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Blocking the epithelial-to-mesenchymal transition
pathway abrogates resistance to anti-folate
chemotherapy in lung cancer

S-Q Liang1,2,3, TM Marti1,2, P Dorn1,2, L Froment1,2, SRR Hall1,2, S Berezowska4, G Kocher1,2, RA Schmid*,1,2 and R-W Peng*,1,2

Anticancer therapies currently used in the clinic often can neither eradicate the tumor nor prevent disease recurrence due to tumor

resistance. In this study, we showed that chemoresistance to pemetrexed, a multi-target anti-folate (MTA) chemotherapeutic agent

for non-small cell lung cancer (NSCLC), is associated with a stem cell-like phenotype characterized by an enriched stem cell gene

signature, augmented aldehyde dehydrogenase activity and greater clonogenic potential. Mechanistically, chemoresistance to

MTA requires activation of epithelial-to-mesenchymal transition (EMT) pathway in that an experimentally induced EMT per se

promotes chemoresistance in NSCLC and inhibition of EMT signaling by kaempferol renders the otherwise chemoresistant

cancer cells susceptible to MTA. Relevant to the clinical setting, human primary NSCLC cells with an elevated EMT signaling

feature a significantly enhanced potential to resist MTA, whereas concomitant administration of kaempferol abrogates MTA

chemoresistance, regardless of whether it is due to an intrinsic or induced activation of the EMT pathway. Collectively, our findings

reveal that a bona fide activation of EMT pathway is required and sufficient for chemoresistance to MTA and that kaempferol

potently regresses this chemotherapy refractory phenotype, highlighting the potential of EMT pathway inhibition to enhance

chemotherapeutic response of lung cancer.
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Lung cancer is the most common and deadliest among all

malignant tumors, causing over one million deaths world-wide

each year.1 The two major types of lung cancer are non-small

cell lung cancer (NSCLC), accounting for about 80–85% of all

lung cancer cases, and small cell lung cancer (SCLC) for

about 10%. Chemotherapy represents a frontline treatment for

lung cancer in particular for NSCLC that is often diagnosed at

an advanced stage.2 However, conventional chemotherapeu-

tics often can neither stop tumor growth nor prevent its relapse

due to tumor resistance to chemotherapy. The molecular

mechanisms underlying this phenomenon remain poorly

defined,3 highlighting an urgent need to understand the

cellular and molecular determinants that drive and sustain

chemoresistance, which might hold the promise for identifica-

tion of tumor- and drug-specific alterations that are amenable

to molecularly targeted intervention, and for generation of

biomarker profiles that will enable personalized therapy.

Experimental and clinical evidence has revealed that cancer

cells are heterogeneous regarding tumor-propagating capa-

city and response to therapeutic drugs. A prevailing hypoth-

esis states that a phenotypically and functionally distinct

subpopulation within the tumor, referred to as cancer stem

cells (CSCs), dictates tumor propagation and progression and

might additionally account for the tumor resistance to

therapeutics.4,5 The CSC concept explains plausibly the

inefficiency of chemotherapeutic drugs used today and implies

that CSCs must be taken into account for effective anticancer

strategies aimed at permanent clinical remission of tumors.

Supporting this model, tissue-specific CSCs, characterized by

a gene signature reminiscent of embryonic stem cells, for

example, elevated levels of Sox2, Oct4 and Nanog, and

the potential to self-renew and differentiate into multilineage

cancer cell types, have been identified in leukemia

and solid tumors.6–9 CSCs in some cancers have also

been connected with tumor resistance to chemo-, radio- and

molecularly targeted therapies.10–12 In NSCLC, several

studies have reported the identification of CSCs, based

primarily on the expression of cell-surface markers,13–17 and

a link between CSCs and NSCLC resistance has also been

proposed.14,15,17–20

Epithelial-to-mesenchymal transition (EMT) is a trans-

differentiation program essential for numerous developmental

processes during embryogenesis, enabling epithelial cells to

lose cell polarity and cell–cell adhesion and to concomitantly

attain mesenchymal characteristics, such as enhanced

migration and invasion.21 EMT can be triggered by diverse

1Division of General Thoracic Surgery, Inselspital University Hospital Bern, Bern, Switzerland; 2Department of Clinical Research, Thoracic Surgery Stem Cell Laboratory,
University of Bern, Bern, Switzerland; 3Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland and 4Institute of Pathology, University of
Bern, Bern, Switzerland
*Corresponding author: RA Schmid or R-W Peng, Department of Clinical Research, Thoracic Surgery Stem Cell Laboratory, University Hospital Bern, Murtenstrasse 50,
Bern 3010, Switzerland. Tel: +41 031 632 4081; Fax: +41 031 632 0454; E-mail: ralph.schmid@insel.ch or renwang.peng@insel.ch

Received 03.3.15; revised 03.6.15; accepted 11.6.15; Edited by M Agostini

Abbreviations: ALDH, aldehyde dehydrogenase; CSCs, cancer stem cells; EMT, epithelial-to-mesenchymal transition; EMT-TF, epithelial-to-mesenchymal transition
inducing factor; FACS, fluorescence-activated cell sorting; MPM, malignant pleural mesothelioma; MTA, multi-target folate antagonist; NSCLC, non-small cell lung cancer;
qPCR, quantitative real-time PCR; SCLC, small cell lung cancer; TGF-β, transforming growth factor β; MMP, matrix metalloproteinase; ERK, extracellular signal-
regulated kinase; NF, nuclear factor; FBS, fetal bovine serum

Citation: Cell Death and Disease (2015) 6, e1824; doi:10.1038/cddis.2015.195

& 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2015.195
mailto:ralph.schmid@insel.ch
mailto:renwang.peng@insel.ch
http://dx.doi.org/10.1038/cddis.2015.195
http://www.nature.com/cddis


extracellular stimuli, for example, transforming growth factor-β

(TGF-β). As response, recipient cells mobilize a signaling

cascade, leading to increased expression of a panel of EMT-

inducing transcription factors (EMT-TFs), most prominently

SNAI1/SNAIL1, SNAI2/SNAIL2 (also known as SLUG), ZEB1

and ZEB2. Upregulation of EMT-TFs in turn modulates the

expression of their downstream target genes, which ultimately

executes the activation of an EMT.22,23 Remarkably, recent

studies have revealed a key role for EMT in potentiation of

stem cell features, acquisition of an un-differentiated state and

promotion of tumor progression and metastasis.24,25 Further-

more, an important role for EMT in tumor resistance to

anticancer therapies has increasingly been appreciated.26–28

In this study, we have investigated chemoresistance to

pemetrexed, a multitargeted anti-folate (MTA) chemothera-

peutic agent used in the clinic for treatment of NSCLC and

malignant pleural mesothelioma (MPM). MTA is analogous to

folic acid, a physiological precursor required by both normal

and tumor cells for de novo purine and pyrimidine

biosynthesis.29 We show that in NSCLC chemoresistance to

MTA is linked to a stem cell-like phenotype and functionally

driven by an escalated EMT signaling.We further demonstrate

that kaempferol potently regresses this chemotherapy refrac-

tory phenotype. Kaempferol is a natural flavonoid existing in

many dietary plant sources and previous studies have shown

that kaempferol possesses multifaceted biological and phar-

macological properties including anticancer properties.30–32

The molecular mechanisms underlying the activities of

kaempferol remain largely undefined. To our best knowledge,

this is the first report showing that chemoresistance to MTA is

attributed to an activated EMT pathway and that kaempferol

abrogates this phenotype. Thus, blocking EMT signalingmight

be a rational strategy to enhance cancer response to

chemotherapeutics.

Results

Chemoresistance to MTA is associated with a stem cell-

like phenotype. To assess how NSCLC responds to

conventional chemotherapeutic agents, a panel of NSCLC

cell lines (A549, H358 and H460) were treated with

pemetrexed (MTA). Cell growth and drug efficacy were

subsequently determined by XTT assay according to the

NCI60 platform protocol.33 MTA treatment imposed a

proliferation arrest in A549, H358 and H460 cells

(Supplementary Figure S1). Notably, a variable but substan-

tial subpopulation in all three NSCLC lines still proliferated in

the presence of MTA (Supplementary Figure S1) and this

proliferative potential persisted even at the highest tested

drug doses and after prolonged exposure (up to 7 days),

suggesting that this fraction of tumor cells could escape the

treatment and were MTA resistant.

To characterize MTA-resistant NSCLC cells, we generated

chemoresistant cell lines (A549_R, H358_R and H460_R) by

continuously exposing A549, H358 and H460 cells to

increasing doses of MTA, starting from the IC50 and doubling

the MTA concentration every week until a dose of 5–10× IC50

was reached. Gene-expression analysis with quantitative real-

time PCR (qPCR) showed that these MTA-resistant cells,

irrespective of the NSCLC subtype from which their parental

cells were derived, unanimously featured a stem cell-like gene

signature characterized by elevated mRNA levels of embryo-

nic stem cell factors Sox2, Oct4 and Nanog (Figure 1a–c),

although to a varying extent. Specifically, all three chemore-

sistant lines (A549_R, H358_R and H460_R) expressed

significantly higher levels of Oct4B and Nanog than their

respective parental cells (A549, H358 and H460). Significant

upregulation of Oct4A was observed in A549_R compared

with that in A549 cells. Interestingly, Sox2 was significantly

increased in A549_R and H460_R cells but reduced in

H358_R cells compared with that in their corresponding

parental cells (Figure 1a–c).

To test whether chemoresistance is linked to the acquisition

of a stem cell phenotype, we next assessed whether MTA

treatment induces clonogenicity in NSCLC cells. Acute

treatment (up to 12 h) with MTA indeed promoted clonogenic

potential in A549 and H460 cells in a time-dependent manner,

as the cells exposed to MTA (5 μM) for prolonged periods gave

rise to more colonies than those treated for shorter time

(Supplementary Figures S2A and B). MTA (1 μM) also induced

clonogenicity in H358 cells, but 6-h treatment induced more

colonies than 12-h treatment (Supplementary Figure S2C).

Augmented ALDH activity marks a stem cell-like subset

in NSCLC displaying enhanced MTA resistance. Alde-

hyde dehydrogenase (ALDH) is a marker of normal and

malignant stem cells in a variety of tissues including the

lung.34–36 Notably, ALDH1A2 was among the most

prominently upregulated genes in MTA-resistant cells

(Figure 1a–c). Consistent with this finding, acute treatment

with MTA (10 μM for 24 h) significantly increased the ratio of

ALDH-positive cells (Aldefluor assay) in A549 (from 0.86 to

14.7%), H358 (from 1.7 to 15.2%) and H460 cells (from 7.23

to 13%), as indicated by flow cytometry (Supplementary

Figure S3A). Further analysis revealed that ALDH-positive

cells (ALDHhigh), fractionated by fluorescence-activated cell

sorting (FACS; Supplementary Figure S3B), featured a more

pronounced stem cell phenotype, manifested by elevated

mRNA levels of stem cell factors (Figure 1d; Supplementary

Figures S3C and E) and enhanced clonogenic potential

(Figure 1e; Supplementary Figures S3D and F) in the

ALDHhigh cells compared with their corresponding parental

A549, H358 and H460 cells. Importantly, the ALDHhigh cells

displayed a greater chemoresistance to MTA than the

parental cells (Figure 1f). Further supporting that augmented

ALDH activity is a feature of stem cells and chemoresistance

in NSCLC, in silico analysis37 of 1570 NSCLC patients

showed that high expression of ALDH1A2, but not of

ALDH1A1 and ALDH1A3, was associated with poorer

prognosis (Supplementary Figure S3G).

Chemoresistance to MTA requires an activated EMT

pathway. MTA-resistant NSCLC cells adopted a mesench-

ymal appearance instead of the epithelial morphology of their

parental cells (Figure 2a; Supplementary Figures S4A

and B), which prompted us to address the possibility that

these cells had undergone an EMT. Immuofluorescence

analyses confirmed that E-cadherin and β-catenin, two

epithelial markers localized at cell–cell adhesion and
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expressed at high levels in parental A549 cells, were

remarkably reduced in chemoresistant A549_R cells

(Figure 2b). In contrast, Vimentin, a marker of mesenchymal

cells that was marginally detectable in parental A549 cells,

was highly abundant in A549_R cells (Figure 2b). Western

blot analyses confirmed the change of E-cadherin and

Vimentin in A549_R and A549 cells and the same pattern

of E-cadherin and Vimentin expression were found in

H358_R and H358 (Supplementary Figure S4C). Similarly,

H460_R expressed higher level of Vimentin than H460 cells

(Supplementary Figure S4C). We did not detect E-cadherin in

H460 cells (Supplementary Figure S4C), which is, however,

consistent with an earlier study.26 In concordance with the

immunofluorescence and Western blot results, qPCR ana-

lyses revealed that the majority of EMT-TFs (SNAI1, SNAI2,

ZEB1 and ZEB2) and also CDH2 (N-cadherin), another

mesenchymal marker, were significantly upregulated in

A549_R, H358_R and H460_R cells compared with the

Figure 1 Chemoresistance to MTA is associated with an enriched stem cell gene signature and augmented ALDH activity. (a–c) mRNA levels of stem cell genes in
chemoresistant A549_R, H358_R, H460_R and their parental A549, H358 and H460 cells were analyzed by qPCR. Data are shown as mean± S.D. of three independent
experiments (n= 3). (d–f) Augmented ALDH activity hallmarks a stem cell-like population with enhanced chemoresistance to MTA. The FACS-sorted ALDHhigh subset and
unsorted A549 cells were analyzed by qPCR (d), by clonogenic assay (e) and by XTTassay after treatment with MTA for 24 h (f). Results are presented as mean± S.D. of three
independent experiments (n= 3). For clonogenic assay (e), the ALDHhigh and A549 cells were seeded in six-well plates (250 cells/well) and cultured for 10 days. *Po0.05;
**Po0.01; ***Po0.001
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Figure 2 Chemoresistant NSCLC cells exhibit an activated EMT pathway. (a) Morphological images of chemoresistant A549_R and parental A549 cells. Scale bar, 100 μm.
(b) A549_R and A549 cells were immunostained for Vimentin, β-catenin and E-cadherin (green). Nuclei were counterstained with DAPI (blue). Scale bar, 25 μm (c–e) mRNA
levels of EMT-TFs and CDH2/N-cadherin in A549_R, H358_R and H460_R cells and the corresponding parental cells (A549, H358 and H460) were analyzed by qPCR. Data are
shown as mean± S.D. of three independent experiments (n= 3). (f) Different NSCLC cells are at distinct stages along the EMT. mRNA levels of EMT-TFs and Vimentin in PC9,
H358, A549 and H460 cells were analyzed by qPCR and results are shown in mean± S.D. of three independent experiments (n= 3). (g) NSCLC cells at distinct EMT stages
exhibit differential sensitivity to MTA. PC9, H358, A549 and H460 cells treated with the indicated MTA doses for 5 days were analyzed by XTTassay. The results are shown as
mean± S.D. of triplicate experiments. *Po0.05; **Po0.01; ***Po0.001
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parental cells (Figures 2c and e). Moreover, a scratch wound-

healing assay indicated that A549_R and H358_R displayed

higher mobility than their parental cells (Supplementary

Figures S4D and E), consistent with a scenario that EMT is

activated in MTA-resistant cells.

The EMT pathway is a dynamic process that consists of

serial intermediate stages, by which epithelial cells transition

to a mesenchymal state.23,38 We asked whether an intrinsic

EMT status is related to chemoresistant potential in NSCLC

cells. Analyses with qPCR revealed that EMT-TFs (SNAI1,

SNAI2, ZEB1 and ZEB2) and Vimentin were differentially

expressed in the NSCLC cell lines A549, H358, H460 and PC9

(Figure 2f; Supplementary Table S1). Significantly, SNAI1 was

highly abundant in H358, A549 and H460 cells compared with

that in PC9 cells. Similarly, ZEB1 and Vimentin were

expressed at the highest level in A549 and H460 cells, to a

lesser extent in H358 cells but only at basal level in PC9 cells

(Figure 2f; Supplementary Table S1). Importantly, NSCLC

cells that contained more mesenchymal-like subpopulations,

for example, A549 andH460 cells, based on themRNA level of

EMT-TFs andVimentin, featured a greater chemoresistance to

MTA (Figure 2g). Specifically, A549 and H460 cells that had

the highest ZEB1 and Vimentin levels displayed the greatest

resistance to MTA. In contrast, PC9 cells that expressed the

lowest level of EMT-TFs and Vimentin were highly sensitive to

MTA treatment (Figure 2g).

To address whether EMT is functionally important for

chemoresistance, we treated NSCLC cells with TGF-β that is

known to induce EMT.24 TGF-β treatment triggered a

morphological switch from epithelial-to-mesenchymal pheno-

type in H358 cells (Figure 3a; Supplementary Figure S5) and

qPCR analyses revealed an EMT-TF expression profile

consistent with an activated EMT pathway in TGF-β-treated

H358 and A549 cells (Figure 3b; Supplementary Figure S6A).

In concordance with the previous report,24 TGF-β also

potentiated the stem cell phenotype, for example, increased

clonogenicity and sphere-forming potential (Supplementary

Figures S6B, C and D). Importantly, TGF-β-treated H358 and

A549 cells that featured an activated EMT pathway were

significantly more resistant to MTA than untreated cells

(Figure 3c; Supplementary Figure S6E). In detail, the GI50

(50% growth inhibition) concentration of MTA increased from

about 0.025 μM (untreated H358 cells) to around 0.6 μM (H358

cells treated with TGF-β).

Kaempferol regresses MTA resistance by inhibiting the

EMT pathway. To address whether an activated EMT

pathway drives chemoresistance in NSCLC, we performed

loss-of-function analyses by treating chemoresistant H358

cells with kaempferol, a natural flavonoid existing in dietary

plants and recently identified as an EMT inhibitor.39 Confirm-

ing the previous report,39 kaempferol treatment induced a

morphological transition from mesenchymal-to-epithelial pheno-

type in H358_EMT cells (Figure 3a; Supplementary Figure S5),

generated by treating H358 cells with TGF-β, and in

MTA-resistant H358_R cells (Figures 1b, 2d and 3d;

Supplementary Figure S7A). Consistent with the observed

morphological switch, kaempferol significantly reduced the

expression of EMT-TFs in both H358_EMTand H358_R cells

(Figures 3b and e) and concomitantly downregulated the

stem cell genes in H358_R cells (Figure 3f). Importantly,

kaempferol potently sensitized the chemoresistant

H358_EMT and H358_R cells to MTA treatment (Figures 3c

and g). Similar effects of kaempferol on chemoresistant

A549_R and H460_R were also observed (Supplementary

Figure S7B).

TGF-β signaling is initiated when TGF-β binds its receptors

(TβRI/ TβRII), which can be blocked by SB431542, an inhibitor

of TβRI.40 To dissect whether EMT is directly involved in MTA

resistance, H358_R, A549_R and H460_R were analyzed for

their response to MTA with or without SB431542. Strikingly,

concomitant treatment with SB431542 strongly regressed the

resistance of all three cell lines to MTA, albeit to a varying

extent (Figure 3g; Supplementary Figure S7B). Thus, che-

moresistance to MTA requires a bona fide activation of EMT

and pharmacological suppression of EMT regresses MTA

resistance.

An activated EMT pathway is required for chemoresis-

tance to MTA in primary NSCLC and pharmacological

suppression of EMT enhances tumor response to MTA.

To test the clinical relevance of our findings, we analyzed a

panel of primary NSCLC cells generated directly from tumors

of NSCLC patients (Supplementary Table S2; Supplementary

Figure S8). These primary NSCLC cells were different in

morphology, ranging from a typical epithelial appearance, for

example, BE088T cells, to a more mesenchymal-like

phenotype such as BE090T and BE060T cells (Figure 4a).

Paralleling our findings in NSCLC cell lines (Figure 2f), EMT-

TFs and Vimentin were differentially expressed in these cells,

for example, SNAI1, ZEB1/2 and Vimentin were expressed at

low levels in BE088T but highly abundant in others (BE060T,

BE069T, BE079T, BE084T and BE090T), stratifying the cells

into two categories: one with basal EMT signaling and the

other with an more activated EMT, indicative of more

mesenchymal-like subpopulations within the cells

(Figure 4b; Supplementary Table S3). Similar to our findings

with NSCLC cell lines (Figure 2f), the primary NSCLC cells

with more mesenchymal-like subpopulations, for example,

BE060T and BE090T cells, displayed much greater che-

moresistance to MTA, whereas the cells in which the EMT

pathway was not activated, such as BE088T cells, were

highly sensitive to MTA (Figure 4c). Importantly and in

concordance with the findings in NSCLC cell lines

(Figure 3), treatment with kaempferol abrogated MTA

resistance in primary NSCLC cells (Figure 4d). Strengthening

the finding with NSCLC cells (Figure 3g; Supplementary

Figure S7B), SB431542 potently abrogated the resistance of

the primary NSCLC cells to MTA (Figure 4d). As an

anticipated exception, BE088T were not MTA resistant, thus

irrespective of the addition of kaempferol or SB431542

(Figure 4d).

Finally, we investigated whether an experimentally induced

activation of the EMT pathway promotes MTA resistance in

primary NSCLC cells. TGF-β-treated BE088T cells (BE088T

+TGF-β) and chemoresistant BE088T_R cells, generated by

chronically treating BE088T cells with MTA, featured an

activated EMT pathway (Figures 5a and b; Supplementary

Figure S9), a more pronounced stem cell-like phenotype

(Figure 5c) and, as expected, an enhanced chemoresistance
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to MTA (Figure 5d) compared with the parental BE088T cells.

Importantly, both kaempferol and SB431542 sensitized the

otherwise chemoresistant BE088T_R cells to MTA, as con-

comitant treatment with MTA and kaempferol or SB431542

abolished chemoresistance of BE088T_R cells (Figure 5e).

Discussion

Despite recent advances in analyses of skin and intestine

cancers showing that bona fide primary tumors are indeed de

novo seeded and propagated by CSCs in their natural

environment,8,9 there is still a paucity of data that have
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unequivocally addressed the role and underlying mechanisms

for CSCs in therapeutic resistance. Chemotherapy represents

a standard option of NSCLC treatment and chemoresistance

significantly influences the clinical outcome. In this study, we

show that NSCLC resistance to chemotherapeutic MTA is

associated with a stem cell-like phenotype, manifested by an

increased level of stem cell factors (Sox2, Oct4 and Nanog)

and a greater clonogenicity. The involvement of stem cell-like

cancer cells in chemoresistance is reinforced by the finding

that ALDH1A2 is one of the most upregulated genes in

chemoresistant cells and that the NSCLC subset with an

augmented ALDH activity (ALDHhigh) features a greater

chemoresistance. We further reveal that an activated EMT

pathway is functionally required and sufficient for NSCLC

chemoresistance to MTA and that kaempferol potently

regresses this chemotherapy refractory phenotype by rever-

sing EMT. Thus, blocking the EMT pathway by kaempferol

might be a rational strategy to enhance chemotherapeutic

response of lung cancer.

MTA inhibits de novo purine and pyrimidine biosynthesis

and treatment with MTA induces the expression of thymidylate

synthase, a key enzyme in the biosynthetic pathway, which

might affect tumor response to MTA.41 Recent studies with

MPM have implicated mesothelioma cells with stem cell

properties, such as high sphere-forming and tumor-initiating

capacity, in chemoresistance to MTA.42,43 Consistent with the

findings in MPM, we now demonstrate that chemoresistance

to MTA in NSCLC is also linked to a stem cell-like phenotype,

evidenced by an enriched stem cell gene signature and

enhanced clonogenic potential in MTA-resistant cells com-

pared with those in bulk tumor cells (Figure 1 and

Supplementary Figure S2)

It has been shown in a variety of malignant tumors including

lung cancer that ALDH is a CSCmarker.34,35 We demonstrate

in this study that the NSCLC subset with an augmented ALDH

activity (ALDHhigh) indeed possesses an elevated level of stem

cell genes, an elevated clonogenic capacity and, importantly, a

greater chemoresistance to MTA (Figure 1). Although we can

not exclude the possibility that increased ALDH activity

following MTA treatment (Supplementary Figure S3A) might

also be contributed by other ALDH isoforms, ALDH1A2 is,

however, one of the most upregulated genes associated with

chemoresistance (Figure 1). In contrast, other isoforms,for

example, ALDH1A1, ALDH1A3, ALDH2 and ALDH3, are not

significantly altered in chemoresistant cells (data not shown).

The importance of ALDH1A2 in chemoresistance is further

supported by our finding that treatment with TGF-β, which

induces an activated EMT pathway and promotes chemore-

sistance, also increases ALDH1A2 expression (Figure 5c).

Finally, an in silico analysis of a cohort of 1570 NSCLC

patients reveals that high expression of ALDH1A2, but not of

ALDH1A1 or ALDH1A3, is associated with poorer prognosis

(Supplementary Figure S3G). Interestingly, a recent report

has identified ALDH1A3 as a key marker of a self-renewing

population in NSCLC.36 Future studies will be necessary to

delineate whether different ALDH isoforms have distinct

regulatory roles in cancer.

We demonstrate that chemoresistance to MTA requires an

activated EMT pathway. Compelling evidence supporting this

conclusion comes from the findings that chemoresistant

NSCLC cells feature an activated EMT signaling (Figure 2)

and that an experimentally induced EMT per se (by treating

with TGF-β) effectively promotes the acquisition of chemore-

sistance in both established NSCLC cell lines and primary

NSCLC (Figures 3 and 5). Moreover, NSCLC cells with

different mRNA levels of EMT-TFs and Vimentin, differ in drug

response to MTA, with the cells that express higher EMT-TFs

andVimentin, display higher chemoresistance (Figures 2f and g,

4b and c and Supplementary Table S1). Finally, SB431542, an

inhibitor of TβRI kinase,40 suppresses the resistance toMTA of

NSCLC cells (Figures 3g, 4d and 5e; Supplementary Figure

S7B), confirming that TβRI-mediated EMT is indeed required

for NSCLC resistance to MTA. Similar findings have been

reported in colorectal and ovarian cancers,27,28 in which

chemo- and radiotherapy induces an EMT, and also in

NSCLC, where tumor sensitivity to tyrosine kinase inhibitors

is dependent on the EMT pathway.26

The finding that an activated EMT pathway drives chemore-

sistance to MTA provides the conceptual possibility for rational

design of therapeutic interventions, aimed to overcome this

refractory phenomenon of tumors. In light of this context, we

showed that kaempferol potently regresses chemoresistance

in NSCLC cells (Figures 3c and g). Importantly and relevant to

the clinical setting, concomitant administration of kaempferol

abrogates chemoresistance to MTA in primary NSCLC cells,

regardless of whether the resistance is due to an intrinsic

or induced activation of the EMT pathway (Figures 4 and 5).

Kaempferol-dependent abrogation of chemoresistance

is likely due to the reversal of the EMT, as kaempferol

treatment effectively induces a morphological switch from

mesenchymal-to-epithelial phenotype and concomitantly

reduces the expression of EMT-TFs and mesenchymal cell

markers (Figure 3). Kaempferol belongs to the family of

flavonoids that exist inmany dietary plant sources and have for

Figure 3 An activated EMT pathway is required for chemoresistance to MTA. (a) TGF-β induces a morphological switch from epithelial-to-mesenchymal phenotype and
kaemperol reverses the process. H358, untreated H358 cells; H358_EMT, H358 cells treated with TGF-β (5 ng/ml) for 14 days; H358_EMT+Kae, H358_EMT cells treated with
kaempferol (20 μM) for 5 days. Scale bar, 100 μm. (b) TGF-β treatment activates the EMT pathway whereas kaempferol inhibits the process. The mRNA level of EMT-TFs and
N-cadherin in H358, H358_EMTand kaempferol-treated H358_EMT cells (H358_EMT+kaempferol; as above) were analyzed by qPCR. Data are shown as mean± S.D. of three
independent experiments (n= 3). (c) Chemoresistance to MTA is promoted by an activated EMT pathway and regressed by kaempferol. H358, H358_EMT and kaempferol-
treated H358_EMT cells (H358_EMT+kaempferol) were treated with MTA for 5 days and analyzed by XTT assay. Data are shown as mean± S.D. of three independent
experiments (n= 3). (d) Micrographic images of chemoresistant H358_R cells treated with vehicle (H358_R) or with 20 μM kaempferol for 3 days (H358_R+kaempferol). Scale
bar, 50 μm (e and f) Kaempferol treatment inhibits the expression of EMT-TFs and stem cell genes. The mRNA level of EMT-TFs and N-cadherin (e) and of stem cell genes (f) in
vehicle- and kaempferol-treated H358_R cells (as above) was analyzed by qPCR. Data are shown as mean± S.D. of three independent experiments (n= 3). (g) Kaempferol and
SB431542 abrogate chemoresistance to MTA. H358_R cells treated with vehicle, kaempferol (20 μM) and SB431542 (40 μM) for 3 days were then exposed to MTA for another
5 days. Drug response was determined by XTT assay and data are shown as mean± S.D. of three independent experiments (n= 3). *Po0.05; **Po0.01; ****Po0.001
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long time been appreciated due to multifaceted beneficial

features, including cancer-preventive properties.44 In support

of this, numerous studies have shown that kaempferol exhibits

inhibitory effects on cancer cells by inducing cell cycle arrest,

growth inhibition and apoptosis.30–32 An increasing body of

evidence has also emerged that supports a crucial role for
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kaempferol in tumor migration and invasiveness. It has

been shown that treatment of brain cancer with kaempferol

(5–40 μM) significantly reduces the expression of matrix

metalloproteinase (MMP), a family of zinc-dependent

endopeptidases that have a pivotal role in tumor

metastasis.45 It is proposed that PKC/extracellular signal-

regulated kinase (ERK)/nuclear factor (NF)-κB signaling is

important in regulating MMP expression and previous reports

have demonstrated that treatment with 40 μM kaempferol

indeed inhibits the PKC/ERK/NF-κB cascade.46,47 Consistent

with the notion that kaempferol has an inhibitory role in tumor

metastasis and with our findings, a recent study shows that

bronchial epithelial remodeling during airway fibrosis, in which

EMT is a fundamental mechanism,48 can be effectively

Figure 4 An activated EMT pathway promotes chemoresistance in primary NSCLC cells and kaempferol enhances chemotherapeutic response to MTA. (a) Micrographic
images of the primary NSCLC cells used in this study. Scale bar, 100 μm. (b) The EMT pathway is differentially activated in primary NSCLC cells. The mRNA level of EMT-TFs
and Vimentin was analyzed by qPCR. (c) Primary NSCLC cells exhibit differential sensitivity to MTA. The cells were treated for 5 days with various MTA doses and drug response
was determined by XTTassay. (d) Kaempferol and SB431542 enhance chemotherapeutic response of primary NSCLC cells to MTA. The primary NSCLC cells treated for 5 days
with vehicle, kaempferol (40 μM) or SB431542 (40 μM) were subsequently exposed to MTA for an additional 5 days. Drug response was determined by XTTassay. All the results
are shown as mean± S.D. of triplicate experiments

Figure 5 An activated EMT pathway is required for chemoresistance to MTA in primary NSCLC and kaemperol abrogates MTA resistance. (a) Micrographic images of
primary BE088T cells (BE088T), BE088T cells treated for 14 days with 5 ng/ml TGF-ββ (BE088T+TGF-β) or with 5 μMMTA (BE088T_R). Scale bar, 100 μm. (b and c) Treatment
with TGF-β and MTA activates the EMT pathway and induces stem cell characteristics. BE088T, TGF-β- and MTA-treated BE088T cells, as described in (a), were analyzed by
qPCR for EMT-TFs and Vimentin (b) and stem cell genes (c). Data are shown as mean± S.D. of three independent experiments (n= 3). (d) An activated EMT pathway promotes
chemoresistance to MTA. BE088T, TGF-β- and MTA-treated BE088T cells (as above) were exposed to MTA for 5 days and analyzed by XTTassay. Data are shown as mean±
S.D. of three independent experiments (n= 3). (e) Kaempferol and SB431542 abrogate MTA resistance in primary NSCLC cells. BE088T_R cells were treated with vehicle,
kaempferol (40 μM) or SB431542 (40 μM) for 5 days. The resulting cells (BE088T_R, BE088T_R+kaempferol and BE088T_R+SB431542, respectively) were subsequently
exposed to MTA for an additional 4 days. The results are shown as mean± S.D. of triplicate experiments. *Po0.05; **Po0.01; ***Po0.001
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inhibited by treatment with kaempferol,39 and that kaempferol

excels this effect by blocking TGF-β-dependent EMT, leading

to restoration of epithelial phenotype, for example, E-cadherin

expression, and suppression of mesenchymal genes such as

N-cadherin.39

In summary, we have provided evidence that chemoresis-

tance to MTA is driven by an activated EMT pathway and that

kaempferol abrogates this chemotherapy refractory pheno-

type. Our findings thus provide a working model towards the

development of new anticancer therapies by molecular

intervention of EMT signaling and implicate the potential of

kaempferol to enhance chemotherapeutic response of lung

cancer.

Materials and Methods
Cell culture and reagents. Human NSCLC cell lines A549, H358, PC9
(adenocarcinoma) and H460 (large cell carcinoma) were obtained from ATCC
(American Type Culture Collection; Manassas, VA, USA) and cultured in RPMI-1640
media (Cat. #8758; Sigma-Aldrich, St Louis, MO, USA) supplemented with 10%
fetal bovine serum (FBS; Cat. #10270–106; Life Technologies, Grand Island, NY,
USA) and 1% penicillin/streptomycin solution (Cat. #P0781, Sigma-Aldrich) at 37 °C
in a humid atmosphere containing 5% CO2 and 95% air. All cell lines were DNA
fingerprinted to confirm their authenticity (Microsynth, Bern, Switzerland).
Pemetrexed/MTA (commercial name ‘ALIMTA’ Cat. #VL7640) was purchased from
Eli Lilly (Suisse) S.A. (Vernier/Geneva, Switzerland), TGF-β (Cat. #100-21) from
Peprotech (Rocky Hill, NJ, USA), kaempferol (Cat. #420345) from Calbiochem
(Darmstadt, Germany) and SB431542 (Cat. #S1067) from Selleck Chemicals
(Houston, TX, USA).
The study with patient-derived primary NSCLC cells was approved by the

Institutional Board of University Hospital Bern and performed according to the
guidelines of the Helsinki Convention. After surgical resection at the Department of
Thoracic Surgery, University Hospital Bern, the specimens were immediately
transported to the Institute of Pathology, University of Bern, where a pathologist
removed tumor tissue for cell culture generation. To establish primary cell culture,
freshly removed NSCLC tumor tissue was washed with RPMI-1640 medium
containing 1% penicillin/streptomycin, minced thoroughly into a homogeneous slurry
with scalpel and subjected to collagenase digestion by resuspending in RPMI-1640
containing 4% FBS, 0.1% (g/vol) collagenase I (Cat. #LS004196; Worthington
Biochemical Corporation, Lakewood, NJ, USA) and 0.25% collagenase II (Cat.
#LS004176; Worthington Biochemical Corporation). The reaction was carried out for
45–60 min at 37 °C in a humidified incubator, with occasional mixing to facilitate
enzymatic digestion. The digestion was stopped by adding fresh RPMI-1640
containing 10% FBS followed by filtration of the digested tissue through first 100-μm
and then 40-μm strainers. Cells were collected by centrifugation at 500 × g for 15 min
at room temperature, treated with 1 × RBC lysis buffer (eBioscience; San Diego, CA,
USA) to lyse red blood cells and cultured in serum-free CnT-Prime Airway epithelial
culture medium (Cat. #CnT-PR-A; CellnTec, Bern, Switzerland) supplemented with
1% penicillin/streptomycin. When reaching 80–90% confluence, the cells were
passaged after detachment with TrypLE Express (Cat. #12604021, Invitrogen, Grand
Island, NY, USA). Cells within the initial three passages were used for this study.

Drug response and XTT assay. NSCLC cells were seeded in triplicate in
96-well plates, with the density of 3000 cells/well, and treated for the indicated time
periods with various doses of MTA, kaemperol and vehicle (control). Cell growth and
viability after treatment was assessed with XTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-tetrazolium bromide) assay (Cat. #11465015001, Roche, Germany)
according to the manufacturer’s instructions. The efficacy of drugs on cell growth
is calculated according to NCI60 platform protocol used for human tumor cell line
anticancer drug screen.33

qPCR. Total RNA was isolated and purified with RNeasy Mini Kit (Cat. #74106,
Qiagen, Germany). Complementary DNA (cDNA) was synthesized by the High
capacity cDNA reverse transcription kit (Cat. #4368814, Applied Biosystems, Foster
City, CA, USA) according to the manufacturer’s instructions. qPCR analyses were
performed in triplicate on a 7500 Fast Real-Time PCR System (Applied Biosystems)
with commercially available TaqMan ‘Assay on Demand’ primer/probes (Applied

Biosystems): stem cell genes (SOX2, Hs 01053049_s1; OCT4A, Hs 03005111_g1
POU5F1; OCT4B, Hs 00742896_s1 POU5F1; NANOG, Hs04260366_g1 and
ALDH1A2, Hs00180254_m1), EMT-TFs (SNAI1, Hs00195591_m1; SNAI2/SLUG,
Hs00950344_m1; ZEB1, Hs00232783_m1; ZEB2, Hs00207691_m1), mesenchymal
markers (CDH2/N-cadherin, Hs00983056_m1; VIM/Vimentin, Hs00185584_m1).
The gene expression level of each target gene was normalized against GAPDH
(Hs02758991_g1) and compared among different groups by the ΔΔCT method.
Baseline and threshold for Ct calculation were set automatically with the 7500
software v2.06.

Clonogenic and sphere formation assay. Clonogenic assay was
performed as described.49 In brief, NSCLC cells at exponential growth were
treated with various reagents or FACS-sorted. Single cells were then seeded in six-
well plates at a density of 100–500 cells/well. After 10–14 days depending on
growth rate, the resulting colonies were stained with crystal violet (0.5% dissolved in
25% methanol) and colonies of more than 50 cells were counted.
Sphere-formation assay was performed as previously described.43 In brief, single-

cells were cultured in sphere medium (RPMI-1640 supplemented with 20 ng/ml
recombinant human epidermal growth factor (Cat. #PHG0314; Invitrogen) and basic
fibroblast growth factor (Cat. #PHG0314; Invitrogen), 4 μg/ml insulin (Cat. #I9278-
5 ML; Sigma-Aldrich) and 1 ml B27 (Cat. #17504-044; Invitrogen)) with ultra-low
attachment plates (Cat. #3471; Corning, Corning, NY, USA) for 7–10 days at 37 °C in
a humid atmosphere containing 5% CO2 and 95% air. To optimize sphere growth, old
medium was replenished by fresh medium every 3 days.

Aldefluor assay and FACS analysis. The Aldefluor assay kit (Cat.
#01700; Stem Cell Technologies, Vancouver, Canada) was used to determine the
overall ALDH activity by following the manufacturer’s protocol. Data acquisition was
performed on LSR II flow cytometer (Becton Dickinson) based on ALDH activity,
with 4-diethylaminobenzaldehyde (DEAB)-treated cells as negative control. Cells of
ALDHhigh were sorted on BD Aria using FACS Diva software (Becton Dickinson).
FACS data analysis was done with Flowjo software v10 (Treestar, Oregon, USA).

Scratch wound-healing assay. Scratch wound-healing was performed
essentially as described.50 In brief, confluent monolayers of MTA resistant and
corresponding parental cells were wounded with a plastic tip and cultured in
RPMI-1640 medium without FBS or low level of FBS as indicated. Cells were
observed by phase contrast microscopy at the indicated time points.

H&E staining, Immunofluorescence and western blot analysis.
Surgically removed fresh tumor tissues were formalin-fixed, paraffin-embedded,
sectioned and stained with hematoxylin-eosin (H&E) using a standard protocol. For
immunofluorescence, NSCLC cells grown on poly-lysine-treated coverslides were
fixed with 4% paraformaldehyde for 15 min at room temperature and permeabilized
with cold methanol (−20 °C) for 5 min or with 0.1% Triton X-100/PBS at room
temperature for 15 min before incubated overnight at 4 °C with primary antibodies.
Primary antibodies used in this study: mouse monoclonal anti-Vimentin (Cat.
#ab8979; AbCam, Cambridge, UK), rabbit monoclonal anti-Vimentin (Cat. #5741; Cell
Signaling Technology, Danvers, MA, USA) and mouse monoclonal anti-E-cadherin
(Cat. #14472; Cell Signaling Technology). Fluorescein isothiocyanate (FITC)-
conjugated anti-E-cadherin (Cat. #53-3249) and β-catenin (Cat. #53-2567) from
eBioscience were also used. After intensive washing with 1xPBS containing 2%
bovine serum albumin/BSA (Cat. #K41-001; PAA, Pasching, Austria), the cells treated
with anti-Vimentin or/and anti-E-cadherin antibodies were further incubated for 1 h at
room temperature with Alexa Fluor 488 goat anti-mouse IgG (Cat. #A11029), Alexa
Fluor 647 goat anti-mouse IgG (Cat. #A21236) or Alexa Fluor 488 goat anti-Rabbit
IgG (Cat. #A11034) from Invitrogen (Eugene, OR, USA). Nuclei were counterstained
by 4′,6-diamidino-2-phenylindole. Images were acquired on a ZEISS Axioplan 2
imaging microscope (Carl Zeiss MicroImaging, Göttingen, Germany) and processed
using Adobe Photoshop CS6 v.13 (Adobe Systems, San Jose, CA, USA).
For Western blot analysis, cells were lysed in RIPA buffer (Cat. #9806; Cell

Signaling Technology) and equal amounts of protein lysates (15–50 μg/lane) were
separated by SDS-PAGE (Cat. #4561033; Bio-Rad Laboratories, Hercules, CA,
USA), transferred to PVDF membranes (Cat. #170-4156; Bio-Rad), which were then
blocked in blocking buffer (Cat. #927-4000; Li-COR Biosciences, Bad Homburg,
Germany) for 1 h at room temperature and blotted at 4 °C overnight with primary
antibodies against E-cadherin (1 : 500), Vimentin (1 : 100) and β-actin (1 : 20 000;
Cat. #3700; Cell Signaling Technology). IRDye 680LT-conjugated goat anti-mouse
IgG (Cat. #926-68020) and IRDye 800CW-conjugated goat anti-rabbit IgG (Cat.
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#926-32211) from Li-COR Biosciences were used in 1 : 5000 dilution. Signals of
membrane-bound secondary antibodies were imaged with the Odyssey Infrared
Imaging System (Li-COR Biosciences).

Statistical analysis. All statistical analyses were performed using GraphPad
Prism 6.03 (GraphPad Software, http://www.graphpad.com/welcome.htm). All data
are presented as mean±S.D. from three independent experiments unless
otherwise indicated. Statistical significance was determined by student’s t-test
(two tailed) and ANOVA (one-way). *Po0.05; **Po0.01 and ***Po0.001; NS, not
significant.
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