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Abstract. Since most current scene understanding approaches operate
either on the 2D image or using a surface-based representation, they do
not allow reasoning about the physical constraints within the 3D scene.
Inspired by the “Blocks World” work in the 1960’s, we present a qual-

itative physical representation of an outdoor scene where objects have
volume and mass, and relationships describe 3D structure and mechani-
cal configurations. Our representation allows us to apply powerful global
geometric constraints between 3D volumes as well as the laws of statics in
a qualitative manner. We also present a novel iterative “interpretation-
by-synthesis” approach where, starting from an empty ground plane, we
progressively “build up” a physically-plausible 3D interpretation of the
image. For surface layout estimation, our method demonstrates an im-
provement in performance over the state-of-the-art [9]. But more impor-
tantly, our approach automatically generates 3D parse graphs which
describe qualitative geometric and mechanical properties of objects and
relationships between objects within an image.

1 Introduction

What does it mean to understand a visual scene? One popular answer is simply
naming the objects present in the image – “building”, “road”, etc. – and possi-
bly locating them in the image. However this level of understanding is somewhat
superficial as it tells us little about the underlying structure of the scene. To re-
ally understand an image it is necessary to probe deeper – to acquire some
notion of the geometric scene layout, its free space, walkable surfaces, qualita-
tive occlusions and depth relationships, etc. Object naming has also a practical
limitation: due to the heavy-tailed distribution of object instances in natural
images, a large number of objects will occur too infrequently to build usable
recognition models, leaving parts of the image completely unexplained. To ad-
dress these shortcomings, there has been a recent push toward more geometric,
rather than semantic, approaches to image understanding [8,18]. The idea is to
learn a mapping between regions in the image and planar surfaces in the scene.
The resulting labeled image can often be “popped-up” into 3D by cutting and
folding it at the appropriate region boundaries, much like a children’s pop-up
book. However this process has two limitations. First, since surface orientation
labels are being estimated per region or per super-pixel, it is difficult to en-
force global consistency, which often leads to scene models that are physically
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Fig. 1. Example output of our automatic scene understanding system. The 3D parse
graph summarizes the inferred object properties (physical boundaries, geometric type,
and mechanical properties) and relationships between objects within the scene. See
more examples on project webpage.

impossible or highly unlikely. Second, even if successful, these pop-up models
(also known as “billboards” in graphics) lack the physical substance of a true
3D representation. Like in a Potemkin village, there is nothing behind the pretty
façades!

This paper argues that a more physical representation of the scene, where
objects have volume and mass, can provide crucial high-level constraints to help
construct a globally-consistent model of the scene, as well as allow for powerful
ways of understanding and interpreting the underlying image. These new con-
straints come in the form of geometric relationships between 3D volumes as well
as laws of statics governing the behavior of forces and torques. Our main insight
is that the problem can be framed qualitatively, without requiring a metric re-
construction of the 3D scene structure (which is, of course, impossible from a
single image). Figure 1 shows a real output from our fully-automatic system.

The paper’s main contributions are: (a) a novel qualitative scene representa-
tion based on volumes (blocks) drawn from a small library; (b) the use of 3D
geometry and mechanical constraints for reasoning about scene structure; (c) an
iterative Interpretation-by-Synthesis framework that, starting from the empty
ground plane, progressively “builds up” a consistent and coherent interpretation
of the image; (d) a top-down segmentation adjustment procedure where partial
scene interpretations guide the creation of new segment proposals.
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Related Work: The idea that the basic physical and geometric constraints
of our world (so-called laws of nature) play a crucial role in visual perception
goes back at least to Helmholtz and his argument for “unconscious inference”.
In computer vision, this theme can be traced back to the very beginnings of
our discipline, with Larry Roberts arguing in 1965 that “the perception of solid

objects is a process which can be based on the properties of three-dimensional

transformations and the laws of nature” [17]. Roberts’ famous Blocks World
was a daring early attempt at producing a complete scene understanding system
for a closed artificial world of textureless polyhedral shapes by using a generic
library of polyhedral block components. At the same time, researchers in robotics
also realized the importance of physical stability of block assemblies since many
block configurations, while geometrically possible, were not physically stable.
They showed how to generate plans for the manipulation steps required to go
from an initial configuration to a target configuration such that at any stage of
assembly the blocks world remained stable [1]. Finally, the MIT Copy Demo [21]
combined the two efforts, demonstrating a robot that could visually observe a
blocks world configuration and then recreate it from a pile of unordered blocks
(recently [2] gave a more sophisticated reinterpretation of this idea, but still in
a highly constrained environment).

Unfortunately, hopes that the insights learned from the blocks world would
carry over into the real world did not materialize as it became apparent that algo-
rithms were too dependent on its very restrictive assumptions (perfect boundary
detection, textureless surfaces, etc). While the idea of using 3D geometric primi-
tives for understanding real scenes carried on into the work on generalized cylin-
ders and resulted in some impressive demos in the 1980s (e.g., ACRONYM [16]),
it eventually gave way to the currently dominant appearance-based, semantic la-
beling methods, e.g., [19,5]. Of these, the most ambitious is the effort of S.C.Zhu
and colleagues [23] who use a hand-crafted stochastic grammar over a highly
detailed dataset of labelled objects and parts to hierarchically parse an image.
While they show impressive results for a few specific scene types (e.g., kitchens,
corridors) the approach is yet to be demonstrated on more general data.

Most related to our work is a recent series of methods that attempt to model
geometric scene structure from a single image: inferring qualitative geometry
of surfaces [8,18], finding ground/vertical “fold” lines [3], grouping lines into
surfaces [22,13], estimating occlusion boundaries [10], and combining geomet-
ric and semantic information [9,14,4]. However, these approaches do not model
the global interactions between the geometric entities within the scene, and at-
tempts to incorporate them at the 2D image labeling level [15,12] have been
only partially successful. While single volumes have been used to model simple
building interiors [6] and objects (such as bed) [7], these approaches do not
model geometric or mechanical inter-volume relationships. And while modeling
physical constraints has been used in the context of dynamic object relation-
ships in video [20], we are not aware of any work using them to analyze static
images.



Blocks World Revisited 485

Fig. 2. Catalog of the possible block view classes and associated 2D projections. The
3D blocks are shown as cuboids although our representation imposes no such constraints
on the 3D shape of the block. The arrow represents the camera viewpoint.

2 Overview

Our goal is to obtain a rich physical understanding of an outdoor scene (under
camera assumptions similar to [9]) in which objects have volume and mass, and
inter-object relationships are governed by the geometry and mechanics of the 3D
world. Unfortunately, from a single image, it is next to impossible to estimate a
precise, metric 3D representation for a generic scene. Our proposed solution is
to represent 3D objects qualitatively, as one or more convex “blocks”. We define
a block as an image region represented by one of a small class of geometric
primitives and qualitative density distribution(described below). The block is our
basic unit of reasoning within the 3D scene. While a block is purposefully kept
somewhat under-constrained to allow 3D reasoning even with a large degree of
uncertainty, it contains enough information to produce a reasonable 3D rendering
under some assumptions (see Figures 1 and 8).

2.1 Block Representation

Geometrically, we want to qualitatively represent the 3D space occupied by a
block with respect to the camera viewpoint. Using the convexity assumption, we
can restrict the projection of each block in the image to one of the eight block-

view classes shown in Figure 2. These classes correspond to distinct aspects of
a block over possible viewpoints. Figure 3(a) shows a few examples of extracted
blocks in our test dataset.

We also want to represent the gravitational force acting on each block and
the extent to which a block can support other blocks, which requires knowing
the density of the block. Estimating density using visual cues alone is a hard
problem. But it turns out that there is enough visual regularity in the world
to be able to coarsely estimate a density class of each block: “light”(e.g. trees
and bushes), “medium” (e.g. humans) and “high-density” (e.g. buildings). These
three classes span the spectrum of possible densities and each class represents
order-of-magnitude difference with respect to the other classes.
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Fig. 3. (a) Examples of extracted blocks in the wide variety of images. (b) Examples
of super-pixel based density estimation of our approach.

2.2 Representing Relationships

Instead of worrying about absolute depth, we only encode pairwise depth re-
lationships between blocks, as defined by the painters’ algorithm. For a given
pair of blocks Bi and Bj , there are three possible depth relationships: “infront
of”,“behind” and “no-relationship”. Block Bi is “infront of” Bj if Bi transitively
occludes Bj in the current viewpoint and vice-versa.

To represent the mechanical configuration of the scene we use support rela-
tionships between pair of blocks. For a given pair of blocks Bi and Bj , there
are three possible support relationships: “supports”,“supported by” and “no-
relationship”. Figure 1 shows examples of the depth and support relationships
extracted by our approach (see edges between the blocks).

2.3 Geometric and Mechanical Constraints

Having a rich physical representation (blocks with masses instead of popped-up
planes) of the scene can provide additional powerful global constraints which are
vital for successful image understanding. These additional constraints are:

Static Equilibrium. Under the static world assumption, the forces and torques
acting on a block should cancel out (Newton’s first law). We use this to derive
constraints on segmentation of objects, and estimating depth and support rela-
tionships. For example, in Figure 4(c), the orange segment is rejected since it
leads to the orange block which is physically unstable due to unbalanced torques.

Support Force Constraint. A supporting object should have enough strength
to provide contact reactionary forces on the supported objects. We utilize density
to derive constraints on the support relationships and on the relative strengths
of the supporting and supported bodies.

Volume Constraint. All the objects in the world must have finite volumes and
cannot inter-penetrate each other. Figure 4(b) shows an example of how this
constraint can help in rejecting bad segmentation hypotheses (red and yellow
surfaces in the image cannot belong to different objects) since that would lead
to 3D intersection of blocks.
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Type Classes

View 
Classes

“frontal”, “front-right”, 
“front-left”, “left-right”, 

“left-occluded"," right-
occluded”, “porous”, 

“solid-non planar” 

Density
Classes

“light”, “medium” and 
“heavy”

Block Representation 

Type Classes

Depth “infront”, “behind”, “no-
relationship”

Support “Supports”, “Supported-
by"," no-relationship” 

Relationships Representation 

Fig. 4. (a) Our Representation (b)Role of Volume Constraint: The finite volume con-
straint binds the two surfaces together whereas in pop-ups the relative locations of
surfaces is not constrained. (c) Role of Static Constraints: Unbalanced torque leads to
rejection of the orange segment. The low internal stability (lighter bottom and heavier
top) of yellow segment leads to its rejection.

Depth Ordering Constraint. The depth ordering of the objects with respect
to the camera viewpoint should be consistent with the projected regions in the
image as explained in Section 3.6.

3 Assembling Blocks World: Interpretation by Synthesis

We need to use the constraints described earlier to generate a physically plau-
sible scene interpretation. While one can apply these constraints to evaluate
all possible interpretations of the scene, such an approach is computationally
infeasible because of the size of the hypotheses space. Similarly, probabilistic
approaches like Bayesian networks where all attributes and segmentations are
inferred simultaneously are also infeasible due to the large number of variables
with higher-order clique constraints (physical stability has to be evaluated in
terms of multiple bodies simultaneously interacting with each other). Instead,
we propose an iterative “interpretation by synthesis” approach which grows the
image interpretation by adding regions one by one, such that confident regions
are interpreted first in order to guide the interpretation of other regions. Our
approach is inspired by robotics systems which perform block assembly to reach
a target configuration of blocks [11]. One nice property of our approach is that,
at any given stage in the assembly, the partial interpretation of the scene satisfies
all the geometrical and mechanical constraints described above.

3.1 Initialization

Before we begin assembling a blocks world from an input image, we need to
generate an inventory of hypotheses that are consistent with the image. We use
a multiple segmentation approach to generate a large number of regions that
can correspond to blocks. We use the occlusion boundary segmenter of [10],
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Fig. 5. Initialization: We use multiple segmentation to generate block hypothesis and
a super-pixel based classifier for surface geometry and material-density.

which starts with a set of superpixels and iteratively coarsens the segmentation
by combining regions selected by a local classifier. Since our goal is to generate
multiple possible segmentations, we implement a randomized version of the same
where the coarsening is done multiple times with different seeds and different
parameters and to generate 17 possible segmentations for each image.

We estimate the local surface layout labels using [8] to estimate the view class of
each block hypothesis. To estimate the density of each block hypothesis, we imple-
mented a superpixel-based local classifier which learns a mapping between image
features (same as in [8]) and object densities. We learn the density classifier on a set
of training images labeled with the three density classes. Figure 3(b) shows a few
examples of per-superpixel density estimation for a few images. A more detailed
quantitative analysis of our density classifier is provided in Section 4. Figure 5
shows the initialization of our approach. Using the “ground” and “sky” regions
from the estimated surface layout, we initialize our empty blocks world consisting
of ground and sky. We are now ready to start adding blocks.

3.2 Searching Block Configurations

The goal is to assemble a blocks world that is consistent with the input image.
However, which block hypotheses should be used and the order in which they
should be added are not known a priori. We employ a search strategy where for
a current blocks world Wt, we propose k possible block hypotheses. These k hy-
potheses are selected based on a set of local criteria: confidence in surface layout
geometry, density estimation, internal physical stability (heavy-bottom and light
top, c.f. Section 3.5), and support likelihood (estimated based on contact with
support surfaces). Each of these k hypotheses is then provisionally “placed” into
the current blocks world and scored using a cost function described in the next
section. The hypothesis with the lowest cost is accepted and the corresponding
block is added to reach a new configuration Wt+1. The process of generating new
hypothesis and cost estimation is then repeated for Wt+1, until all the regions in
the image have been explained. For all experiments in the paper we use k = 4.

3.3 Evaluating Proposals

Given a candidate block Bi, we want to estimate its associated mechanical and
geometrical properties and its relationship to the blocks already placed in the
scene to minimize the following cost function:
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C(Bi) = Fgeometry(Gi) +
∑

S∈ground,sky

Fcontacts(Gi, S) + Fintra(Si,Gi, d)

+
∑

j∈blocks

Fstability(Gi, Sij ,Bj) + Fdepth(Gi, Sij ,D), (1)

where Gi represents the estimated block-view class, Si corresponds to the region
associated with the block, d is the estimated density of the block, Sij represent
support relationships and D represents partial-depth ordering obtained from
depth relationships. Fgeometry measures the agreement of the estimated block
view class with the superpixel-based surface layout estimation [8] and Fcontacts

measures the agreement of geometric properties with ground and sky contact
points (Section 3.4). Fintra and Fstability measure physical stability within a
single block and with respect to other blocks respectively (Section 3.5). Finally,
Fdepth measures the agreement of projection of blocks in the 2D image plane
with the estimated depth ordering (Section 3.6).

Minimizing the cost function over all possible configurations is too costly.
Instead, Figure 6 illustrates our iterative approach for evaluating a block hy-
pothesis by estimating its geometric and mechanical properties such that the
cost function C is approximately minimized. We first estimate the block-view
class of the new block by minimizing Fgeometry and Fcontacts (Figure 6c). Using
the block-view class, we compute the stability of the blocks under various sup-
port relationships by minimizing Fintra and Fstability (Figure 6d). We then use
the estimated block-view class and support relationships to estimate a partial
depth ordering of the blocks in the image . This minimizes the final term in our
cost function, Fdepth (Figure 6e). Block-geometric properties, physical stability
analysis and partial depth ordering of blocks in the scene provide important
cues for improving segmentation. Therefore, after computing these properties,
we perform a segmentation adjustment step (Figure 6f). The final computed
score is then returned to the top-level search procedure which uses it to select
the best block to add. We now discuss each of the steps above in detail.

3.4 Estimating Geometry

Estimating the geometric attributes of a block involves inferring the block view
class (Figure 2) and the 2D location of a convex corner, which we call “foldedge”
using cues from the surface layout estimation and ground and sky contact points.
Let us assume that we are adding block Bi with the associated segment Si in the
2D image plane. We need to estimate the block-view class Gi and the foldedge
location fi given the surface-geometric labels for superpixels g and the evidence
from ground and sky contact points in the image plane (CG

i and CS
i ). This can

be written as:

P (Gi, fi|g,Si, C
G
i , C

S
i ) ∝ P (g|Gi, fi,Si)P (CG

i |Gi, fi)P (CS
i |Gi, fi). (2)

The first term indicates how well the surface layout matches the hypothesized
block view class, and the second and third terms indicate the agreement between
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Fig. 6. Our approach for evaluating block hypothesis and estimating the associated
cost of placing a block

block view class and ground/sky contact points, respectively. We compute the
first term as

P (g|Gi, fi,Si) =
1

Z

∑

s∈Si

P (gs|Gi, fi, s), (3)

where s is a super-pixel in segment Si. P (gs|Gi, fi, s) represents the agreement
between the predicted block geometry, (Gi, fi) and the result of the surface layout
estimation algorithm for superpixel s. For example, if the block is associated with
“front-right” view class and the superpixel is on the right of the folding edge,
then P (gs|Gi, fi, s) would be the probability of the superpixel being labeled right-
facing by the surface layout estimation algorithm.

For estimating the contact points likelihood term, we use the constraints of
perspective projection. Given the block geometry and the folding edge, we fit
straight lines lg and ls to the the ground and sky contact points, respectively,
and we verify if their slopes are in agreement with the surface geometry: for
a frontal surface, lg and ls should be horizontal, and for left- and right-facing
surfaces lg and ls should intersect on the horizon line.

3.5 Estimating Physical Stability

Our stability measure (Figure 6d) consists of three terms. (1) Internal Sta-

bility: We prefer blocks with low potential energies, that is, blocks which have
heavier bottom and lighter top. This is useful for rejecting segmentations which



Blocks World Revisited 491

Fig. 7. (a) Computation of torques around contact lines. (b) Extracted depth con-
straints are based on convexity and support relationships among blocks.

merge two segments with different densities, such as the lighter object below the
heavier object shown on Figure 4(c). For computing internal stability, we rotate
the block by a small angle, δθ, (clockwise and anti-clockwise) around the center
of each face; and compute the change in potential energy of the block as:

∆Pi =
∑

c∈{light,medium,heavy}

∑

s∈Si

p(ds = c)mcδhs, (4)

where p(ds = c) is the probability of assigning density class c to superpixel s, δhs

is the change in height due to the rotation and mc is a constant representing the
density class. The change in potential energy is a function of three constants.
Using constraints such as ρhm =

mheavy

mmedium
> 1 and ρlm =

mlight

mmedium
< 1, we

compute the expected value of ∆Pi with respect to the ratio of densities (ρhm

and ρlm). The prior on ratio of densities for the objects can be derived using
density and the frequency of occurrence of different materials in our training
images. (2) Stability: We compute the likelihood of a block being stable given
the density configuration and support relations. For this, we first compute the
contact points of the block with the supporting block and then compute the
torque due to gravitational force exerted by each superpixel and the resultant
contact force around the contact line (Figure 7a). This again leads to torque as a
function of three constants and we use similar qualitative analysis to compute the
stability. (3) Constraints from Block Strength: We also derive constraint on
support attributes based on the densities of the two blocks possibly interacting
with each other. If the density of the supporting block is less than density of
the supported block; we then assume that the two blocks are not in physical
contact and the block below occludes the contact of the block above with the
ground.

3.6 Extracting Depth Constraints

The depth ordering constraints (Figure 6(e)) are used to guide the next step
of refining the segmentation by splitting and merging regions. Computing depth
ordering requires estimating pairwise depth constraints on blocks and then using
them to form global depth ordering. The rules for inferring depth constraints
are shown in Figure 7(b). These pairwise constraints are then used to generate
a global partial depth ordering via a simple constraint satisfaction approach.
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3.7 Creating Split and Merge Proposals

This final step involving changes to the segmentation (Figure 6f) is crucial be-
cause it avoids the pitfalls of previous systems which assumed a fixed, initial
segmentation (or even multiple segmentations) and were unable to recover from
incorrect or incomplete groupings. For example, no segmentation algorithm can
group two regions separated by an occluding object because such a merge would
require reasoning about depth ordering. It is precisely this type of reasoning
that the depth ordering estimation of Section 3.6 enables. We include segmen-
tation in the interpretation loop and use the current interpretation of the scene
to generate more segments that can be utilized as blocks in the blocks world.

Using estimated depth relationships and block view classes we create merge

proposals where two or more non-adjacent segments are combined if they share
a block as neighbor which is estimated to be in front of them in the current
viewpoint. In that case, the shared block is interpreted as an occluder which
fragmented the background block into pieces which the merge proposal attempts
to reconnect. We also create additional merge proposals by combing two or more
neighboring segments. Split proposals divide a block into two or more blocks if
the inferred properties of the block are not in agreement with confident individual
cues. For example, if the surface layout algorithm estimates a surface as frontal
with high-confidence and our inferred geometry is not frontal, then the block
is divided to create two or more blocks that agree with the surface layout. The
split and merge proposals are then evaluated by a cost function whose terms are
based on the confidence in the estimated geometry and physical stability of the
new block(s) compared to previous block(s). In our experiments, approximately
11% of the blocks are created using the resegmentation procedure.

4 Experimental Results

Since there has been so little done in the area of qualitative volumetric scene
understanding, there are no established datasets, evaluation methodologies, or
even much in terms of relevant previous work to compare against. Therefore,
we will present our evaluation in two parts: 1) qualitatively, by showing a few
representative scene parse results in the paper, and a wide variety of results on
the project webpage1; 2) quantitatively, by evaluating individual components of
our system and, when available, comparing against the relevant previous work.

Dataset: We use the dataset and methodology of Hoiem et. al [9] for compar-
ison. This dataset consists of 300 images of outdoor scenes with ground truth
surface orientation labeled for all images, but occlusion boundaries are only la-
belled for 100 images. The first 50 (of the 100) are used for training the surface
segmentation [8] and occlusion reasoning [10] of our segmenter. The remaining
250 images are used to evaluate our blocks world approach. The surface classifiers
are trained and tested using five-fold cross-validation just like in [9].

1 http://www.cs.cmu.edu/~abhinavg/blocksworld

http://www.cs.cmu.edu/~abhinavg/blocksworld
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Fig. 8. Some qualitative results obtained using our approach. (Top) Our approach
combines the two faces of building separated due to presence of occluder. (Bottom) Our
approach correctly labels the right face by rejecting bad segments using mechanics.

Qualitative: Figure 8 shows two examples of complete interpretation automat-
ically generated by the system and a 3D toy blocks world generated in VRML.
In the top example, the building is occluded by a tree in the image and therefore
none of the previous approaches can combine the two faces of the building to
produce a single building region. In a pop-up based representation, the place-
ment of the left face is unconstrained due to the contact with ground not being
visible. However, in our approach volumetric constraints aid the reasoning pro-
cess and combine the two faces to produce a block occluded by the tree. The
bottom example shows how statics can help in selecting the best blocks and
improve block-view estimation. Reasoning about mechanical constraints rejects
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Fig. 9. Additional results to show the qualitative performance on wide variety of scenes

the segment corresponding to the whole building (due to unbalanced torque).
For the selected convex block, the cues from ground and sky contact points
aid in proper geometric classification of the block. Figure 9 shows a few other
qualitative examples with the overlaid block and estimated surface orientations.

Quantitative: We evaluate various components of our system separately. It is
not possible to quantitatively compare the performance of the entire system be-
cause there is no baseline approach. For surface layout estimation, we compare
against the state-of-the-art approach [9] which combines occlusion boundary
reasoning and surface layout estimation (we removed their recognition compo-
nent from the system). On the main geometric classes (“ground”,“vertical” and
“sky”), our performance is nearly identical, so we focus on vertical sub-classes
(frontal, right-facing, left-facing, porous and solids). For this comparison, we dis-
card the super-pixels belonging to ground and sky and evaluate the performance
over the vertical super-pixels. With this evaluation metric, [9] has an average
performance of 68.8%. whereas our approach performs at 73.72%. Improving
vertical subclass performance on this dataset is known to be extremely hard; in
fact the two recent papers on the topic [15,12] show no improvement over [9].

We compare the segmentation performance to [9] on 50 images whose ground
truth (segmented regions and occlusion boundaries) is publicly available [10]. For

Table 1. Quantitative Evaluation

Surface Layout Segmentation Density Class.

Hoiem et. al (CVPR 2008) 68.8% 0.6532 -

This paper 73.72% 0.6885 69.32%
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Original Image Input Surface Layout Output Blocks Input Surface Layout Output Blocks Original Image 

Fig. 10. Failure Cases: We fail to recover proper geometry when [8] is confident about
the wrong predictions. Our approach also hallucinates blocks whenever there is a possi-
ble convex corner. For example, in the second image the wrong surface layout predicts
a false corner and our approach strengthens this volumetric interpretation.

comparing the block segmentation performance we use the Best Spatial Support
(BSS) metric. We compute the best overlap score of each ground truth segment
and then average it over all ground-truth segments to obtain the BSS score.
As can be seen, our approach improves the segmentation performance of [9] by
approximately 5.4%. We also evaluated the importance of different terms in the
cost function. Without the ground/sky contact term, the surface layout perfor-
mance falls by 1.9%. The removal of physical stability terms cause the surface
layout and segmentation performance to fall by 1.5% and 1.8% respectively.
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