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The renin-angiotensin-aldosterone system (RAAS) is a major regula-

tor of blood pressure. The octapeptide angiotensin II (AII) is proteo-

lytically processed from the decapeptide AI by angiotensin-convert-

ing enzyme (ACE), and then acts via angiotensin type 1 and type 2

receptors (AT1R and AT2R). Inhibitors of ACE and antagonists of the

AT1R are used in the treatment of hypertension, myocardial infarc-

tion, and stroke. We now show that the RAAS also plays a major role

in autoimmunity, exemplified by multiple sclerosis (MS) and its animal

model, experimental autoimmune encephalomyelitis (EAE). Using

proteomics, we observed that RAAS is up-regulated in brain lesions

of MS. AT1R was induced in myelin-specific CD4� T cells and mono-

cytes during autoimmune neuroinflammation. Blocking AII produc-

tion with ACE inhibitors or inhibiting AII signaling with AT1R blockers

suppressed autoreactive TH1 and TH17 cells and promoted antigen-

specific CD4�FoxP3� regulatory T cells (Treg cells) with inhibition of

the canonical NF-�B1 transcription factor complex and activation of

the alternative NF-�B2 pathway. Treatment with ACE inhibitors in-

duces abundant CD4�FoxP3� T cells with sufficient potency to

reverse paralytic EAE. Modulation of the RAAS with inexpensive, safe

pharmaceuticals used by millions worldwide is an attractive thera-

peutic strategy for application to human autoimmune diseases.

multiple sclerosis � lisinopril � FoxP3 � AT1R

The intersection between chronic inflammatory diseases like
multiple sclerosis (MS) and the most common of all of the

human chronic diseases, atherosclerosis, may go far beyond the
root ‘‘sclerosis,’’ which is shared in both their names. The
renin-angiotensin-aldosterone system (RAAS), well known for
its effects on blood pressure (1), may be central to the inflam-
matory aspects of both of these diseases. Here, we describe the
striking appearance of the RAAS in MS brain, and explore how
its modulation with RAAS modulating drugs, commonly used to
treat myocardial infarction and stroke (2) reduces TH1 and
TH17 cytokines and induces powerful CD4�FoxP3� regulatory
T cells (Treg) cells capable of reversing the paralytic disease in
the experimental autoimmune encephalomyelitis (EAE) model
of MS.

Atherosclerosis has long been viewed as a disease caused by
hyperlipidemia and endothelial dysfunction resulting in lipid
deposition within artery vessel walls. However, atherosclerosis
also may be viewed as a chronic autoimmune disease with
adaptive immune responses to atherosclerosis-associated anti-
gens including heat shock protein 60 (HSP60), oxidized low-
density lipoprotein (oxLDL), and angiotensin-converting en-
zyme (ACE) itself (3). Intralesional TH1-polarized CD4� cells
contribute to the pathogenesis of atherosclerosis at early stages
of the disease (4). This hallmark is shared by inflammatory
diseases such as rheumatoid arthritis and MS, where TH1-type
cytokines like tumor necrosis factor (TNF) and IFN-� (IFN-�)
play key pathogenic roles in these two diseases, respectively (5).
Moreover, endogenous Treg cells suppress the pathogenic TH1

response in classical inflammatory diseases (6) and in atheroscle-
rosis (7). AT1R-expressing T cells may be crucial for promoting
hypertension, vascular inflammation, and atherosclerosis (8).

Here we addressed the role of angiotensin II in differentiation
and function of antigen-specific TH1 and TH17 cells. We
analyzed the function of AT1R in EAE, a model of multiple
sclerosis where both TH1 and TH17 are critical in pathogenesis
(9), and we combined this with observations on the expression
of the angiotensin pathway in brain lesions of MS itself using
proteomics and immunohistochemistry on autopsied human
brain tissue from cases of MS.

Results

Proteomic analysis of MS plaques (10) revealed that peptides
related to the RAAS system are present in CNS lesions of MS
patients (Table S1 and Fig. S1). Next, the transcriptional profile
of the RAAS related proteins angiotensinogen (Ang), ACE, and
AT1R was analyzed in T cells from mice immunized with the
encephalitogenic proteolipoprotein (PLP) peptide PLP139–151,
to induce EAE. Immunization with PLP139–151 induced strong
expression of AT1R in lymph node cells (LNC) (Fig. 1 A and B)
whereas expression of Ang and ACE remained unchanged (Fig.
S2), indicating that AT1R is activated in antigen-specific T cells
during the peripheral immune response to autoantigen. In
addition, AII binding was increased in PLP-activated CD4� T
cells (Fig. 1C) and to a lesser extend in activated CD11b�

monocytes (Fig. S2). Moreover, AT1R expression was up-
regulated in spinal cord tissue of mice with EAE (Fig. 1 D–F)
whereas ACE mRNA levels remained unchanged and Ang was
down-regulated (Fig. S2).

AT1R was strongly up-regulated in infiltrates of plaques from
the brains of MS patients as revealed by immunohistochemistry
(Fig. 2 A–J). Of note, AT1R expression in active MS plaques was
mostly present in perivascular cuffs (Fig. 2 A–F), whereas in
inactive plaques, ATR1R was expressed in endothelial cells,
astrocytes, and axons (Fig. 2 G–J and Fig. S2). These same
plaques from MS patients were the subject of a previous
large-scale proteomic analysis of defined MS lesions (10). From
these studies one can conclude that the presence of key elements
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of the RAAS is present at the site of disease in MS, not only on
immune cells but also on neurons and glia.

We asked whether activation of the AT1R in T cells might
influence the proinflammatory TH1 and TH17 response to
myelin antigens in EAE. Immunization with PLP139–151 led to
an induction of AII in CD4� T cells, CD11b� monocytes and to
an increase of serum AII levels (Fig. 3A), demonstrating that the
RAAS system is activated in peripheral immune cells. Pretreat-
ment of mice, immunized with PLP139–151, with the ACE
inhibitor lisinopril {N2-[(S)-1-carboxy-3-phenylpropyl]-L-lysyl-
L-proline} or the AT1R antagonist candesartan (3-{[2�-(2H-
tetrazol-5-yl)biphenyl-4-yl]methyl}-2-ethoxy-3H-benzo[d]imi-
dazole-4-carboxylic acid) resulted in suppression of TH1 and
TH17 cytokine release and up-regulation of immunosuppressive
cytokines such as IL-10 and transforming growth factor-�
(TGF-�) (Fig. 3B and Fig. S3A). TGF-� is a Janus-like cytokine,
that depending on context, are either proinflammatory or an-
tiinflammatory (11). PLP-activated TH cells from mice immu-
nized with PLP p139–151 treated with lisinopril failed to induce

disease in recipient mice after adoptive transfer (Fig. 3C),
indicating that suppressing AII production or blockade of signals
through the AT1R abolished the neuroinflammatory phenotype
of myelin-specific TH cells.

Importantly, treatment with lisinopril induced the expression
of FoxP3 in CD4�CD25� T cells (Fig. 4A) and the phosphor-
ylation of SMAD 2/3 (Fig. 4B) in CD3� T cells. Thus, exposing
antigen-specific T cells to its cognate antigen in the presence of
lisinopril induces FoxP3� regulatory T cells. Adoptive transfer
of lisinopril-treated PLP-activated CD4� T cells protected PLP-
immunized mice from severe clinical signs of EAE (Fig. 4C).
Suppression of the neuroinflammatory phenotype of PLP-
activated TH cells by blocking AT1R signals is mediated through
T cells directly because siRNA-mediated suppression of AT1R
in CD4� T cells led to a reduction of IL-17 and IFN-� production
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Fig. 1. Expression of AT1R during autoimmune neuroinflammation and MS.

(A) Analysis of mRNA expression of ATR1R in LNC from naive SJL/J mice (open

bars) and SJL/J mice 10 days after immunization with PLP p139–151 (PLP,

closed bars) (n � 3) using real-time PCR. Values represent mean arbitrary

expression levels of triplicates and SEM normalized to expression of �-actin. *,

P � 0.05; **, P � 0.01. (B) Western blot analysis of AT1R protein expression in

splenic CD4� T cells from naive SJL/J mice and SJL/J mice 10 days after immu-

nization with PLP p139–151 (PLP). (C) Binding of FITC-labeled AII to myelin-

specific CD4� T cells as measured by flow cytometry. Splenocytes were isolated

from SJL/J mice 5 days after immunization with PLP p139–151 (red histogram)

or naive mice (blue histogram). Splenoytes were restimulated ex vivo with PLP

p139–151 and CD4� T cells were gated. Unlabelled AII served as a control (gray

histograms). Numbers indicate percent AII binding cells. (D) Analysis of mRNA

expression of ATR1R in CNS tissue from naive SJL/J mice (open bars) and SJL/J

mice 14 days after immunization with PLP p139–151 (PLP, closed bars) (n � 5)

using real-time PCR. Values represent mean arbitrary expression levels of

triplicates and SEM normalized to expression of �-actin. *, P � 0.05. (E and F)

Immunohistochemical analysis of AT1R expression in meningeal infiltrates of

spinal cords from naive SJL/J mice (E) and SJL/J mice 14 days after PLP-

immunization (F). Magnifications: 40� (E) and 60� (F).
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Fig. 2. Expression of AT1R in MS plaques. Immunohistochemical analysis of

AT1R in human CNS tissue. No AT1R expression is detected in normal spinal

cord (A) or white matter from a patient with Alzheimer disease (B). Strong

AT1R expression is detected in perivascular cuffs of a chronic active MS plaque

(C–F), particularly in foamy macrophages (F, arrows). CD3 staining (E) of a

neighbouring section of D shows presence of T cells. AT1R is also detectable in

endothelial cells (G, arrow), astrocytes (H, arrows), and axons (I) within a

chronic inactive MS plaque. AT1R is also strongly expressed in axons during

viral encephalitis (J), suggesting that inflammation itself may drive neuronal

AT1R expression. Magnifications: 20� (J), 40� (A and I), 60� (C, F–H), and 90�

(D and E).
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whereas exogenic expression of AT1R increased the production
of these cytokines (Fig. 4D and Fig. S3B). AT1R signaling,
however, also influences the phenotype of antigen presenting
cells because AT1R is expressed on CD11b� monocytes and
siRNA-mediated suppression of AT1R down-regulates the pro-
duction of proinflammatory cytokines in these cells (Fig. S3C).

To make these studies relevant to translation into humans with
MS, we chose doses appropriately scaled for surface area of the
mice, based on human doses, following guidances from the US
Food and Drug Administration (http://www.fda.gov/cber/gdlns/

dose.pdf). These doses are similar to equivalent human doses in
current use for the in vivo experiments. When lisinopril was given
in the same mg/kg range as human doses, similar effects were
observed (Fig. S4). Thus, we cover a range of doses for lisinopril,
that are within the range of equivalent human doses by two
commonly used metrics, including guidance provided by the
FDA. Collectively these data indicate that modulation of pro-
duction of AII via inhibition of angiotensin converting enzyme
with lisinopril, leading to diminished activation of AT1R, in-
duces a regulatory phenotype capable of suppressing TH1/
TH17-mediated immune responses to autoantigens.

Next we investigated which signaling events are involved in
AT1R-mediated regulation of T-cell differentiation. Activation
of AT1R triggers multiple G protein-dependent and -indepen-
dent signaling pathways resulting in the activation of STAT
molecules. The Janus kinase (JAK)-STAT pathway is critically
involved in transducing cytokine receptor signals in T cells, thus
influencing T-cell differentiation (12). Thus, we tested the
hypothesis that STAT molecules might be involved in the
induction of regulatory FoxP3� cells mediated by blocking
AT1R signaling in antigen-specific T cells. Treatment of
PLP139–151-immunized SJL/J mice with lisinopril resulted in a
profound reduction of total STAT-1 and STAT-4 protein levels
in PLP-specific TH cells (Fig. 5A). Moreover, LNC from lisi-
nopril-treated animals displayed reduced responsiveness to IL-
12, further indicating suppression of signaling through the
STAT-4 pathway (Fig. 5B). STAT4 is critically involved in the
differentiation of TH1 (13) and TH17 (14) cells and STAT4-
deficient mice are resistant to EAE (15). In contrast, STAT-1-
deficient mice display an increased susceptibility to EAE (16),
indicating that complete ablation of STAT1 results in defective
IFN-�-mediated elimination of autoaggressive TH cells. Al-
though these changes might simply reflect the alteration of the
cytokine profile induced by lisinopril with reduction of IFN-�,
IL-12, and induction of IL-10, we observed an induction of the
suppressors of cytokine signaling-1 and -3 (SOCS-1 and SOCS-
3), two negative regulators of the JAK-STAT pathway (Fig. 5C).
SOCS-1 is a powerful suppressor of proinflammatory cytokine
signaling and required for the differentiation of CD4� T cells
(17). SOCS-1-deficient mice develop severe multiorgan inflam-
matory disease (18) and treatment with a SOCS-1-mimetic
peptide protected mice from EAE (19).

Collectively, our data show the impact of reduction of signals
through AT1R, via diminished production of AII after ACE
blockade: lisinopril treatment of antigen-specific T cells inter-
feres with cytokine signaling to induce a regulatory phenotype.
Because SOCS-1 negatively regulates NF-�B (20) and the proin-
flammatory effects of AII have been attributed to the activation
of NF-�B, we tested the hypothesis that NF-�B is involved in the
induction of Treg cells mediated by blocking AT1R signals in
antigen-specific T cells. Treatment of PLP-immunized mice with
lisinopril suppressed the expression and DNA binding of p65
(RelA) and c-rel while inducing the expression and DNA binding
of inhibitory �B� (I�B�) and Relb in antigen-specific T cells
(Fig. 5 D and E and Fig. S5A), thus suppressing the canonical
NF-�B pathway while inducing the alternative NF-�B pathway.
These data are concordant with studies in transgenic mouse
models showing that both NF-�B1 (p50)- and c-Rel-deficient
mice are resistant to EAE (21) whereas RelB-deficient mice
displayed exaggerated inflammatory responses with increased
expression of TH1 cytokines (22). Again, skewing of the NF-�B
pathway by lisinopril was not unique to T cells but was also
observed in monocytes (Fig. S5B). Collectively, our results
support the notion that the intrinsic classical NF-�B pathway is
important for TH1 differentiation.

Suppression of antigen-specific TH1 and TH17 responses and
induction of antigen-specific Treg cells has been targeted as a
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Fig. 3. Suppression of myelin-specific TH1 and TH17 cells by blocking AII

production. (A) Analysis of AII in serum and in the supernatant of CD11b�

monoctyes and CD4� T cells of naive (white bars) or SJL/J mice 10 days after

immunization with PLP p139–151 (black bars) by ELISA. Cells were purified to

95–99% using CD4 MACS beads and were then incubated for 12 h with full

stimulation media and supernatents were harvested. *, P � 0.05; **, P � 0.01.

(B) Intracellular cytokine analysis using flow cytometry in CD4� LNC from naive

SJL/J mice or SJL/J mice 10 days after immunization with PLP p139–151 treated

with vehicle (control) or lisinopril (LIS) at 10 mg/kg/day (n � 3). LNC were

isolated and restimulated with �CD3/�CD28 and pulsed with PMA, lonomycin,

and golgi stop. Numbers indicate percent positive cells. (C) Adoptive transfer

of CD4� LNC from SJL/J mice immunized with PLP p139–151 and treated with

vehicle (filled circles) or lisinopril at 10 mg/kg/day (open circles) for 12 days.

Cells were transferred into naive SJL/J recipient mice. Data represent clinical

scores as described in the Materials and Methods section.
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therapeutic strategy to treat TH1-mediated autoimmune dis-
eases. We thus analyzed whether inhibition of AII production or
blocking AT1R suppresses TH1/TH17-mediated autoimmunity.

Treatment of PLP-immunized mice with lisinopril prevented
signs of EAE when administered before immunization (Fig. 6A),
and reversed paralysis when administered during established
EAE (Fig. 6B). The AT1R antagonist candesartan was equally
effective in reversing paralysis in EAE, indicating that reduction
in signaling through the AT1R is critical for the therapeutic
effect of the ACE inhibitor lisinopril (Fig. 6C). Histopathology
of CNS tissue from treated mice with EAE revealed that the
therapeutic effects of lisinopril and candesartan were associated
with a reduction of inflammatory foci (Fig. 6 D and E) and an
increase in FoxP3� Treg cells in the CNS (Fig. 6F). These data
indicate that reducing signals through AT1R ameliorates EAE,
a paradigmatic TH1/TH17-mediated autoimmune disease
model by inducing potent Treg cells.

Discussion

Earlier published studies showed that treatment with the ACE
inhibitor captopril prevents EAE in Lewis rats, although disease
reversal was never attempted in that work done at a time when
TH17 and Treg cells had not yet been discovered (23). Admin-
istration of AT1R blockers suppressed antigen-specific T-cell
responses and prevented and reversed collagen-induced arthritis
(24, 25). The mechanism of how AT1R suppresses TH-mediated
autoimmunity was not elucidated in these two earlier studies.

One of the major regulators of blood pressure, ACE, may play
an important role in both organ-specific autoimmunity and in
atherogenesis. For instance, in MS, a polymorphism in the ACE
gene is associated with susceptibility to disease, and increased
ACE activity in the serum and cerebrospinal f luid (CSF) of
patients with MS may be an indicator of inflammatory activity
(26, 27). The results of these experiments and our study imply
that the RAAS system may be critically involved in promoting
TH1/TH17-mediated autoimmune diseases such as multiple
sclerosis. These observations are supported by studies in cardio-
vascular diseases showing that AII stimulates IFN-� and TNF in
peripheral T cells in an animal model of hypertension (8) and
that endogenous AII elicits a TH1 response in apolipoprotein E
(ApoE)-deficient mice (28).

The first ACE inhibitor, lisinopril, is now a generic drug used
by millions across the globe. Lisinopril was first designed by a
simple ‘‘paper and pencil’’ model of substrate and inhibitor
binding to the enzyme (29), and ultimately mapped at 2 A° with
an X-ray crystal structure showing how it binds to human ACE
(30). ACE inhibitors afford the opportunity when given in
routine therapeutic doses to raise large numbers of antigen
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Fig. 4. Induction of myelin-specific FoxP3� regula-

tory T cells by blocking AII production. (A) Flow cyto-

metric analysis of FoxP3 and CD25 in CD4� LNC from

naive SJL/J mice (Left) or SJL/J mice 10 days after im-

munization with PLP p139 –151 treated with vehicle

(Center, control) or lisinopril (Right, LIS) at 10 mg/kg/

day (n � 3). Numbers indicate percent positive cells. (B)

Western blot analysis of SMAD 2/3 phosphorylation in

CD3� LNC from SJL/J mice 10 days after immunization

with PLP p139 –151 treated with vehicle (co) or lisino-

pril (LIS) at 10 mg/kg/day (n � 3). (C) Adoptive transfer

of CD4� LNC from SJL/J mice (n � 5) immunized with

PLP p139 –151 to induce EAE and treated with vehicle

(filled circles) or lisinopril at 10 mg/kg/day (open cir-

cles) for 12 days. Cells were transferred into SJL/J

recipient mice (n � 10 per group). Recipient mice were

immunized with PLP p139 –151 24 h after the adoptive

transfer. Data represent clinical scores as described in

the Materials and Methods section. (D) Intracellular

expression of IFN-� (black bars) and IL-17 (white bars)

using flow cytometry in CD4� T cells from naive 2D2 mice, transfected with AT1R siRNA at different concentrations using nucleofection and activated with

MOG35–55 for 48 h. Histograms represent AT1R cell surface expression, numbers represent percent AT1R-positive cells. Values in the bar graphs represent

percent IFN-�� or IL17� cells.

Fig. 5. Molecular mechanisms of tolerance induction by suppressing signaling

through AT1R. (A, C, and D) Western blot analyses of STAT protein expression (A),

SOCS protein expression (C) and expression of proteins of the NF-�B signaling path-

way (D) in CD4� T cells from naive SJL/J mice or SJL/J mice 10 days after PLP immuni-

zation with or without treatment with lisinopril. (B) IFN-� release from CD4� T cells

fromuntreatedSJL/Jmice(blackcircles)orSJL/Jmicetreatedwithlisinoprilfor10days

(open circles) after stimulation with IL-12 in vitro. (E) In vitro DNA binding studies of

proteins from the NF-�B signaling pathway in CD4� T cells from naïve untreated

(black bars), naïve lisinopril-treated (white bars), PLP-immunized untreated (light

gray bars) and PLP-immunized lisinopril-treated SJL/J mice (dark gray bars). Values

represent mean � SEM of arbitrary units of colorimetric analysis of DNA-binding

activity. *, P � 0.05; **, P � 0.01.
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specific Treg cells with strong clinical efficacy. Early clinical
data indeed indicate that ACE inhibitor therapy is associated
with decreased TH1/TH2 cytokine ratios and inf lammatory
cytokine production in patients with chronic heart failure (31).
Larger studies on Th1/Th2/Th17 and Treg cells must be
undertaken in individuals with MS and in individuals being
treated with these drugs for hypertension. ACE inhibitors
ought to be tested clinically in MS and in other autoimmune
diseases where potent antigen specific Treg cells may be a
suitable treatment strategy.

Materials and Methods

EAE was induced in female SJL/J mice (8–12 weeks) via s.c. immunization with

PLP p139–151 emulsified in complete Freund’s adjuvans or by adoptive trans-

fer injecting 5 � 106 T cells intravenously into naive SJL/J recipient mice. Mice

(n � 10–15 per treatment group) were examined daily for clinical signs of EAE

and were scored as followed: 0, no clinical disease; 1, tail weakness or paralysis;

2, hindlimb weakness or paralysis; 3, complete hindlimb paralysis and forelimb

weakness; 4, hindlimb paralysis and forelimb paralysis; 5, moribund or dead.

Cytokine and AII levels were determined by using specific ELISA. For intracel-

lular cytokine analysis CD4� T cells or CD11b� monocytes cells were fixed and

permeabilized with cytofix/cytoperm and perm/wash buffers. For RT-PCT-

experiments total RNA was isolated from LNC or CD3� splenic T cells or brains

or spinal cords. ACE, angiotensinogen (Ang), angiotensin II type 1 receptor

(AT1R), and �-actin cDNAs were amplified using a Lightcycler (Roche). Trans-

location of NFkB isoforms into the nucleus was tested using nuclear extracts

isolated from CD4� T cells treated with Lisinopril or PBS. For AT1R siRNA

experiments CD4� T cells or CD11b� monocytes were transfected with dif-

ferent concentrations of siRNA, or control siRNA using a nucleofector elec-

troporation system and either a mouse primary T-cell nucleofector kit or a

mouse primary macrophage kit. For histopathology and immunohistochem-

istry anesthetized mice were perfused with 20 mL cold PBS followed by 20 mL

of 4% (wt/vol) paraformaldehyde for fixation. Selected brain, thoracic, and

lumbar spinal cord sections were evaluated by an examiner blinded to the

treatment status of the animal. For AT1R expression cryostat sections (4–6

mm) were fixed with acetone and then labeled with anti-AT1R using the

avidin-biotin technique. Staining was visualized by reaction with diamino-

benzidine (DAB). Slides were counterstained with hematoxylin. MS and con-

trol brain samples were analyzed as described in ref. 10. Data are presented as

mean � SEM. For clinical scores, significance between each two groups was

examined by using the Mann–Whitney U test. All other statistics were ana-

lyzed by using a one-way multiple-range ANOVA test for multiple compari-

sons. P � 0.05 was considered significant.

See SI Text for full methods.
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Fig. 6. Modulation of EAE by suppressing AII production or blocking AT1R. (A) Prevention of EAE after PLP immunization by lisinopril at 1 mg/kg/day

(gray circles) or 10 mg/kg/day (open circles) compared with vehicle-treated controls (black circles), n � 12 per group. Treatment was initiated 2 days before

immunization. Values are displayed as mean clinical scores as in Fig. 3. (B) Treatment of EAE after PLP immunization with lisinopril at 10 mg/kg/day (open

circles) with vehicle controls (black circles), n � 15 per group. Treatment was initiated at the peak of first clinical disease activity (day 15 after

immunization). Values are displayed as mean clinical scores. (C) Treatment of EAE after PLP immunization with lisinopril at 10 mg/kg/day (open circles)

or candesartan at 1 mg/kg/day (gray circles) compared with vehicle controls (black circles), n � 15 per group. Treatment was initiated at the peak of first

clinical disease activity (day 15 after immunization). Values are displayed as mean clinical scores. (D) H&E stained spinal cord sections of SJL/J mice with

EAE with (EAE � LIS) or without (vehicle) treatment with lisinopril. Arrows indicate meningeal inflammatory infiltrate. (Magnification: D, 20�.) (E) Number

of inflammatory foci (�SEM) in brains and spinal cords of SJL/J mice treated with vehicle (black bars), lisinopril (white bars), or candesartan (gray bars).

Lesions were counted by a neuropathologist blinded to the type of treatment, n � 6 per group. *, P � 0.05. (F) Flow cytometric analysis of FoxP3 and CD25

in CD4� CNS-infiltrating T cells from SJL/J mice with EAE 14 days after immunization with PLP139 –151 treated with vehicle (Top) or lisinopril at 10 mg/kg/day

(LIS, Bottom) (n � 3). Numbers indicate percent positive cells.
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