they employ: the loss-
less ones rely on exact, single-predicate filtering techniques (cf. Table 2(a)); the lossy ones rely on
approximate filtering (cf. Section 5.2); and the spatial ones leverage spatial join techniques for fil-
tering. Note that the lossy hybrid methods are further distinguished into static and dynamic ones,
depending on whether they are independent or interwoven with Matching, respectively.

Starting with the lossless hybrid methods, the simplest approach is to combine Prefix Filtering
with Token Blocking, creating one block for every token that appears in the prefix of at least two
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entities [29]. Another approach is Adaptive Filtering [59], which couples schema-aware, nonlearn-
ing Block Building techniques with two filtering methods. First, blocks are created by extracting
keys from specific attributes. In every block with a size exceeding a predetermined threshold,
Length and Count Filtering are applied for Comparison Cleaning, using an edit distance threshold
on an attribute that is not considered by the initial transformation function.

Another lossless hybrid method is LIMES, which operates only on metric spaces [107]. Its core
idea is to leverage the triangle inequality to approximate the distance between entities based on
previous comparisons. Utilizing sets of entities as reference points, called exemplars, this method
computes lower and upper bounds to filter out superfluous comparisons before their execution.

In another direction, MultiBlock [62] optimizes the execution of complex matching rules that
are composed of special similarity functions for textual, geographic and numeric values. A block
collection is created for every similarity function such that similar entities share multiple blocks;
e.g., edit distance is supported for textual values and blocks are created for character g-grams such
that entity pairs satisfying the distance threshold co-occur in a sufficient number of blocks. Then,
all block collections are aggregated into a multidimensional index that respects the co-occurrence
patterns of similar entities and guarantees no false dismissals, i.e., PC = 1.

Regarding the lossy approaches, they are dominated by techniques based on LSH [55], which
efficiently estimates the similarity between two attribute values v; and v; by randomly sampling
hash functions f from a sim-sensitive family F such that the probability Pr(f(v;) = f(v;)) equals
sim(v;, v;) for any pair of attribute values and any function f € F. This means that LSH derives
sim(v;, v;) from the proportion of hash functions f such that f(v;) = f(v;). Typically, the required
number of these functions is relatively small for a sufficiently small sampling error; e.g., for 500
functions, the maximum sampling error is about +4.5% with 95% confidence interval [42].

In the context of ER, LSH is typically combined with MinHash signatures [20], which efficiently
estimate the Jaccard similarity as follows [58, 158]. Given an entity collection &, the values of
selected attribute names are converted into a bag of k-shingles, i.e., k consecutive words or char-
acters. Then, a matrix M of size K X |&| is formed, with the rows corresponding to the K distinct
shingles that appear in all attribute values and the columns to the input entities. The value of every
cell M(i, j) indicates whether the entity e; contains the shingle s;, M(i, j) = 1, or not, M(i, j) = 0.
Given that M is a sparse matrix, p random minhash functions are used to reduce its dimension-
ality: they are applied to each column, deriving a new matrix M’ of size p X |E|. The p rows are
then partitioned into b nonoverlapping bands and a hash function is applied to every band of each
column. The resulting buckets are treated as blocks that provide probabilistic guarantees that the
pairs of similar entities co-occur in at least one block. In fact, the desired probabilistic guarantees
can be used for configuring the parameters of LSH, i.e., the number of hash functions, rows, and
bands [58].

In this context, LSH is combined with K-Means in KLSH [158]. K-Means is applied to the low-
dimensional columns of M’, which represent the input entities. The resulting clusters form a dis-
joint block collection B, with |$B| determined by the desired average number of entities per block.

LSH is applied to the distributed representations (i.e., embeddings) of the input entities in
DeepER [43]. Every entity is transformed into a dense, real-valued vector by aggregating the em-
beddings of all attribute value tokens, which are pretrained by word2vec [101], Glove [131], and
so forth. This vector is then hashed into multiple buckets with LSH. A block is then created for
every entity containing its top-N most likely matches, which are detected using Multiprobe-LSH
[90].

LSH is also combined with a semantic similarity in SA-LSH (i.e., semantic-aware LSH) [175]. A
taxonomy tree is used to model the concepts that describe the input entity collection. The semantic
similarity of two entities is inversely proportional to the length of the paths that connect the
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corresponding concepts and their children: the longer the paths, the lower the semantic similarity.
The concepts of every entity are converted into a hash signature through a semantic hashing
algorithm. The resulting low-dimensional signatures are directly combined with the signatures
that are extracted from the n-grams of selected attribute values, capturing the textual similarity of
entities. However, the construction of the taxonomy tree requires heavy human intervention.

Regarding the dynamic lossy methods, LSH is combined with R-Swoosh [14] in [93] through a
MapReduce parallelization. Initially, a job is used for defining blocks using LSH. Then, a graph-
parallel Pregel-based platform applies R-Swoosh, iteratively executing the nonredundant compar-
isons in the blocks and computing the transitive closure of the detected duplicates.

LSH also lies at the core of cBV-HB [70, 71], which embeds the textual values of selected at-
tributes into a compact binary Hamming space that is efficient, due to the limited size of its em-
beddings (e.g., 120 bits for four attributes), and preserves the original distances in the sense that
certain types of errors correspond to specific distance bounds. Special care is taken to support
composite matching rules that involve the main logical operators (i.e., AND, OR, and NOT).

Similarly, HARRA [76] uses LSH to hash similar entities into the same buckets. Inside every
bucket, all pairwise comparisons are executed and duplicates are merged into new profiles. The
new profiles are hashed into the existing hash tables and the process is repeated until no enti-
ties are merged or another stopping criterion is met (e.g., the portion of merged profiles drops
below a predetermined threshold). In every iteration, special care is taken to avoid redundant and
superfluous comparisons.

Finally, spatial hybrid methods combine spatial joins with Block Building. The core approach
is StringMap [65], which converts schema-aware blocking keys to a similarity-preserving Eu-
clidean space, whose dimensionality d is heuristically derived from a random sample (typically,
d € [15,25]). For each dimension, a linear algorithm initially selects two pivot attribute values
that are (ideally) as far apart as possible. Subsequently, the coordinates of all other attribute values
are determined through a comparison with the pivot strings. Using an R-tree or a grid-based index
in combination with two weight thresholds, similar attribute values are clustered together into
overlapping blocks.

This approach is enhanced by Extended StringMap [25], which replaces the weight thresholds
with cardinality ones, and the Double embedding scheme [1]. The latter initially maps the input enti-
ties to the same d-dimensional Euclidean space. Next, the embedded attribute values are mapped to
another Euclidean space of lower dimensionality d’ < d. A similarity join is performed in the sec-
ond Euclidean space using a k-d tree index. The resulting candidate matches are then clustered in
the first, d-dimensional Euclidean space. The experimental study suggests that the d’-dimensional
space significantly reduces the runtime of StringMap by 30% to 60%.

7 BLOCKING VS. FILTERING: COMMONALITIES AND DIFFERENCES

The timeline in Figure 7(b) summarizes the landmarks in the evolution of the two frameworks
showing their gradual convergence. We observe that Blocking is the oldest discipline, with the
first relevant technique, namely SB, presented in 1969 [49]. For several decades, research focused
on schema-based techniques, with the most significant breakthrough taking place in 1995, with
the introduction of SN [60]. The first schema-agnostic Block Building technique is Semantic Graph
Blocking [109], introduced in 2007, but it considers only entity links. In 2011, it was followed by
TB [116], which exclusively applies to textual values. Block Processing was introduced in 2009 by
Iterative Blocking [179], followed by the use of Canopy Clustering for Blocking in 2012 [25] and
the introduction of Meta-blocking in 2014 [121]. For Filtering, the first similarity join to be used in
an RDBMS can be traced back to 2001 [57], while the techniques for in-memory execution were
coined in 2007 [12]. Attempts to further increase efficiency by allowing approximate results were
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first presented in 2011 [190]. The first works on massive parallelization for Filtering appeared in
2010 [166], for Blocking in 2012 [77], and for Block Processing in 2015 [44]. The convergence of
the two frameworks essentially started in 2011 with MultiBlock [62], which introduced Join-based
Blocking, whereas multiple-predicate Filtering for efficient Matching was introduced by Smurf in
2018 [159].

Regarding the qualitative comparison of the two frameworks, we observe that they have a num-
ber of commonalities: (1) Both serve the same purpose: they increase ER efficiency by reducing the
number of performed comparisons. To this end, both employ a stage producing candidate matches,
which are subsequently examined analytically in order to remove false positives. (2) Both usually
operate either on two clean but overlapping data collections (Record Linkage for Blocking, Cross-
table Join for Filtering) or on a single dirty data collection (Deduplication for Blocking, Self-join
for Filtering). (3) Both extract signatures such that the similarity of two entities is reflected in
the similarity of their signatures. (4) Both also apply similar implementation-level optimizations,
representing signatures with integer ids, instead of strings, so as to reduce the memory footprint
and facilitate in-memory execution. (5) Both include character- and token-based methods. For
Blocking, the former methods mainly pertain to schema-aware techniques that apply character-
level transformations to blocking keys (e.g., g-grams, suffixes, etc.), while token-based methods
primarily pertain to schema-agnostic methods. For Filtering, similarity measures can also be dis-
tinguished between character-based (e.g., edit similarity) and token-based ones (e.g., Jaccard), even
though many algorithms can be adapted to handle both. (6) In both cases, textual data have been
combined with other types of data, particularly with spatial or spatiotemporal data, including [106]
for Blocking and [13, 19, 52, 63] for Filtering. (7) Both can be used in real-time applications, where
the input consists of a query entity and the goal is to identify the most similar ones in the mini-
mum possible time. This is called Similarity Search in the case of Filtering and Real-time ER in the
case of Blocking (see Section 9 for more details).

Due to these commonalities, several works use the two frameworks interchangeably, consid-
ering Filtering as a means for Blocking (e.g., [29]). In reality, though, Blocking and Filtering have
several distinguishing characteristics: (1) By definition, a blocking scheme applies to a single entity,
considering all its attribute values (schema-agnostic methods), or combinations of multiple values
(schema-aware techniques). In contrast, Filtering usually applies to a pair of values from the same
attribute of two entities. (2) Blocking relies on positive evidence, clustering together similar enti-
ties, while Filtering relies on negative evidence, detecting dissimilar entities early on. (3) Blocking
is typically independent of Entity Matching, whereas Filtering is interwoven with it, as its goal
is to optimize the execution of a matching rule. (4) Blocking is an inherently approximate proce-
dure that falls short of perfect recall (PC), even when providing probabilistic guarantees (e.g., LSH
Blocking in DeepER [43]). In contrast, most Filtering methods provide an exact solution, returning
all pairs of values that exceed the predetermined threshold along with false positives. (5) Blocking
trades slightly lower recall (PC) for much higher precision (PQ), while Filtering trades filtering
power for filtering cost. (6) Blocking may be modeled as a learning problem, where the goal is to
define supervised blocking schemes that simultaneously optimize PC, PQ, and RR, but Filtering
requires no labeled set for learning to mark a comparison as true negative. Instead, it relies on a
theoretical analysis based on the given similarity measure and threshold. (7) Preserving privacy
is orthogonal to Filtering, with very few works examining privacy-preserving similarity joins [67,
87, 189]. In contrast, Blocking constitutes an integral part of privacy-preserving ER, with several
relevant works (for details, refer to a recent survey [165]). (8) Blocking constitutes an integral part
of pay-as-you-go ER applications, conveying a significant body of relevant works, as described
below. This does not apply to Filtering, given that the only relevant technique is TopkJoin [181].
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Regarding the quantitative comparison between Blocking and Filtering, few works have ac-
tually examined their relative performance. The two frameworks are experimentally juxtaposed
in [153-155] in terms of effectiveness and time efficiency. Using a series of real-world datasets,
RDFKeyLearner is compared against AllPairs, PPJoin(+), and EdJoin in [153, 154] and against
EdJoin, PPJoin+, and FastJoin in [155]. All methods are fine-tuned using a sample of each dataset.
The outcomes indicate no significant difference in effectiveness, but regarding time efficiency, Fil-
tering is consistently faster in generating candidate matches and consistently slower in executing
the corresponding pairwise comparisons, due to their larger number. In [155], the relative scal-
ability of RDFKeyLearner and EdJoin is examined over synthetic datasets of 10°, 2:10,...,10°
entities. Again, EdJoin produces more candidate matches and thus is slower than RDFKeyLearner.

In [82], an experimental analysis over four real-world datasets investigates the combined effect
of Blocking and Filtering on ER efficiency, implementing the workflow in Figure 1(b). The results
suggest that together, the two frameworks reduce the overall ER running time from 33% to 76%,
with an average of 50%. However, only one method per framework is considered: the manually
fine-tuned SB and PPJoin in combination with Cosine and Jaccard similarity. Note that due to its
careful, manual fine-tuning, Blocking has no impact on ER effectiveness.

However, more experimental analyses are required for drawing safe conclusions about the rel-
ative performance of Blocking and Filtering. These analyses should include a large, representative
variety of techniques per framework along with several established benchmark datasets and should
examine the benefits of combining the two frameworks in more depth.

8 BLOCKING AND FILTERING IN ENTITY RESOLUTION SYSTEMS

We now present the main systems that address ER, examining whether they incorporate any of the
aforementioned methods to improve the runtime and the scalability of their workflows. We analyt-
ically examined the 18 noncommercial and 15 commercial systems listed in the extended version
of [80]! along with the 10 Link Discovery frameworks surveyed in [105]. Table 3 summarizes the
characteristics of 12 open-source ER systems that include at least one Blocking or Filtering method.

Half of the tools offer a graphical user interface and are implemented in Java. Regarding the
type of the input data, most systems support structured data. The only exceptions are the three
Link Discovery frameworks, which are crafted for semistructured data. JedAl is the only tool that
applies uniformly to both structured and semistructured data.

We also observe that all systems include Blocking methods, with Standard Blocking (SB) and
Sorted Neighborhood (SN) being the most popular ones. The first four systems are Link Discovery
frameworks that implement custom approaches: KnoFuss and SERIMI apply Token Blocking only
to the literal values of RDF tiples, while Silk and LIMES implement hybrid methods, MultiBlock
and LIMES, respectively (see Section 6). Febrl and JedAl offer the largest variety of established
techniques. The former provides their original, schema-aware implementation, while the latter
provides their schema-agnostic adaptations. For this reason, JedAl is the only tool that implements
Block Processing techniques as well.

Note that Block Building is also a core part of the ER workflow in several commercial systems,
such as IBM Infosphere and Informatica Data Quality [80]. These systems are generally required
to handle diverse types of data, focusing on data exploration and cleaning. They typically provide
variations of SB, allowing users to extract blocking keys from specific attributes through a sophis-
ticated GUI that provides statistics and data analysis. As a result, users’ expertise and experience
with specific domains is critical for the performance of these systems’ blocking components.

IThe extended version of [80] is available at http://pages.cs.wisc.edu/~anhai/papers/magellan-tr.pdf.
ACM Computing Surveys, Vol. 53, No. 2, Article 31. Publication date: March 2020.

RIGHTSE LI MN iy


http://pages.cs.wisc.edu/~anhai/papers/magellan-tr.pdf

Blocking and Filtering 31:33

Table 3. Blocking and Filtering Methods in Open-Source Systems for Entity Resolution

Tool Blocking Filtering GUI | Language | Data Formats
KnoFuss [108] Literal Blocking - No | Java RDF, SPARQL
SERIMI [8] Literal Blocking - No | Ruby SPARQL

Silk [167] Multiblock - Yes | Scala RDF, SPARQL, CSV
LIMES [107] Custom methods PPJoin+, EdJoin, Yes | Java RDF, SPARQL, CSV

custom methods,
e.g., ORCHID [106]

Dedupe [17] SB with learning-based - No | Python CSV, SQL
techniques
DuDe [39] SB, SN, Sorted Blocks - No |Java CSV, JSON, XML, BibTex,
Databases (Oracle, DB2,
MySQL and PostgreSQL)
Febrl [23] SB, SN, Sorted Blocks, Suffix - Yes | Python CSV, text-based

Arrays, Extended Q-Grams,
Canopy Clustering, StringMap

FRIL [66] SB, SN - Yes | Java CSV, Excel, COL, Database
OYSTER [104] SB - No |Java Text-based
RecordLinkage [145] | SB (with SOUNDEX) - No |R Database
Magellan [80] SB, SN, it also supports Overlap, Length, Yes | Python CsvV

user-specified blocking methods | Prefix, Position,

Suffix

JedAI [129] SB, SN, Extended SN, Suffix To be added in the Yes | Java CSV, RDF, SPARQL, XML,

Arrays, Extended Suffix Arrays, forthcoming version Database

LSH, Q-Grams, Extended 3

Q-Grams + Block Processing

Surprisingly, only two systems currently include Filtering algorithms for improving the run-
time of their matching process: LIMES and Magellan. The latter actually offers the largest variety
of established techniques through the py_stringsimjoin package. Filtering techniques are also
provided by FEVER [81], which is a closed-source ER tool, as well as by JedAI’s forthcoming ver-
sion 3. Still, a mere minority of ER tools enables users to combine the benefits of Blocking and
Filtering, despite the promising potential of their synergy (see below for more details). Most im-
portantly, these tools exclusively consider traditional Filtering algorithms that apply to the values
of individual attributes. Hence, they disregard the recent Filtering techniques for Complex Match-
ing (cf. Section 5.3), which are more suitable for Entity Resolution. Therefore, more effort should be
devoted to developing ER tools that make the most of the synergy between Blocking and Filtering.

9 FUTURE DIRECTIONS

Various directions seem promising for future work, from entity evolution [115] to deep learning
[43] and summarization algorithms [69], which minimize the memory footprint of blocks, while
accelerating their processing. The following are more mature fields, having assembled a critical
mass of methods already.

Progressive Entity Resolution. Due to the constant increase of data volumes, new progressive
or pay-as-you-go ER methods provide the best possible partial solution within a limited budget of
temporal or computational resources. Based on Blocking, they schedule the processing of entities,
comparisons, or blocks according to the likelihood that they involve duplicates.

Among the schema-based methods, Progressive Sorted Neighborhood (PSN) [178] applies an in-
cremental window size w to a sorted list of entities until reaching the available budget. Dynamic
PSN [130] adjusts PSN’s processing order on the fly, according to the results of an oracle, while
Hierarchy of Record Partitions [178] creates a hierarchy of blocks that is resolved level by level,
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from the leaves, which contain the most likely matches, to the root. A variation of this approach
is adapted to MapReduce in [6], while the Ordered List of Records [178] converts it into a list of en-
tities that are sorted by their likelihood to produce matches. A progressive solution for relational
Multi-source ER over different entity types is proposed in [5]. P-RDS adapts LSH-based blocking
to a progressive operation by rearranging the processing order of hash tables according to the
number of matching and unnecessary comparisons in the buckets examined so far.

Among the schema-agnostic methods, Local Schema-agnostic Progressive SN [152] slides an in-
cremental window over the sorted list of entities that is created by schema-agnostic SN, and for
each window size, it orders the nonredundant comparisons according to the co-occurrence fre-
quency of their entities. Global Schema-agnostic Progressive SN [152] does the same for a predeter-
mined range of windows, eliminating all redundant comparisons they contain. Progressive Block
Scheduling [152] orders the blocks in ascending number of comparisons and then prioritizes all
comparisons per block in decreasing weight. Progressive Profile Scheduling [152] orders entities in
decreasing average comparison weight and then prioritizes all comparisons per entity in decreas-
ing weight.

The schema-agnostic methods excel in recall and precision [152] but exclusively support static
prioritization, defining an immutable processing order that disregards the detection of duplicates.
Hence, more research is needed for developing dynamic schema-agnostic progressive methods.

Real-Time Entity Resolution. This task matches a query entity to the available entity collec-
tions in (ideally) subsecond runtime. An early solution is presented in [26], which precalculates the
similarities between the attribute values of entities co-occurring in SB blocks to avoid similarity
calculations at query time. Its indexes are dynamically adapted to query entities in [138].

Other dynamic indexing techniques extend SN. F-DySNI [135, 137] converts the sorted list of
blocking keys into a braided AVL tree [141] that is updated whenever a query entity arrives. The
window is fixed or adaptive, considering as neighbors the nodes exceeding a similarity threshold.
F-DySNI is extended in [136] with automatic blocking keys: the weak training set of [72] is coupled
with a scoring function that considers both key coverage and block size distribution.

Another group of methods relies on LSH. MinHash LSH is combined with SN in [88]: when
searching for the nearest neighbors of a query entity, the entities in large LSH blocks are sorted
via a custom scoring function, and then a window of fixed size slides over the sorted list of entities.
CF-RDS [68] leverages Hamming LSH, ranking the most similar entities to each query without
performing any profile comparison. Instead, it merely aggregates the number of occurrences of
each candidate match in the buckets associated with the query entity.

In another line of research, BlockSketch [69] organizes the entities inside every block into sub-
blocks according to their similarity. A representative is assigned to each subblock based on its
distance from the corresponding blocking key. In this way, every query suffices to be compared
with a constant number of entities in the target block in order to detect its most similar entities.
SBlockSketch [69] adapts this approach to a stream of query entities through an eviction strategy
that bounds the number of blocks that need to be maintained in memory.

All these methods are crafted for structured data, assuming a fixed schema of known quality.
New techniques are required, though, for the noisy, heterogeneous entities of semistructured data.

Parameter Configuration. Except TB, all Blocking methods involve at least one internal pa-
rameter that affects their performance to a large extent [25, 128]. This also affects their relative
performance, rendering the selection of the best-performing method into a nontrivial task.

To mitigate this issue, parameter fine-tuning is modeled as an optimization problem in [96].
The configuration space is searched through a genetic algorithm, whose fitness function exploits
the labels of some candidate matches. After several generations, the configuration maximizing the
fitness function is set as optimal. Yet, this approach involves a large number of parameters itself.
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MatchCatcher [86] implements a human-in-the-loop approach combining expert knowledge
with labeled instances in order to learn composite blocking schemes. Using string similarity joins,
missed duplicates, which share no block, are efficiently detected. To capture them, the expert user
adapts the transformation and assignment functions iteratively.

Finally, a method’s performance over several labeled datasets is used for fine-tuning its param-
eters over an unlabeled dataset in [110]. The best choice corresponds to the method that achieves
the best combination of runtime and F-Measure across most datasets. However, this is a rather
time-consuming approach, given the large number of computations it requires.

None of the above methods satisfies the requirement for automatic, data-driven, a priori param-
eter configuration of Blocking methods, which thus remains an open problem.

Filtering for Entity Resolution. An interesting direction is to investigate to what extent simi-
larity joins suffice for ER, i.e., representing entity profiles by strings or sets and defining a matching
function based on a similarity threshold. Probably, techniques supporting relaxed matching cri-
teria and/or lower-similarity thresholds will be required to achieve high recall, but relatively few
Filtering techniques are designed for these cases (see Section 5.3). We also believe that scalability
remains an open challenge for string and set similarity joins [50] and that more opportunities exist
for transferring ideas and approaches between Blocking and Filtering. Finally, there is a need for
extensible, open-source ER tools that incorporate the majority of established Blocking and Filter-
ing methods and apply seamlessly to structured, semistructured, and unstructured data [56].

10  CONCLUSIONS

Efficiency techniques have been an integral part of Entity Resolution since its infancy. We organize
the relevant works into Blocking, Filtering, and hybrid techniques, facilitating their understanding
and use. We also provide in-depth coverage of each category, further classifying its works into
novel subcategories. Lately, the rise of big semistructured data poses challenges to the scalability
of efficiency techniques and to their core assumptions: the requirement of Blocking for schema
knowledge and of Filtering for high-similarity thresholds. The former led to the introduction of
schema-agnostic Blocking and Block Processing techniques, while the latter led to more relaxed
criteria of similarity. We cover these new fields in detail, putting in context all relevant works.
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