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The pandemic of Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 has
induced global eagerness to develop vaccines and therapeutics for treating COVID-19,
including neutralizing antibodies. To develop effective therapeutic antibodies against
SARS-CoV-2, it is critical to understand the interaction between viral and host’s
proteins. The human ACE2 (hACE2) protein is the crucial target for the SARS-CoV’s
Spike protein that allows the virus to adhere to host epithelial cells. X-ray crystal
structures and biophysical properties of protein-protein interactions reveal a large
interaction surface with high binding-affinity between SARS-CoV-2 and hACE2 (18
interactions), at least 15-fold stronger than between SARS-CoV-1 and hACE2 (eight
interactions). This suggests that antibodies against CoV-1 infection might not be very
efficient against CoV-2. Furthermore, interspecies comparisons indicate that ACE2
proteins of man and cat are far closer than dog, ferret, mouse, and rat with significant
differences in binding-affinity between Spike and ACE2 proteins. This strengthens the
notion of productive SARS-CoV-2 transmission between felines and humans and that
classical animal models are not optimally suited for evaluating therapeutic antibodies.
The large interaction surface with strong affinity between SARS-CoV-2 and hACE2
(dG−12.4) poses a huge challenge to develop reliable antibody therapy that truly blocks
SARS-CoV-2 adherence and infection. We gauge that single antibodies against single
epitopes might not sufficiently interfere with the strong interaction-synapse between
Spike and hACE2 proteins. Instead, appropriate combinations of high-affinity neutralizing
antibodies against different epitopes might be needed, preferably of IgA-class for optimal
and prolonged activity at epithelial layers of respiratory and intestine tracts.
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INTRODUCTION

As of June 2020, the coronavirus disease 2019 (COVID-19)
pandemic has infected more than six million individuals with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). SARS-CoV-2 belongs to the same family of Coronaviridae as
SARS-CoV-1, which emerged in 2003. As both viruses belong
to the same family and use similar modes of transmission to
infect the host, research from the past 15 years on SARS-
CoV-1 could be extended to SARS-CoV-2 (1, 2). For example,
the interaction between the angiotensin-converting enzyme 2
(ACE2) protein in humans (hACE2) and the Spike (S) protein
in SARS-CoV’s (CoV′sS) is known from the 2003 outbreak (3,
4). This is in contrast to the related Middle East respiratory
syndrome (MERS)-CoV virus, known from the 2012 outbreak
(5), which has a S protein, that does not bind to hACE2, but to
dipeptidyl peptidase-4 (DPP4), also known as the CD26 receptor
(6, 7). The discovery of the S-protein binding of the SARS-
CoV-1 virus to the hACE2 protein was important to understand
the mode of interaction of the SARS-CoV-2 virus with the host
cells. Later, the interaction between the receptor binding domain
(RBD) of the S1 domain in the viral S protein and the ACE2
receptor binding domain was X-ray crystallized (8), similar to
the interaction between CoV1S and hACE2. Several bound and
unbound conformations of this protein-protein interaction have
been crystallized to understand the affinity of the interactions
between CoV′sS and hACE2 proteins (8–13). These structures
have enabled researchers to assess the impact of mutations
on the structural and functional properties of the interactions
between CoV′sS and hACE2 proteins in different species (3, 14).
The sequence information of the ACE2 gene, supported by
the structural properties has also been used to understand the
possibility of transmission of the virus between different species,
especially vertebrates (14).

Previously, the similarity of ACE2 receptors between human
and non-human primates has been reported (14). However, the
social and economic position of these animals have not been
considered. For example, several reports have lately emerged
with transmission of COVID-19 infection from humans to
their pets and domesticated animals (14–17). These reports
have led to questions about SARS-CoV-2 transmission in a
vice-versa situation (i.e., from animals to humans). With the
transmission of infection from minks to a human at mink
farm in Netherlands (https://www.government.nl/latest/news/
2020/05/19/new-results-from-research-into-covid-19-on-
mink-farms) and COVID-19 infections at eight mink farms
(https://www.government.nl/latest/news/2020/06/01/initial-
investigation-results-infections-at-three-more-mink-farms)
makes this question even stronger and furthermore strengthens
our argument that economical and societal organization plays an
important role. Furthermore, although the ACE2 receptor of cats
is not completely identical to humans, of all domesticated/pet
animals, the cat’s ACE2 receptor is closest to human and indeed
infected cats show symptoms similar to humans (www.rivm.
nl/en/novel-coronavirus-covid-19/pets). Consequently, cats
pose a more serious but less-mentioned threat for animal
to human transmission in many societies, especially those

cats that wander around and are in close contact with many
different families. However, this is not as straight-forward
as it seems, because viral dosage plays an important role in
such transmission.

Importantly, several options are proposed to treat or mitigate
COVID-19 disease (18–20). Increasingly, convalescent serum of
individuals recovered from COVID-19 is becoming a treatment
of choice (21, 22). Understanding the exact nature of the
CoV′sS protein interaction with the hACE2 receptor molecule
is essential to understand how the treatment with passive-
immunization may be effective in humans in neutralizing the
virus from adhering and entering the epithelial target cells,
thereby controlling the infection. For example, neutralizing
antibodies (nAbs) developed against CoV-1, have been tested
against SARS-CoV-2, but the neutralization capability of these
nAbs against SARS-CoV-2 is lower than for SARS-CoV-1 (23,
24). Recently, a human monoclonal antibody was proposed
to be effective against COVID-19 that targets a general
receptor binding domain on SARS viruses (25). However, the
exact epitope of that antibody on the viral domains has not
been mapped.

Here, we wish to draw the attention of immunologists to
the interaction interface between CoV2S and hACE2 proteins,
which is substantially larger than in CoV1S-hACE2 interactions.
As immunotherapy with blocking antibodies against the S viral
protein can significantly contribute to combating COVID-19
infection, it will be critical to identify the appropriate epitopes
on the viral S protein, to be blocked with a combination of two or
more different high-affinity antibodies.

CoV2S-hACE2 INTERACTION SYNAPSE IS
LARGER AND STRONGER THAN

CoV1S-hACE2

hACE2 receptors are widely expressed in multiple tissues i.e.,
nasopharynx, trachea, bronchi, and lung, but also in gut,
kidney, vessels, heart, testis and brain (26–28). These receptors
are not only the door to virus-entry but also conductor of
pathophysiological reactions associated with the clinical features
of the disease (29). The entry of SARS viruses is mediated by
efficient binding of the viral S protein to the hACE2 receptor.
Though the receptor binding domain (RBD) of S proteins in
SARS-CoV-1 and SARS-CoV-2 share high homology at both
sequence (88%) and structure level, the interaction surface of
CoV2S by comparison is larger than CoV1S (Figures 1A,B). The
residues in the hACE2 protein that were found to be crucial in
maintaining the interaction with the RBD domain by Li et al. (31)
are shown in red for CoV2S (Figure 1A) and CoV1S (Figure 1B).
These residues mostly share polar bonds with multiple tyrosine
residues present at the interacting interface of the viral S
protein. The residues marked in magenta (Figures 1A,B) are
equally important in maintaining multiple weaker interactions
(hydrogen bonds), which altogether results in strong protein-
protein interactions (PPI) (32, 33). Consequently, 18 interacting
PPI pairs are found between CoV2S and hACE2 within 1773Å2

as compared to only eight in the CoV1S-hACE2 interaction
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FIGURE 1 | The interface of ACE2 protein in different organisms with important amino-acid residues for interacting with the Spike (S) protein of SARS-CoV viruses. (A)
The interacting interface between hACE2 protein and CoV2S (PDB ID: 6LZG). The residues in hACE2 proteins are colored in red, magenta and pink. Red residues are
the most important and pink the least. The interacting residues in CoV2S are colored in green and orange colors where green residues are the important interacting

(Continued)
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FIGURE 1 | residues. The distance between CoV2Spike and hACE2 proteins is increased to better visualize the residues and the interactions. (B) The interacting
interface between hACE2 protein and CoV1S (PDB ID: 2AJF). Red residues on hACE2 protein are important residues for maintaining the interaction between hACE2
and CoV1S proteins. All the residues in CoV1S interacting with hACE2 are colored in orange. The distance between CoV1Spike and hACE2 proteins is increased to better
visualize the residues and the interactions. Hydrogen bonds (A,B) as described in the structures of these interaction (PDB ID: 6LZG and 2AJF) and electrostatic and
hydrophobic bonds in CoV1S-hACE2 interaction are depicted from Brielle et al. (4). (C) The positions mutated in ACE2 proteins in selected vertebrates that are either
pets, domesticated or live in vicinity of humans. The mutated residues are shaded with green or orange background. The green background represents mutations
resulting in similar property residue i.e. polar -> polar or non-polar -> non-polar. The orange background represents mutations resulting in changes in the residue
property i.e. polar -> non-polar. (D) The interface of mouse’s ACE2 protein. Red color residues represent the mutated residues. Three mutations on the left interacting
region has resulted in an Arginine, introducing a glycan site. The basic structure of glycan is shown on the sites. (E) The interface of cat’s ACE2 protein. The red color
residues represent the mutated residues. The mouse’s and cat’s ACE2 structure are modelled with modeller-9.24 (30) using 6LZG as a template.

(Figures 1A,B). As a consequence, the binding affinity of CoV2S-

hACE2 is 15-fold higher than that of CoV1S-hACE2 [Kd of 8.30E-
10M as compared to Kd of 1.20E-08M in CoV1S-hACE2; as
calculated by PRODIGY (34)].

The remarkably tyrosine-rich interacting surface
of the viral S protein implies a role for evolutionary
optimizing selection mechanisms to stepwise enhance
the affinity and specificity of the CoV2S protein, thereby
increasing the molecular interaction with hACE2 (35).
However, the sudden start of the SARS-CoV-2 pandemic
in Q4 of 2019 can hardly have permitted evolutionary
optimizing selection processes with stepwise accumulation
of tyrosine residues at positions appropriate for increased
CoV2S-hACE2 affinity.

Within the synapse between the CoV2S protein and the

hACE2 receptor, one can discern two main interaction
regions: one around amino-acid positions 24–30 and
another around 42–53 in hACE2 receptor corresponding
to 471–486 and 496–505 amino-acid positions in CoV2S
protein with additional residues in 404–416 and 446–456
amino-acid positions contributing to the adhesion synapse
(Figure 1A). Based on these structural considerations, we
conclude that the high-affinity interaction between the S
protein and ACE2 receptor is caused by multiple interacting
residues in CoV2S-hACE2 PPI, which form the strong (multi-
epitope) adhesion synapse between the viral surface and host’s
epithelial layer.

CLASSICAL ANIMAL MODELS ARE NOT
OPTIMALLY SUITED FOR EVALUATING
THERAPEUTIC ANTIBODIES IN
SARS-CoV’s INFECTION MODELS

The receptor binding domain of viral S proteins may mutate to
modify binding affinity for ACE2, and hence lead to differential
infection potentials in humans or other hosts. For example
palm civet was believed to be the intermediate host between
bats and humans for SARS-CoV-1 (5). The intermediate host
for SARS-CoV-2 is not known yet, although pangolins have
been proposed as a possible reservoir (36). The sequence and
structural features of the ACE2 proteins of different species
can predict their ability to bind to the viral S protein and
hence can provide insight into the potential virus transmission.

ACE2 protein sequences from different vertebrate species have
been assessed to predict their ability to bind CoV2S (14, 37).
However, these studies did not take into account the societal
position of these vertebrates. For example, owing to similar
ACE2 proteins, non-human primates are found to have similar
binding affinity to the virus as that of humans. Due to the almost
non-existent physical and societal interaction between humans
and non-human primates, the chance of transmission between
these two groups is limited. The viral load plays an important
role in transmitting the COVID-19 infection and henceforth
the severity of infection symptoms (38, 39). The transmission
rate will be higher between humans and animals that are truly
domesticated by humans, especially pets that live closely together
(in the same house) with their owners and other individuals, who
(un)wantedly are in close contact. Several reports of transmission
of infection from humans to cats and tigers and from cats
to cats have been reported recently (16, 40–44). And a vice-
verse transmission i.e., from cats to humans is also possible
owing to cat’s societal and economical value especially in the
western society.

To better understand animal-human transmission, we have
compared the variant residues in the ACE2 proteins in multiple
organisms which are either close to humans or are domesticated
(Figure 1C). The variant amino acid residues in the ACE2
proteins of these organisms are predicted to have impact on
the interaction, if the variant results in changed properties of
the residue (residues in orange background; variants in green
do not result in changed properties). The 3D structure of
the ACE protein is generated using comparative modeling for
mouse (Figure 1D) and cat (Figure 1E) with a template of X-
ray crystallographic structure 6LZG (8). The number of variant
residues in mouse is higher than in cats and the introduction
of Arginine in the binding domain results in introduction of N-
glycosylation sites at positions Q24, D30, and K31 (Figure 1D).
The overall binding site of the murine ACE2 protein is quite
different from human, hampering the interaction with the viral
S protein, although not completely. This immediately points
to the insufficiency of mouse models for assessing molecular
and therapeutic intervention studies for SARS-CoV’s infection
model. The high similarity of the hACE2 protein with ACE2
receptors in felines make them a better model to assess
coronavirus infectionmodels.Whereas, ferrets and civets, among
felines, are currently used as COVID-19 infection models, cat’s
ACE2 is much more similar to hACE2 (see Figure 1C for details).
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Furthermore, cats have been shown to be permissive of the virus
(16), the large nasopharynx surface area in cats can lead to
variations in the time of entry and permissiveness of virus as
compared to humans.

In conclusion, the similar ACE2 receptors of cats and man,
with several cases of transmission between cats and humans
documented (16, 40–44), and their close social relationship may
pose a threat of further transmission. Moreover, the extended
nasopharyngeal anatomy in cats with a suboptimal immune
response can potentially make them a reservoir of the virus,
which can pose a threat of transmission to humans. This might
be an inconvenient message in many western societies. Most
importantly, the many differences in ACE2 molecules between
man and laboratory animals, make classical animal models not
optimally suited for evaluating therapeutic antibodies in SARS-
CoV-2 infection models.

NEUTRALIZING ANTIBODIES AGAINST
SARS-CoV-2

Convalescent plasma of COVID-19 survivors is being used
as a direct approach to combat SARS-CoV-2 infection in
severe COVID patients (21, 22). This is one of the simplest
approaches for using polyclonal neutralizing antibodies from
convalescent patients, providing passive immunization. Other
antibody therapies considered for COVID-19 include polyclonal
normal IgG, hyperimmune IgG and monoclonal antibodies from
COVID-19 survivors (45–47). The neutralizing antibodies are a
subset of antibodies present in convalescent plasma that reduces
viral infectivity by binding to the epitopes of viral particles
and hence block the adherence of virus to host cells. The
therapy is effective yet unpredictable due to the genetic and
immune variability between different individuals. As adherence
of SARS-CoV virus to host cells is mediated by interaction of the
RBD domain of the viral S protein with host’s ACE2 receptor,
the viral S protein becomes a major target for developing the
neutralizing antibodies. The neutralizing monoclonal antibodies
targeting SARS-CoV epitopes are reviewed by Shanmugaraj et al.
(48). Most of these neutralizing monoclonal antibodies indeed
recognize the receptor binding region in the S1 domain of viral
S protein for SARS-CoV-1 (48). Two neutralizing antibodies
CR3022 and CR3014 bind to the S2 domain of the S viral
protein of SARS-CoV-1 and recognize different epitopes (49).
The cocktail of these two antibodies appeared more powerful
in neutralizing CoV-1 virus as compared to CR3022 only.
Therefore, the data from SARS-CoV-1, already indicate that a
single antibody might not be sufficient to combat the SARS-
CoV-2 infection efficiently. Although the CR3022 and CR3014
antibodies were able to 100% neutralize SARS-CoV-1 infection,
the same cocktail will not be equally effective against SARS-
CoV-2 infection (24). This argument is supported by the
larger interface of the CoV2S-hACE2 protein-protein interaction
(Figure 1) and also>15-fold higher binding affinity of the CoV2S-

hACE2 interaction [Kd of 8.30E-10M as compared to 1.20E-
08M in CoV1S-hACE2; as calculated by PRODIGY (34)]. The
surface plasma resonance experiments by Wang et al. showed

4-fold higher affinity of CoV2S-hACE2 as compared to CoV1S-

hACE2 (8), while 10 to 20-fold higher affinity of CoV2S-hACE2
as compared to CoV1S-hACE2 has been mentioned previously
(23, 50). Of note, the affinity for binding of CoV2S to hACE2
proteins is higher than many other protein-protein interactions
in nature, including one of the highest antibody affinities (namely
anti-TSH-R antibodies, which is 7.2E-09M Kd) and far higher
than T-cell receptor interactions with Major Histocompatibility
Complex molecules (2.00E-06 M Kd).

CURRENTLY REPORTED ANTIBODIES
NEED A PARTNER ANTIBODY TO
COMPLETELY HINDER CoV2S-hACE2
INTERACTION

Recently, several human-origin monoclonal antibodies with
neutralizing capacity were isolated from convalescent patients,
which were further tested in mouse models for their therapeutic
potential against SARS-CoV-2 (12, 51–57). For several of these
antibodies, the 3D structures are available (12, 51, 52, 54, 55,
58). Moreover, the anti-SARS-CoV-1 high-affinity antibodies i.e.,
CR3022 and EY6A, which also recognize SARS-CoV-2, are not
able to hinder the CoV2S-hACE2 protein-protein interaction,
because the recognized epitopes are located outside the adhesion
synapse (Figure 2A). Five other anti-RBD-antibodies (RBD-
CV30, RBD-CB6, RBD-B38, RBD-CC12.1, and RBD-CC12.3)
have been more effective in interfering with the CoV2S-

hACE2 protein-protein interaction, albeit that they target similar
epitopes (Figure 2A). These five high-affinity antibodies are not
able to completely block the adhesion synapse between the CoV2S
and hACE2 proteins, because they bind to only one of the
two dominant interaction regions (DIR-1 and DIR-2) in CoV2S-

hACE2 protein-protein interaction (Figure 2A). Consequently,
the DIR-1 region of the CoV2S protein is still accessible for
interaction and therefore a partner antibody might be required to
completely block the adhesion synapse (Figure 2B). It is striking
that all reported antibodies with epitopemapping target the DIR2
region, whichmay represent an immunodominant epitope. If this
turns out to be the case, therapeuticmixtures of antibodies should
be constructed to include antibodies that do not only target
DIR-2, but DIR-1 as well. This notion might well be critically
important for design of vaccines, which aim primarily at blocking
the CoV2S-hACE2 adhesion synapse to prevent infection.

SEVERAL FACTORS INFLUENCE THE
FUNCTIONAL ASPECTS OF THERAPEUTIC
ANTIBODIES

Highly specific antibodies with high affinity are relevant for
therapeutic application in COVID-19 patients. However, the
functionality of such antibodies will be governed by several
factors i.e., variant form of the viral S protein, ACE2 receptor,
Fc glycosylation, Fc receptors and the antibody class (IgM,
IgG1, IgG2, IgG3, IgG4, and/or IgA1 and IgA2). A recent
report shows the role of D614G mutation variant of the
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FIGURE 2 | Currently known antibodies targeted against CoV2S protein do not hinder the complete interaction site between CoV2S and hACE2 proteins. (A) Visualizing
interacting surface between CoV2S and hACE2 proteins (PDB ID: 6LZG). Two highly dominant interacting regions (DIR) in CoV2S protein are referred as DIR-1 and DIR-2.
Two antibodies in the top panel bind to Spike protein epitopes that do not interact with hACE2. Multiple X-ray crystallographic structures for one antibody were aligned
in PyMOL (59). Five antibodies in the bottom panel from four different studies interact with the interaction region between CoV2S and hACE2 proteins. These five
antibodies interact with the DIR-2 region, but not with residues in the DIR-1 region. The surface area of the interacting region in CoV2S protein is 1,773Å2 surface area,
whereas an antibody can cover 600–900 Å2 surface. (B) Schematic diagram to explain how the currently known antibodies can completely hinder CoV2S-hACE2
interaction with the help of a partner antibody.
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Spike protein which is related to the infectivity of the SARS-
CoV-2 (60), however, the precise meaning remains unclear
(61). Moreover, the effect of the mutated epitopes in CoV2S
protein on the effectiveness and affinity of the above-mentioned
neutralizing antibodies will be interesting to understand. The
ACE2 variants in different species are directly related to the
level of infectivity, but no statistically significant mutation has
been reported in the hACE2 protein worldwide, so far (62).
We believe that the ACE2 protein is not yet under selection
pressure, as the COVID infections are recent encounters to the
human populations. Of course, it will be very interesting to
know how different populations will adapt genetically to these
infections in the future, but evolutionary selection of the ACE2
receptor will be a very long-term adaptation to the COVID-
19 infection.

The antibody itself can impact its therapeutic potential for
example by post translational mechanisms i.e., Fc glycosylation
can impact the pharmacokinetics and pharmacodynamics of
the antibodies (63, 64). Also, the class-specific antibody
response i.e., IgM, IgG, or IgA, impacts the functioning of
the antibodies, because of the significant differences between
the effector functions of antibodies of different classes. This
does not only concern their complement binding and Fc
receptor binding, but also other typical characteristics such as
the efficient transport of IgA dimers through epithelial layers
and their survival in mucosal lining fluid of the epithelial
layers in respiratory tract and intestine. In most infection
and vaccination studies, serum antibody analysis is focused on
antigen-specific antibodies of IgM and IgG class, rarely IgA
class. Importantly, we consider a major role of epithelium-
linked IgA dimer antibodies because the virus enters via the
mucosal route where the IgA antibody response is ideally
a first line antibody defense mechanism of the immune
system in blocking the virus to adhere to the epithelial
layers. In line with these considerations, Sterlin et al. recently
showed that the IgA response dominates the early neutralizing
antibody response to COVID-19 infection and IgA response
contributes more to virus neutralization as compared to the
IgG response (65). These insights challenge the vaccination
strategies where most of the vaccines are developed to raise
IgG responses which may not provide optimal protection at the
mucosal surfaces in respiratory infections, such as SARS-CoV-
2 infections. The intranasal vaccination strategy and IgA-based
therapeutic antibodies for the influenza infection (66, 67) and
intranasal administration of a MERS-derived vaccine (68) clearly
exploit the beneficial role of IgA antibodies at epithelial layers.
Concludingly, IgA should be preferred over IgG-based responses
in vaccination strategies and antibody treatment against COVID-
19 infection.

CONCLUDING REMARKS

Since the binding affinity of S viral proteins to mouse ACE2
receptors is less than half as compared to humans, non-human
primates and cats (69), the antibodies raised in mouse models
will not be equally effective in humans. Similar binding efficiency
of cat’s and human’s ACE2 receptor with CoV2S viral protein
makes the felines a better model to assess therapeutic and
molecular research for COVID-19 infection. In this respect,
caution should be given to cats as a frequently ignored reservoir
of the virus.

To prevent and/or disrupt the unusually high-affinity of
the CoV2S-hACE2 interaction synapse, which contains at least
two high-affinity interactions sites, one can predict that a
single monoclonal “therapeutic” antibody is likely insufficient.
Consequently, proper epitope mapping of therapeutic antibodies
is needed, which should preferably target multiple tyrosine
residues in the binding region that result in highly interactive
polar bonds between viral S proteins and ACE2 receptors.
Current antibodies are potent to cover the dominant
interaction region (DIR)-2, whereas a partner antibody can
completely hinder the CoV2S-hACE2 interaction. Hence, passive
immunization for COVID-19 infection should be composed
of mixtures of different high-affinity antibodies that target
different sites of the adhesion synapse between the CoV2S and

hACE2 proteins. Consequently, a set of high-affinity antibodies,
preferably of IgA-class, recognizing multiple different epitopes
of the synapse-region of the CoV2S protein are needed for an
optimal and prolonged activity at epithelial layers of respiratory
and intestine tracts. This notion should not only be considered in
antibody-based therapies but also in the design of SARS-CoV-2
vaccine strategies.
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