
Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

ANL-95/48

BlockSolve95 Users Manual:
Scalable Library Software

I

for the Parallel Solution

by M. T. Jones and P. E. Plassmann

of Sparse Linear Systems

Argonne National Laboratory, Argonne, Illinois 60439
operated by The University of Chicago
for the United States Department of Energy under Contract W-31-109-Eng-38

Argonne Piational Laboratory, with facilities in the sfates of Illinois and Idaho, is
owned by rhe United States government, and operated by The University of Chicago

under the provisions of a contract with the Department of Energy.

DISCLAIMER-
This report was prepared as an account of work sponsored by an agency of

the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoIing by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

Reproduced from the best availaible copy.

Available to DOE and DOE contractors from the

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 3783 1
Prices available from (423) 576-8301

Available to the public from the

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161

Distribution Category:

Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

ANL-95/48

BlockSolve95 Users Manual:

Scalable Library Software for the

Parallel Solution of Sparse Linear Systems

MARK T. JONES* A N D PAUL E. PLASSMANN

Mathematics and Computer Science Division

December 1995

(Revised June 1997)

*Address: Dept. of Computer Science, The University of Tennessee, 107 Ayres Hall, Knoxville,

This work was supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Computational and Technology Research, US. Department of

Energy, under Contract W-31-109-Eng-38. The first author was supported in part by a 1994-95
University of Tennessee Professional Development award and NSF Grants ASC-9501583 and
ASC-9411394.

TN 37996-1301

Contents

Abstract

1 Introduction

1

2

2 Algorithm Descriptions 4

2.1 Processor Performance . 4
2.2 Multicolor Ordering . 5
2.3 Communication Efficiency . 6

3 The BlockSolve95 Computing Environment 8

3.1 Initializing and Finalizing the BlockSolve95 Environment 8
3.2 The BlockSolve95 Context BSprocinf o . 8

3.2.1 Parallel Environment Options . 8
3.2.2 Factorization Options . 9
3.2.3 Solver Options . 11

4 The User Matrix Data Structure BSspmat 12

4.1
4.2

The Easy Way to Convert Your Data to BSspmat
The Advanced Way to Convert Matrix Data to BSspmat

12

13

5 Manipulating and Solving Sparse Systems 16

5.1 Manipulation and Setup . 16
5.1.1 Symmetric and Nonsymmetric Matrices 16
5.1.2 Fast Reorderings for Different Matrix Nonzero Values 16

5.1.3 Diagonal Scaling of the Linear System 17
5.1.4 The Communication Data Structure BScom 17
5.1.5 Computing an Incomplete Factorization 18
5.1.6 What to Do If the Factorization Fails 18

5.2 Solving the Linear System . 19
5.3 Freeing Matrices . 20

6 Error Checking. Flop Counting. Message Passing. and the BLAS 21

6.1 Error Checking within BlockSolve95 . 21
6.2 Flopcounting . 21
6.3 Matrix Statistics . 22
6.4 Blocking and Nonblocking Messages . 22
6.5 MPI Communicators and Message Number Conflicts 22
6.6 Inline Macros for the BLAS . 23

7 Installation 24

7.1 Other Libraries . 24
7.2 UNIXmanPages . 24
7.3 Availability of BlockSolve95 . 24
7.4 Differences between Previous BlockSolve Versions 25

8 Example Programs

9 Limitations and Future Plans

10 Related Software

...
111

26

29

30

Acknowledgments

References

Subject Index

Function Index

31

32

33

34

iv

BlockSolve95 Users Manual:

Scalable Library Software for the
Parallel Solution of Sparse Linear Systems

MARK T. JONES AND PAUL E. PLASSMANN

Abstract

BlockSolwe95 is a software library for solving large, sparse systems of linear
equations on massively parallel computers or networks of workstations. The ma-
trices must be symmetric in structure; however, the matrix nonzero values may
be either symmetric or nonsymmetric. The nonzeros must be real valued. Block-

Solve95 uses a message-passing paradigm and achieves portability through the use
of the MPI message-passing standard. Emphasis has been placed on achieving both
good processor performance through the use of higher-Ievel BLAS and scalability
through the use of advanced algorithms. This report gives detailed instructions on
the use of BlockSolve95 and descriptions of a number of program examples that

can be used as templates for application programs.

1

1 Introduction

BEockSolve95 is a scalable parallel software library primarily intended for the solution of sparse

linear systems that arise from physical models, especially prolblems involving multiple degrees

of freedom at each node. For example, when the finite element method is used to solve practical
problems in structural engineering, each node typically has twcl to five degrees of freedom; Block-
Solve95 is designed to take advantage of problems with this type of local structure. BlockSolve95
is also reasonably efficient for problems that have only one degree of freedom associated with
each node, such as the three-dimensional Poisson problem. BlockSolve95 is general purpose;
we require only that the matrices be sparse and symmetric in structure (but not necessarily in

value) .l
BlockSoEve95 has incorporated several features that allow efficient performance on diverse

parallel architectures. We summarize these features below:

Every aspect of the linear system solution-the computation of a matrix ordering, the
renumbering, the computation of the preconditioner, and the iterative solution-is done

in parallel.

BlockSolve95 runs on a variety of paralleI architectures and can easily be ported to
others. The MPI message-passing standard [4, 131 is used to achieve portability across
architectures. Machines on which BlockSolve95 has been tested include the IBM SP
series, the Cray T3D and T3E, the SGI Cray Origin2000, the HP-Convex Exemplar, the
Intel Paragon, and networks of Sun, SGI, DEC alpha, and HP workstations. The bmake
directory contains contains a complete set of the maclhine-dependent makefiles for the
architectures currently supported.

The software uses an efficient implementation of the parallel coloring algorithm described

in [9] that allows for the efficient computation of matrix orderings and the scalable per-
formance of the linear solver described below.

The software is designed to solve linear systems whose sizes are the same order as the
total amount of memory available on a parallel machine. For example, Table 1 shows
how effectively BlockSolve95 uses the available memory on two different architectures for
the high-temperature superconductor modeling application described in [8]. Note that
some of each processor's memory is used by the operating system and program executable
(e.g., approximately 4 MBytes and 1 MByte, respectively, on the Intel DELTA). For this
application an unpermuted version of the matrix is maintained in addition to the memory
required by BlockSolve95. Moreover, the memory required to store only the indices and
the double-precision values for 1.0 x lo8 nonseros is 1.2 GBytes.

Table 1: Effective use of total memory by BZoc,kSoEve95

Number of Matrix (Usable (Usable
Machine Processors

Intel
DELTA 512

IBM SP1 128

'Whenever we use the term nonsymrnetric with respect to BlockSolve95, we mean symmetric in

Thus, BlockSolve95 handles most matrices arising in finite- structure and nonsymmetric in value.
element calculations; however, it cannot handle general nonsymmetric matrices.

2

The software is designed to achieve scalable performance. With a constant number of un-

knowns per processor, a matrix nonzero structure resulting from local graph connections
(the usual case with any finite-element mesh), and a reasonable partitioning of vertices
to processors, the average processor performance is roughly constant. For example, for

the piezoelectric crystal modeling application described in [7], the average processor per-
formance on the Intel DELTA varied from 4.16 MFlops to 3.83 MFlops when the number

of processors was increased from 128 to 512.

The software is designed to use Level 2 and Level 3 dense BLAS (the Basic Linear Algebra
Subroutines) to achieve efficient use of processors on different architectures. For example,
Table 2 shows the average processor performances for the application described in [SI.

Note that a reasonable percentage of the LINPACK benchmark performance is achieved

for a sparse matrix calculation on these very different processor architectures.

Table 2: Efficient use of different processor architectures by BZockSoZve95

Number Avg. Proc.
Processor of Performance Total

Machine Architecture Processors Achieved Performance

Intel DELTA Intel i860 512 8.3 MFlops 4.26 GFlops

IBM SP1 RS/6000-370 128 20.5 MFlops 2.62 GFlops

The software is a general-purpose sparse solver. Hence, BlockSolve95 is effective also
on problems arising from unstructured meshes. For example, a total performance of
2.2 GFlops was achieved on 512 processors of the Intel DELTA for an adaptive mesh
calculation using high-order shell elements in a three-dimensional geometry [lo].

The software requires minimal input. You must give BlockSolue95 the matrix nonzeros
and global indices of rows corresponding to the unknowns assigned to each processor and
the mapping functions to translate between global and local indexing.

BlockSolve95 is designed to be most effective within real application codes. In our expe-
rience, most application codes must solve the same linear systems with several different

right-hand sides and/or solve linear systems with the same structure, but different matrix
values, multiple times. BlockSolve95 has, therefore, been designed to work well in this
situation.

The remainder of this manual is organized as follows. We begin in $2 with a brief description
of the algorithms used in BlockSolue95. In $3, $4, and $5 we present the routines required to set
up the context and matrix data structures and solve linear systems with BlockSolve95. In $6
we discuss a number of details dealing with flop counting, BLAS performance, message-passing
options, and other issues that arise in tuning the performance of an application. The installation
and availability of BlockSolve95 are discussed in $7, and in $8 we describe the program examples
that are included with this version. Finally, in $9 we discuss related software and plans for future
versions of the code.

This document is intended to be used primarily as a reference. If you are a new user, we
recommend using the BlockSolve95 examples as templates for your application codes.

3

2 Algorithm Descriptions

The primary algorithmic components of BlockSoEve95 are

0 the computation of a matrix ordering allowing for the scalable inversion of the triangular
systems arising from incomplete matrix factorizations;

the automatic extraction of clique and identical node (i-node) information from unstruc-

0 the computation of incomplete sparse matrix factorizations for use as preconditioners in

tured systems that allows for the use of higher-level BLAS; and

the iterative solution of linear systems.

The matrix-ordering algorithms are used to ensure that, for many problems, the performance

per processor remains roughly constant as the problem size and number of processors are in-
creased. Computational efficiency is obtained through the use of higher-level BLAS, efficient
matrix storage schemes, and precomputed communication data structures. For symmetric
matrices, incomplete Cholesky factorizations may be computed; and for general matrices, in-
complete LU factorizations may be obtained. These preconditioners are designed so that their

application is both efficient and as scalable as possible.
In addition, BZockSolve95 contains implementations of several well-known iterative meth-

ods. A preconditioned conjugate gradient method can be used for symmetric, positive definite
systems. For symmetric indefinite systems, the preconditioned SYMMLQ algorithm may be

used.2 For nonsymmetric systems, the GMRES method may be used. In addition, the PETSc
software package [13 contains an interface to the BlockSolue95 preconditioners; this interface
may be used if other iterative methods are required. For basic .information on iterative methods,
see [a] .

You can select from a number of different preconditioners. The first is a simple diagonal
scaling of the matrix, which can be used by itself or in conjunction with another preconditioner.
The other preconditioning options are incomplete Cholesky or LU factorization, SSOR (w = l) ,

and block Jacobi (where the blocks are the cliques of the graph associated with the sparse
matrix) ~ Perhaps the most generally applicable selection is the incomplete factorization with
diagonal scaling3 The incomplete factorization is the algorithm for which BlockSolve95 was

designed; this approach has proved useful in a wide variety of practical problems.
BlockSoEve95 does not partition a matrix across the processors. Instead, BlockSolve95

assumes that the given partitioning is a good one. As such, its performance may be limited by
the quality of the partitioning. We assume that the right-hand side and the solution vector are
partitioned in the same manner as the rows of the sparse matrix. See [5] for more information
on partitioning heuristics.

We achieve parallelism in the conjugate gradient, SYMMLQ, and GMRES implementations

by partitioning the vectors used in these algorithms in the same manner that the rows of the
matrix are partitioned across the processors. For these algorithms it is (for the most part) a

simple matter of executing inner products and daxpy operations in parallel.

2.1 Processor Performance

To achieve good performance on each node, we reorder the matrix and use a layered data struc-
ture to allow the use of the higher-level dense BLAS. This reolrdering is particularly important

*The SYMMLQ algorithm requires a positive definite preconditioner, and this requirement can be
a serious limitation if the matrix being solved is very indefinite.]By "very indefinite," we mean that

the matrix has many negative and many positive eigenvalues.
3 T ~ o possible exceptions to this recommendation are (1) if the matrix has no or very small cliques

and identical nodes (in which case the factorization may be. very slow) and (2) if the space for the
incomplete factorization is not available.

on machines that use high-performance RISC chips on which good performance can be achieved

only by using such operations. The reordering of the matrices is based on the identification of
two structures that commonly arise in the graph associated with the matrix nonzeros: identical

nodes and cliques.
Identical nodes (i-nodes) typically exist when multiple degrees of freedom are associated

with each vertex in the graph. Cliques are found in many graphs associated with sparse matri-

ces, but cliques typically are found in graphs where multiple degrees of freedom are associated
with each vertex and the local connectivity of the graph is large. For example, if one uses a

second-order, three-dimensional finite element in a typical structural engineering problem (with
three degrees of freedom per vertex), clique sizes of up to 81 can be found. In general, the larger
the cliques or identical nodes, the better the performance. This technique has been used with

great success in direct matrix factorization methods.
We illustrate these structures in Figure 1 where we depict a subsection of a graph that

would arise from a two-dimensional, bilinear, multicomponent finite-element model with three

degrees of freedom per discretization point. We illustrate the three degrees of freedom by the
three dots at each node point; the linear, quadrilateral elements imply that the twelve degrees
of freedom sharing the four node points of each face are completely connected. In the figure
we show edges only between the nodes, these edges represent the complete interconnection of
all the vertices on each element or face.

The dashed lines in the figure represent a geometric partitioning of the grid; we assume
that the vertices in the central region are all assigned to one processor. We note that the
adjacency structures of the vertices at the same geometric node (i.e., the nonzero structure of
the associated variables) are identical. BlockSolve95 takes advantage of these so-called i-nodes
by maintaining only one copy of the indexing for each set of identical rows and by storing
nonzeros for these rows in a dense matrix form that can be used with the BLAS.

A second data structure layer is determined by the clique structure of the graph. Recall
that a clique is a completely connected subgraph. In the upper right of Figure 1, the grouping
of vertices by the dotted lines partitions the graph into cliques. BlockSolve95 associates a “su-
pernode” with each clique and orders the unknowns associated with each clique consecutively.

Based on this ordering, the submatrix corresponding to the unknowns in the same clique cor-
responds to a dense matrix. In the sparse matrix, these dense matrices manifest themselves as
dense blocks on the matrix diagonal. The BlockSoZve95 data structures explicitly store these
dense blocks to allow for greater efficiency in using the BLAS.

2.2 Multicolor Ordering

Following the graph reductions that are accomplished after the identification of i-nodes and
cliques in the sparse matrix structure, BlockSolere95 must construct a matrix ordering based
on the reduced graph, illustrated at the bottom of Figure 1. To achieve scalable parallel
performance in the incomplete factorization and SSOR preconditioners, BZockSolve95 colors
the reduced graph using a parallel coloring heuristic [9]. The graph reduction and coloring
phases of the computation are efficient and typically require a small amount of time relative to
the incomplete matrix factorization routine.

The advantage of using a graph coloring is that the number of colors required is essentially

a local property of the graph; thus, the number of colors is roughly independent of the number
processors used for a fixed discretization scheme. This fact allows for the scalable performance of
the BloctSolve95 package [ll]. The trade-off for this scalability is that these multicolor orderings
may not be the optimal orderings to choose for minimizing the number of iterations required for
the iterative solver; the convergence of the iterative solver with respect to different orderings is
highly problem dependent. However, the combination of coloring a general symmetric sparse
matrix and the incomplete Cholesky algorithm has proved to be successful for solving large

5

Figure 1: A subgraph generated by a two-dimensional, bilinear finite-element model

with three degrees of freedom per discretization point. The geometric partition shown

by the dotted lines yields an assignment of the vertices in the enclosed subregion t o

one processor. The upper right figure shows one possiblle decomposition of the graph

into local cliques, and the lower figure shows the corresponding clique (or supernode)

graph.

problems on scalable parallel architectures [7]. In [6] we address the issue of convergence of this
combination of algorithms for the model problem.

2.3 Communication Efficiency

The computational kernel of the BdockSolve95 package is the solution of triangular matrix
systems and triangular matrix multiplication. Triangular matrices of the same structure are
solved and multiplied in parallel many times in the use of one of the iterative solvers. The
key observation is that the required interprocessor communication in triangular system solve
or multiply is the same every time; the only difference is in trhe floating-point values that are

sent and received.
To take advantage of this repeated communication pattern, the BZockSolve95 routines in

BMcompmsg() are used to build reusable data structures. During each communication phase
each processor needs to send and receive data from some subset of the processors (a small
subset, if the partitioning is good). Each message to be sent is an array of floating-point values
and an array of integer values (matrix indices). A key observation is that these integer values

do not change; only the floating-point values change.

6

Prior to any triangular matrix solution and multiplication, each processor declares (via

function calls in BMcompmsg()) the messages that it will be sending and receiving and specifies
the integer index values associated with these messages. The routines in BMcompmsg() build

data structures by assembling the declarations from each processor. In addition, the integer

index values associated with the messages are sent to the appropriate processor and stored
there; these values will not be sent in the future. Since the size of the required messages is now

known, message buffers can be preallocated.
We currently perform no special communication pattern optimizations in BMcompmsg ()

although these routines have been set up for this possibility. The optimizations currently
performed are

1. presending of integer values;

2. preallocation of message buffers, allowing “forced” messages; MPIlrsend() , to be used;
and

3. no requests are made between processors for non-local data (processors use local infor-

For an example of the message setup process, see the routine BSsetupforwardO. For an
example of how the message data structures are used, see the routine BSf orward().

mation to know what messages to expect and what to send).

7

3 The BlockSolve95 Computing Environment

In this section we describe the BlockSolve95 computing environment. BlockSolve95 has an
initialization routine that must be called prior to any other BlockSolve95 routine and a final-

ization routine that must be called last. We also introduce the most important BlockSolve95
data structure-BSprocinf o-the BlockSolve95 context. All information about the parallel
environment, preconditioner options, and settings for the iterative solvers is communicated to
the BlockSoEve95 package through the BSprocinf o context data structure.

3.1 Initializing and Finalizing the BZoclcSoZve95 Environment

The first call to a BZockSolve95 routine must be the initialization routine BSin i t () . The
definition and arguments for this routine are as follows.

i n t B S i n i t (i n t *argc, char ***args);

The arguments a rgc and argv should be the command line arguments as delivered in all C
and C++ programs. If you have not already done so, this routine initializes MPI with a call
to M P I l n i t () and initializes any logging routines that have been specified (see $6 for more
information on logging within BlockSoZve95).

The final call to a BlockSolwe95 routine must be the routine BSf i n a l i z e o .

i n t B S f i n a l i z e O ;

This routine calls M P I J i n a l i z e O if BlockSolwe95 initialized MPI.

3.2 The BlockSohe95 Context BSprocinfo

The BlockSolwe95 context data structure, typedef BSprociiif 0, contains all the information
about the parallel environment, options for computing the preconditioner, and settings for the
iterative solver. Before calling any BZockSolve95 routines, the user must first allocate a context
of data type BSprocinfo for BlockSoEve95 using the routine E;Screate-ctx().

BSproeinfo *BScreate,ctx();

After the last BlockSolwe95 routine has been called, the context should be freed by calling the
routine-BSf ree-c tx() ~

void BSfree-ctx(BSprocinf0 *context) ;

After the call to BScreate-ctx(1, you can then call one of many routines to modify the context.
We provide default settings for the context that we think will, in general, provide the best
performance, but you may benefit from changing some of the settings.

The context options can be broken into three broad categories: (1) the parallel environment,
(2) options concerning the computation of preconditioners, and (3) settings for calls to an

iterative solver* In the following three subsections we descrilbe the possible options and give
the routine names that modify the context.

32.1 Parallel Environment Options

The following options concern the general parallel environment in which BlockSoZwe95 operates.
The settings and routines for changing them are as follows:

8

0 Processor Set: Definition of the processors that are participating in this call to Block-

Sohe95. If the number of processors participating is equal to the number of processors
that are allocated to the user (this is the default case), this value should be set to

MPI-COMM-WORLD. If, for example, you wish to work on different matrices on different sets
of processors at the same time and perhaps later combine the answers, you must set the
procset parameter accordingly. The program example grid2 solves two linear systems
simultaneously on a partitioned set of processors. The default setting for this parameter

is MPI-COMM-WORLD. To reset the value, call the routine BSctxset_ps().

void BSctx-set-ps (BSprocinf o *context ,ProcSet *ps) ;

You may wish to set the processor set to a duplicate communicator (using MPI-Commdup())
to ensure that there are no message conflicts.

0 Processor id: The id number of this processor. The default setting is given by the
routine MPI-Commiank(). To reset the value, call the routine BSctxsetid().

void BSctx-set-id(BSprocinf0 *context,int id);

0 Number of processors: The number of processors that are calling BZockSoZve95 with
a portion of the matrix. The default setting is given by the routine MPI-Cornsize().
To reset the value, call the routine BSctxsetnpO.

void BSctx-set-np(BSprocinf0 *context, int np) ;

0 Error checking: Simple error checking on the user’s matrix structure and on some
intermediate data structures. The error checking is not very time consuming and is
probably a good option to use for the first few runs. The default setting is FALSE (;.e.,
no error checking). To change this value, call the routine BSctxset-err().

void BSctx-set-err(BSprocinf0 *context,int err);

0 Print information: Print information about the coloring, reordering, and Iinear system
solution options. If set to TRUE this information is printed during execution. The default
setting is FALSE. To change this value, call the routine BSctxset-pro.

void BSctx-set-pr(BSprocinf0 *context, int pr) ;

0 Print logging information: Print logging information when the routine BSprintlog()
is called. If set to TRUE this information is printed, the default setting is FALSE. To change

this value, call the routine BSctxset_printlog(1.

void BSctx-set-print-log(BSprocinf0 *context,int print);

0 Print current context options: The current context options. To print information
on how the context is currently set, call the function BSctx-print().

void BSctx-print(BSprocinf0 *context);

3.2.2 Factorization Options

The following options concern the computation of incomplete factorizations by BlockSolve95.

Calls to these routines must be made prior to calling BSmain-perm() . The settings and routines
for changing them are as follows:

9

0 Maximum clique size: The maximum number of rows in a single clique. You may wish
to limit this value if the cliques become too large and performance is impaired (an unlikely
case in most applications and something that requires understanding the algorithms in

BZockSolve95). The default setting is I N T J A X , which is defined in the system include file

limits. h. To change this value, call the routine BSctxset-cs (1.

void BSctx-set-cs(BSprocinfo *context,int cs);

e Maximum identical node size: The maximum nu.mber of rows combined into an

identical node. You may wish to limit this value if the i-nodes become too large and
performance is impaired (an unlikely case in most applications and something that re-

quires understanding the algorithms in BZockSoZve95). The default setting is INTBAX.

To change this value, call the routine BSctxsat-is () ~

void BSetx-set-is(BSprocinf o *context ,int is) ;

e Type of local coloring: The type of local coloring heuristic used. There are two phases
in obtaining a coloring of the matrix graph: a global phase in which the Jones/Plassmann
algorithm is used and a local phase where either an incident degree ordering (IDO)
coloring or a saturated degree ordering (SDO) coloring is used. In general, the SDO
colorings are slightly better but take more time to find. The default setting is IDO. To
change this value, call the routine BSctxset-ct ().

void BSctx-set-ct(BSgrocinfo *context,int ct);

0 Retain data structures: Information retained during the reordering process. The
information saved (if the flag is set to TRUE) allows a fast reordering if a matrix with
the same structure is to be reordered later. The default setting is FALSE. To change this
value, call the routine BSctxsetit (1.

void BSctx-set-rt(BSprocinf0 *context ,int rt) ;

0 No clique/i-node reordering: No attempt to find cliques or i-nodes. This flag should
be set to TRUE (;.e., no search for i-nodes or cliques will be made) when you know that the
i-node or clique sizes will be 1 or very close to 1 (you may wish to experiment with this).
The default setting is FALSE. To change this value, call the routine BSctxsetsiO.

void BSctx-set-si(BSprocinfo *context int si) ;

e Scale linear system: Scaling of the linear system. The default setting is TRUE. To
change this value, BSctxsetscalingO may be called.

void BSctx-set-scaling(BSprocinfo *context, int scale) ;

Note that if this function is set, the routine BSscalelliag() must be called to do the
scaling. We recommend using the matrix diagonal for scaling so that the absolute value
of the diagonal of the scaled system is set to one.

3.2.3 Solver Options

The following options concern the solution of linear systems by BZockSoZve95. Calls to these

routines must be made prior to calling BSparsolveO or BSparisolveO. The settings and
routines for changing them are as follows:

0 Maximum number of iterations: The maximum number of iterations allowed the

iterative solver. The default setting is 100. To change this value, call the routine
BSctxsetmax-it () .

void BSctx-set-max-it(BSprocinf0 *context,int max-it)

0 GMRES restart value: The maximumnumber of vectors allowed GMRES before restart-

ing. The default setting is 20. To change this value, call the routine BSctxsetiestart ().

void BSctx-set-restart (BSprocinfo *context , int restart) ;

0 Initial guess for iterative method: The initial vector used by the iterative method.
If this flag is TRUE, the initial guess is the zero vector. If FALSE, the iterative method uses
the vector passed to it. This option is useful if a good estimate of the solution is available.
The default setting is TRUE. To change this vahe, call the routine BSctxset-guess ().

void BSctx-set-guess(BSprocinf0 *context,int guess);

0 Convergence tolerance: The relative residual tolerance requested from the itera-
To change this value, call the routine tive solver.

BSctxset-tolo.
The default setting is 1.0e-5.

void BSctx-set-tol(BSprocinfo *context,FLOAT tol);

If the linear system being solved is Aa: = b , the relative residual is IIAc - bll/llbll.

0 Number of RHS vectors: The number of right-hand side (RHS) vectors to be input
to the linear solver. The iterative solvers in BlockSolve95 can solve for multiple RHS
simultaneously. The default setting is 1. This routine should not have to be called by the
user because it is set to the correct value if the routine BSsetup-block() is called. The
program example grid5 demonstrates how to solve for various numbers of RHS vectors.
To change this value, call the routine BSctxsetnumihs ().

void BSctx-set-num-rhs(BSprocinfo *context,int num-rhs);

0 Preconditioner: The preconditioner to be used by the iterative solver. The choices are
incomplete Cholesky (PREICC), incomplete LU (PREILU), SSOR (PRESSOR), or block
Jacobi (PREJACOBI). The default setting is PREICC. Note that the preconditioner spec-
ified must agree with the preconditioner computed. For example, if PRElCC is specified

but an ILU preconditioner is passed to the solver, a BlockSoEue95 error will be returned.
To change this value, call the routine BSctxset-pre().

void BSctx-set-pre(BSprocinf0 *context,int pre);

0 Iterative method: The iterative method to be used. The choices are conjugate gradi-
ents (CG), GMRES (GMRES), or SYMMLQ (SYMMLQ). The default setting is CG. To change
this value, call the routine BSctxsetmethod().

void BSctx-set-method(BSprocinfo *context,int method);

11

4 The User Matrix Data Structure BSspmat

To pass your matrix to BlockSolve95, you must use the matrix data structure typedef BSspmat.

Given this data structure, BEockSolve95 will convert the matrix to a BlockSoEve95 internal data
structure of typedef BSparmat in the routine BSmainperm() (we discuss this routine in detail
in $5). In this section we describe two approaches for converting sparse matrix data into the
BSspmat format. The first, using the routine BSeasyAO, is recommended and should be
fairly painless starting with most standard sparse matrix storage schemes. The second, directly

inserting the data and mappings into the structure BSspmat, allows for greater flexibility but
is more complicated.

4.1

We recommend that you use, if possible, the routine BSeasyAO to generate the BSspmat data

structure. The following are the essential data that you must specify for BSeasyAO.

o The matrix rows must be partitioned onto processors such that each processor has at
least one row, each row has a unique global number, and each row is assigned to a unique

processor.

The global row numbers assigned to each processor must be cont igu~us .~ If processor p

is assigned np rows, and the rows numbers start at ip, the rows assigned to processor p

must be ip, ip + 1 , . . . , ip + np - 1. For example, if there are two processors, processor 0
could have rows 0 ,1 ,2 and processor 1 could have rows 4,5,6 but not rows 4 , 6 , 7 . Note
that the global row numbering can skip numbers; in thle above example we did not use
the row value 3.

0 The nonzero structure and matrix values for the rows assigned to each processor must
be given in the three arrays rp, cval , and aval . The storage format for these arrays
corresponds to the standard compressed row storage (CRS) scheme for sparse matrices.

See pages 58-69 of [2] for a detailed discussion of various sparse storage schemes. Each
processor uses the Zoc0Z numbering of its rows 0,1, . . . , rip - 1 to index these arrays. The
first array rp is an index of pointers into the two other arrays indicating where the global
column numbers and nonzero values for each row begins. Thus, the ith row has nonzeros
in columns cval [rp [ill cval Era, Cil +I1 , . . * cval krp Ci+il -11. The nonzero values
are given in corresponding locations in the array aval . The column values for each row
in the array cval must be sorted from lowest to highest. Note that the entire matrix row
must be represented in these arrays even if the matrix is symmetric.

The Easy Way to Convert Your Data to BSspmat

Given this data, the routine BSeasyAO can be called b y each processor to generate the

typedef BSspmat data structure. The function arguments fo:r BSeasyA() are as follows.

BSspmat *BSeasy-A(int start-num,int n , i n t *rp, int *cval ,

FLOAT *aval , BSprocinf o *procinf o) ;

Note that startnum is the starting global row number (ip in the above example), and n is the

number of rows assigned the processor (n p in the above example).
To illustrate the information BSeasyA() requires, we consider the following 4 x 4 matrix:

b O O

o o i j

4This limitation applies only to BSeasyAo. ElockSolveSfiitself does not require that row numbers
be contiguous; an arbitrary row mapping can be used.

12

Let the global numbering of the rows and columns of the matrix be 0 to 3 (e.g., A12 = e).

Suppose that we have two processors, 0 and 1, and that we assign rows 0 and 1 of the matrix to
processor 0 and rows 2 and 3 to processor 1. Given this distribution of the rows of the matrix
and the global numbering of the columns, we would have the arrays rp , cval, and aval as
shown in Figure 2. When processor p calls BSeasy-A(), its value of s t a r t n u m would be given
by ip and its value of n would be np.

processor 0

n = 2 i = O
0 0

processor 1

n = 2 i = 2
0 0

rp

cval

aval jalblcldlel

rP [X-p-TTl

cval /11213/2/31
aval

Figure 2: The values of t he arrays rp, c u d , and awal for the matrix given in equation 1.

The matrix is partitioned so t ha t processor 0 is assigned rows 0 and 1 and processor 1

has rows 2 and 3. Note tha t indexing of the arrays and the matrices rows and columns

begins with 0.

4.2 The Advanced Way to Convert Matrix Data to BSspmat

You can also allocate the BSspmat without using BSeasyAO. Although this approach requires
a bit more work, it can be more flexible. For example, we had no difficulty in writing a C
interface routine to take a matrix written in a standard sequential format by a Fortran code

and put this structure around it without duplicating the data in the Fortran sparse matrix.
Within the BSspmat data structure, each row of the matrix is represented by the structure

typedef BSsprow. The data structures are specified as follows:

typedef struct --BSsprow C
int diag-ind:
int length:
int *col;
double *nz: /* nz values */

/* index of diagonal in row */
/* num. of nz in row */
/* col numbers */

3 BSsprow;

typedef struct --BSspmat {
int num-rows;
int global-num-rows:/* number of global rows */
int symmetric:
int icc-storage:

BSmapping *map; /* mapping from local to global, etc */

/* number of local rows */

/* if TRUE, the matrix should be symmetric */
/* if TRUE, storage scheme used for ICC preconditioner */

/* if FALSE, ILU storage scheme used */

13

BSsprow **rows; /* the sparse rows */
3 BSspmat;

First, we discuss the structure BSspmat. The field numiows contains the number of rows
local to the processor. The field g loba lnumiows contains the total number of rows in the

linear system. The fields symmetric and i ccs torage respectively indicate whether the matrix
is symmetric and whether an incomplete Cholesky factorization will be computed. The field
map contains mapping information that will be discussed later. The field rows is an array of

pointers to local rows of the sparse matrix.
In the structure BSsprow, the field d i a g i n d is the index of the diagonal in this row. We

require that every row have a diagonal element (the value of this element could be zero). The
field l e n g t h contains the number of nonzero values in this row. The field c o l is a pointer to

an array of integer values that represent the column number of each nonzero value in the row.
These column numbers must be sorted in ascending order. The field nz is a pointer to an array
of double-precision values that are the nonzero values in the row.

The mapping structure serves three purposes: (1) the rnapping of local row number to

global row numbers, (2) the mapping of global row numbers to local row numbers, and (3) the
mapping of global row number to processor number. We provide routines for you to set up

and perform this mapping (details on these routines are given in the “man” pages). You may,
however, set up your own mapping and use your own routines through this data structure. The
local row numbers on every processor run from 0 to numiows - i; the global row numbers run
from 0 to ghobalnumiows - 1. Each local row has a corresponding global row number.

typedef s t ruc t --BSrnapping c
void *vlocal2global;

void (*flocal2global) 0 ;
void (*free-l2g) (1 ;
void *vglobal2local;

void (*fglobal2local) 0 :
void (*free-g2l) 0 ;
void *vglobal2proc;

void (*fglobal2proc) 0 ;
void (*fsee-g2p) 0 ;

3 BSmapging;

/* data f o r mapping local t o global */
/* a function fo r mapping local t o global */
/* a function f o r free’ing the 12g data */
/* data f o r mapping global t o loca l */
/* a function mapping global t o local */
/* a function f o r free’ing the g21 data */
/* data f o r mapping global t o proc */
/* a function mapping global t o proc */
/* a function f o r f ree’ ing the g2p data */

The fielchla- s a pointer to data that is passed into the local to global mapping
function (if you are doing the mapping, you can make this point to whatever you wish). The

field f l oca l2g loba l is a pointer to a function for performing the local to global mapping. The
field f r e e l 2 g is a pointer to a function for freeing the data in the field vlocal2global . The
function for performing the local to global mapping takes five arguments.

i n t

i n t

i n t

BSprocinfo *procinfo;

BSmapping *map ; /* the mapping data s t ructure *I’

length:

req-array; / the array of loca l row numbers t o translate */
ans-array; / the array of corresponding global row numbers */

/* the processor information context */

/* the number of row numbers t o t rans la te */

The next three fields (vglobal2loca1, fg loba l2 loca1 , and f r e e g 2 1) are exactly the same
except the mapping is from global to local row number. The mapping is performed only for
rows that are local to the processor; if the mapping is attempted for a nonlocal global row
number, a value of -1 is placed in the a n s a r r a y . The arguments to the mapping function are
as follows.

14

int

int

int

BSprocinf o *procinf o ;

BSmapping *map ; /* the mapping data structure */

length;

req-array; / the array of global row numbers to translate */
an?.-array; / the array of corresponding local row numbers */

/* the processor information context */

/* the number of row numbers to translate */

The last three fields (vglobal2proc, fglobal2proc, and freeg2p) are exactly the same
except the mapping is from global row number to processor number.' The arguments to the

mapping function are as follows.

int

int

int

BSprocinf o *procinf 0 ;

BSmapping *map; /* the mapping data structure */

length;

req-array; / the array of global row numbers to translate */
ans-array; / the array of corresponding processor numbers */

/* the processor information context */

/* the number of row numbers to translate */

'This routine will be called by a processor for only those global row numbers that are local to that

processor or for those global row numbers that are connected in the sparse matrix to rows that are

local to that processor.

15

5 Manipulating and Solving Sparse Systems

This section is divided into two parts. First, we describe how to set up the matrix and pre-
conditioner for parallel solution. Second, we describe how to d v e the linear systems after this

setup has taken place.

5.1 Manipulation and Setup

The data structure that BZockSoZve95 uses to represent sparse matrices is typedef BSparmat.
The routine that converts the user’s data structure BSspmat to BSparmat is BSmainperm(1.
This routine is called as follows.

BSpar-mat *BSmain-perm(BSprocinfo *procinfo,BSsprnat *A);

This routine colors and permutes the sparse matrix to create a new version of the sparse
matrix appropriate for parallel computation. A large number of options are available that are
set through the context variable proeinfo, as described in $3,. The user’s sparse matrix is not
changed permanently by this routine, but may be manipulated and restored during execution.

5.1.1 Symmetric and Nonsymmetric Matrices

BlockSolve95 has two versions of its internal data structure ‘based on whether (1) the matrix
nonzeros are symmetric and an incomplete Cholesky factor is to be computed, or (2) the matrix
nonzeros are to be treated as if they are nonsymmetric (even if the matrix values are actually
symmetric) and an incomplete ILU factor is to be computed.

The routine BSsetmat-iccstorage() must be called before BSmain-perm() to inform
BlockSolve95 whether internal incomplete Cholesky storage or the incomplete LU storage is to
be used. The calling sequence is

void BSset-mat-icc-storage(BSspmat *A,int storage);

where the incomplete Cholesky storage will be used if storage is TRUE, and the incomplete LU
otherwise. Note that if the matrix is nonsymmetric and yet the incomplete Cholesky storage is

specified, incorrect results will be obtained. BZockSolve95 assumes that the matrix is symmetric
if the incomplete Cholesky option is used to minimize the required storage.

The routine BSsetmatsymmetricO must be called to inform BlockSoZve95 whether the
matrix is symmetric (even if you use the nonsymmetric ILlJ internal storage format). The
arguments to this routine are

void BSset-mat-symmetric(BSspmat *A,int sym);

where sym is TRUE if the matrix is symmetric and FALSE if the matrix is nonsymmetric.
In Table 3 we summarize the possible combination of options for the two functions

BSsetmaticcstorageO and BSsetmatsymmetric(). The tricky choice is whether to use
ILU for a symmetric matrix. If the system is very indefinite, you may be forced to this approach
to be able to compute an incomplete factor without breakdown. However, remember that this

approach requires essentially twice the storage of using the incomplete Cholesky option.

5.1.2 Fast Reorderings for Different Matrix Nonzero Values

I

Often you may wish to solve more than one linear system with the same nonzero structure but
different nonzero values. In this case the context should be set to “retain” important interme-
diate data structures by using the function BSetxsetit() described in $3. If BSmainperm()

Table 3: Consequences of choosing incomplete Cholesky or incomplete LU for symmet-

ric or nonsymmetric matrices

BSsetmatsymmetric() BSsetmat-icc-storage() Consequences

Positive definite

TRUE TRUE preconditioner

ILU computed, twice the storage I TRUE FALSE of incomplete Cholesky

Incorrect I FALSE TRUE results

ILU computed, only

FALSE FALSE correct choice

has already been called with the “retain” parameter set to true, you can call BSmainieperm()
to permute a matrix with the same structure. The routine BSmainieperm() is called with the
following arguments.

void BSmain-reperm(BSprocinf0 *procinfo,BSspmat *A,BSpar-mat *PA);

5.1.3

After calling BSmain-perm(), the matrix then can be scaled diagonally by calling BSscalediag().
The function arguments are the following.

Diagonal Scaling of the Linear System

void BSscale-diag(BSpar,mat *A,FLOAT *sc-diag,BSprocinfo *procinfo);

Once the matrix has been scaled, BZockSolve95 automatically solves the scaled system

(D-’AD-l)(Dz) = (D - l b) , (2)

where D is the diagonal matrix whose values are the square root of the absolute value of the
vector sc-diag (usually chosen as the diagonal of A) . Thus, if the unscaled matrix has a
negative diagonal entry, it will be -1 after scaling.

5.1.4

Prior to either factoring or solving the matrix, the communication patterns used by BZockSolve95

must be created. For the factorization phase, this pattern is compiled by calling the routine
BSsetupfactor () .

The Communication Data Structure BScomm

BScomm *BSsetup-factor(BSpar-mat *A,BSprocinfo *procinfo);

For matrix solution, it is compiled by calling BSsetupforward().

BScomm *BSsetup-forward(BSpar-mat *A,BSprocinf o *procinf 0) ;

Both routines return a communication pattern of typedef BScomm. The communication pat-
terns may be freed by calling BSfree-comm() ~

void BSfree-comm(BScomm *comm-ptr);

17

5.1.5 Computing an Incomplete Factorization

If an incomplete factor is to be computed, a copy of the matrix must be made by using the

routine BScopyparmat ().

BSpar-mat *BScopy-par-mat (BSpar-mat *A) ;

The copy is necessary because the iterative solver will require both the initial matrix and the
factorization. As an aside, we note that (for the incomplete Cbolesky storage scheme) the copy
of the sparse matrix shares the clique storage space with the matrix from which it is copied.
For more information see the man page on BScopyqarrmat (1.

The incomplete factorization is computed by calling the routine BSf actor () .

int BSfactor(BSpar-mat *A,BScomm *comm,BSprocinfo *procinfo);

The matrix A will be overwritten with the incomplete factorization. If the factorization is

successful the routine returns 0; otherwise a negative integer is returned whose absolute value
is the row number of the color (less one) where the failure occurred. Note that the kind of
factorization computed is determined by the internal representation of the matrix produced by
BSmainqerm(). For example, consider the following code segment.

BS s et -mat -symmet 1: ic (A , TRUE) ;
BS s e t -mat -ic c -s t or age (A, FALSE) ;
pA = BSmain-perm(procinf0,A); CHKERR(0);
/* diagonally scale the matrix */
BSscale-diag(pA , PA->diag, procinf 0) ; CHKERR(0) ;
/* set up the communication structure for triangular matrix solution */
Acomm = BSsetup-f orward(pA,procinfo) ; CHKERR(0) ;
/* get a copy of the sparse matrix */
f-pA = BScopy-par-mat(pA); CHKERR(0);
/* set up a communication structure for factorization */
f-comm = BSsetup-factor(f-pA,procinfo) ; CHKERR(0) ;
/* compute the incomplete LU factorization */
ierr = BSfactor(f-pA,f,comm,procinfo) ;

In this example the call to BSsetmatsymmetric(specifies the matrix as being symmetric.

The internal storage format for the incomplete LU factorization is chosen prior to the call to
BSmainpermO by calling the routine BSsetmaticcstorageO. Thus, the call to BSfactorO
will compute the incomplete LU factorization rather than the incomplete Cholesky factorization
even though the matrix is specified as symmetric. Also, note that the matrix has been diagonally
scaled before the factorization with the call to BSscalediagC) .

5.1.6

An attempt to compute the incomplete Cholesky factorization of a positive definite matrix can
fail if a zero or negative diagonal is encountered during the factorization. We note that the
incomplete factorization has been shown to exist only if the rnatrix is diagonally dominant or

in several other special cases; in general, there is no guarantee that it will exist. In the case of

failure the matrix must be recopied and the factorization retried. We recommend diagonally
scaling the matrix and using the following loop to accomplish this task.

What to Do If the Factorization Fails

my-alpha = 1.0;
/* get a C S ~ Y of the sparse matrix */

18

f-pA = BScopy-par-mat(pA);
/* factor the matrix until successful */
while (BSfactor(f_pA,f-com,procinfo) != 0) c

/* recopy just the nonzero values */

BScopy-nz (PA , f -PA) ;
/* increment the diagonal shift */
my-alpha += 0.1;

BSset-diag(f-pA,my-alpha,procinfo);

3

In this code segment, we are shifting the diagonal of the matrix by 0.1 every time the

factorization fails. Other strategies are certainly possible and could easily be implemented by
the user. The routine BSsetdiag() is used to change the entire diagonal to myalpha.

void BSset-diag(BSpar-mat *A ,FLOAT my-alpha,BSprocinf o *procinfo) ;

5.2 Solving the Linear System

Once the parallel matrix and the communication structures have been created, we are ready to

solve the sparse linear system. One of two routines can be called to do this: (1) BSparsolveO,
for either ’symmetric or nonsymmetric linear systems; and (2) BSparisolveO, for symmetric
indefinite systems, especially those involved in “shift and invert” strategies.

BSparsolve() can be used repeatedly to solve systems of linear equations with one or with
multiple right-hand sides. The calling arguments are as follows.

int BSpar-solve(BSpar-mat *A, BSpar-mat *fact-A, BScomm *com-A,
FLOAT *rhs, FLOAT *x, FLOAT *residual, BSprocinfo *procinfo);

The routine returns the number of iterations taken by the solver. If the solver fails (for example,
a negative curvature direction is found in a conjugate gradient iteration), the solver returns the
negative of the iteration number.

The following code segment presents an example of how BSparsolve() could be called.

BSctx-set-method(procinfo,GMRES);
BSctx-set-pre(procinfo,PRE-ILU);
BSctx-set-max-it(procinf0~50);
BSctx-set-restart(procinfo,25);
BSctx-set-guess(procinfo,TRUE) ;
BSctx-set-tol(procinfo,l.Oe-7);
num-iter = BSpar~solve(pA,f~pA,Acomm,rhs,x,residual,procinfo); CHKERFLO;

In this example the GMRES iterative method has been specified, preconditioned by an
incomplete LU factorization. The preconditioner specified must agree with the preconditioner
that has been computed by BSf actor (1. The maximum number of iterations allowed the solver
has been specified as 50, and the number of storage vector allowed GMRES before restart as

25. In this example BSctxset_guessO has specified that the solver use an initial guess for
x as the zero vector. Finally, the relative residual tolerance, IIAE - b ~ ~ / ~ ~ b ~ ~ , has been set to
I. Oe-7. Additional details on the arguments used can be found in the man page.

A second solver, BSparisolve(), is set up to solve the shifted system (A - uB)o = b,

where A and B are symmetric matrices, u is a real constant, E is the solution vector, and b
is the right-hand side. BloclcSolve95 is set up to take advantage of B being NULL or u being
zero. The calling sequence is the following.

19

int BSpar-isolve(BSpar-mat *A, BSpar-mat *fact-A, BScomm *comm-A,
BSpar-mat *B, BScomm *comm-B, FLOAT *in-rhs, FLOAT *out-x,
FLOAT shift, FLOAT *residual, BSproeinfo *procinfo);

BSparisolve() uses the SYMMLQ algorithm, which requires that the preconditioner, if
any, be positive definite. Symmetric diagonal scaling is not possible for an indefinite matrix,
so one of the other preconditioners must be used. The restriction that the preconditioner
be positive definite is too restrictive for many problems, but we know of no general-purpose
alternative to SYMMLQ that takes advantage of symmetry while allowing an indefinite precon-

ditioner, Another option would be to explicitly form (A - cB) and solve the resulting system
with GMRES preconditioned with ILU (at the expense of twice the memory). The program
examples grid7 and grid8 compare these two options. See $8 for details.

If you wish simultaneously to solve for more than one right-hand side, you must call the
routine BSsetupblock() to modify the communication structure to accommodate the multiple

right-hand sides. The arguments for this function are the following.

void BSsetup-bPock(BSpar-mat *A,BScomm *comm,int block-size,
BSprocinfo *procinfo);

5.3 F’reeing Matrices

To free the parallel matrix created by BSmain-perm(), call the routine BSf ree-parmat (1.

void BSf ree-par-mat (BSpar-mat *A) ;

To free a copy of a parallel matrix created by BSCOFyparmat(), call the routine
BSf ree-copy-parmat () ~

void BSfree-copy-par-mat(BSpar-mat * A) ;

20

6 Error Checking, Flop Counting, Message Passing, and

the BLAS

In this section we discuss a number of useful, miscellaneous features available in BlockSolve95.

These features include error checking, flop counting, matrix size and ordering information,
message-passing options, and BLAS options for optimizing processor performance.

6.1 Error Checking within BlockSolve95

BEockSolve95 uses an error-checking system based on the two macros SETERR() and CHKERR() ,
which are defined in the file include/BSdepend.h. When BZockSolve95 is compiled with the
flag DEBUGALL defined in the file include/BSdepend.h, then when an internal error occurs
(such as a failed malloc() call), BlockSolue95 returns to the user, and the error code can be
checked and a traceback returned. The traceback includes the routine names and line numbers
where the error occurs; this information can be useful if you suspect an error in BlockSolve95.

We highly recommend the use of DEBUGALL until you are extremely sure of your code; even
then, it is inexpensive to use DEBUGALL with BlockSolve95. The default is that DEBUGALL is
set to TRUE in include/BSdepend . h.

6.2 Flop Counting

When the BZockSoZve95 is compiled with MLOG defined, flops (floating-point operations) are
being logged. (See $7 for more information about compile-time options.) You can access the
current number of flops executed by BlockSolue95 on a particular processor with the call to the
function

double BSlocal-flopso;

which returns a double. The total number of flops performed on all processors can be obtained
by calling the function

double BSglobal-flops(BSprocinfo *procinfo);

which also returns a double.

code.

The following code segment demonstrates how you can estimate flop rates for a section of

init-flops = BSglobal-flops(procinfo);
init-time = MPI-Wtime();
num-iter = BSpar~solve(pA,f~pA,Acomm,rhsyxyresidual,procinfo); CHKERR(0);

total-time = MPI-Wtimeo - init-time;
total-flops = BSglobal-flops(procinfo) - init-flops;
tmflop = total-flops/(total-time) ;

In this case, tmf lop would be an estimate of the combined flop rate for all the processors

BlockSolve95 also does some rudimentary logging of timing and flop counts of routines
involved in the call to BSparsolve().

within the package when compiled with MLDG defined. By calling the function

int BSprint-log(BSprocinfo *procinfo);

before the final call to BSfree-ctx0, this logging information can be printed out.

21

6.3 Matrix Statistics

BlockSolue95 includes a number of functions that can be called to obtain information about

a matrix of typedef BSparmat. For example, the following two functions may be called to
determine the matrix nonzeros locally assigned to a processor and the total (global) number of

nonzeros in the matrix.

i n t BSlocal-nnz(BSpar-mat *);

i n t BSglobal-nnz(BSpar-mat *,BSprocinfo *>;

The following two functions may be called to obtain the number of i-nodes locally assigned to
a processor and the global number of i-nodes.

i n t BSlscal-num-inodes (BSpar-mat *> ;
i n t BSglobal-num-inodes (BSpar-mat *) ;

The following two functions return the the number of cliques locally assigned to a processor
and the global number of cliques.

i n t BSlocal-num-cliques (BSpar-mat *) ;

i n t BSglobal-nun-cliques (BSpar-mat *) ;

The following function returns the number of colors used to color the graph associated with
matrix clique structure.

i n t BSneun-colors(BSpar-mat *> ;

6.4 Blocking and Nonblocking Messages

BlockSolue95 can be compiled so that it does not use blocking (synchronous) sends and receives.
(In MPI the blocking send is the function MPISendO; the nonblocking (asynchronous) send is
the function MPIlsend(1.) The MPI standard does not require that two processors simulta-

neously issuing blocking sends buffer messages and return; therefore deadlock can result. This
problem can be avoided by using nonblocking sends, at the expense of more memory (because

the message buffers cannot be freed until it is certain that the messages have been received).
The IBM SP requires the use of such nonblocking sends.

BlockSolue95 compiles with the blocking or nonblocking send versions based on whether
NOBLOCKINGSEND is defined in the include file include/BSelepend. h. If you are concerned
about performance or memory usage, you should experiment with the difference between block-
ing and nonblocking sends on your particular architecture.

6.5

BlockSolwe95 currently does not make a copy of the user’s MlPI communicator; instead it uses
as a default the current MPI-COMMWORLD. If there is any possibility of a message-passing conflict

(for example, unsatisfied wild card receives from the user’s code), the communicator can be
copied by using MPI-Comm-dup() and can be handed to BlockSolue95 by using B S c t x s e t p s O .

BlockSolve95 uses message numbers beginning at 10,000. It uses a significant but variable
number of messages after that. Currently the number of messages used is 20+(10000*num-
ber-of-processors). The number of messages needed by BlockSolwe95 depends on the problem
being solved, but if the number of messages allocated to it is too small, it will detect an er-
ror and return accordingly (if DEBUGALL is on). The curreint setting of 10,000 is generous.
The message numbers as well as the number of messages can be changed simply by alter-

ing include/BSprivate.h. The avoidance of conflicts in the use of message numbers can be
ensured by copying the communicator as described above.

MPI Communicators and Message Number Conflicts

22

6.6

The performance of the vendor-supplied BLAS for small systems can be disappointing because
of the subroutine call overhead, error checking, and special case handling (overloading) in the
implementation of these BLAS. In addition, BEockSolve95 has to gather and scatter noncontigu-
ous vector data (although not matrix data) to use the dense BLAS. A feature in BZockSolue95

is special handling of the Level-2 BLAS for small i-node sizes; BlockSolve95 uses macros to

put code inline for the special BLAS cases required. The performance improvement can be
substantial. For example, in Table 4 we show the processor performance improvement obtained
on the Argonne IBM SP system (RS/6000-370 processor).

Inline Macros for the BLAS

Table 4: Comparison of the single-processor performance of BlockSoZve95 conjugate

gradient and GMRES iterations, with vendor-supplied, Level-2 BLAS (GEMV and

TRMV) and the new inline macros. The symmetric systems are solved with the con-

jugate gradient method; the nonsymmetric systems are solved with GMRES.

Size of Symmetric Vendor BLAS BS95 Macros Improvement
i-node (Y or N) (MflOPS) (MflOPS) Ratio

2 Y 3.5 8.3 2.35

3 Y 6.1 12.5 2.06
5 Y 10.3 18.3 1.77

6 Y 14.7 22.3 1.52
7 Y 17.6 23.2 1.32

2 N 5.2 7.1 1.37

3 1 N 8.0 10.6 1.33

5 1 N 16.1 19.1 1.19

These macros are defined in the include/BSrnyblas . h. The default is that libraries are
compiled with the inline versions for small i-node sizes (less than 10); otherwise, the vendor-
supplied BLAS are used. These macros can be turned off by editing this file and not defining
MYBLASDTRMVON and MYBLASDGEMVON. Also, the maximum level of unrolling can be changed

to tune performance for a particular architecture.

23

7 Installation

Underneath the main BlockSolve95 directory are six other directories: (1) src, which contains
the source code and makefiles for BlockSolve95, (2) doc, which contains the documentation for
BlockSolve95, (3) examples, which contains example programs that demonstrate the use of
BlockSolve95, (4) include, (5) lib, and (6) bmake.

BlockSolve95 uses the same makefile system as PETSc [l]. The README file in the main

directory gives details on how to build the libraries. The makefiles will build the BlockSolve95
library in a subdirectory of the lib directory based on the machine architecture and the level

of optimization. The machine architecture should be specified by the environmental variable
$PETSCARCH. You will have to modify the file bmake/$PETSCARCH/$PETSCARCH . site as di-
rected in the README file.

Several compiler options affect BlockSoZve95. The DEBUGALL flags were described in $6.
The flag MLOG is associated with the logging facilities within BlockSolve95, and more information
can be found on them in the file include/BSlog.h. A preprocessor variable called BSDOUBLE
is defined in include/BSsparse . h. If BSDOUBLE is defined, BZockSolve95 will compile a double-
precision version; otherwise, a single-precision version is compiled. Unfortunately, the routine
names for both versions are the same.

There is special case on the Cray T3D because the C code requires that FLOAT be defined as
double but the BLAS and LAPACK routines require the single-precision names (although they
are the double-precision versions). Details can be found in the include file include/BSsparse . h.

7.1 Other Libraries

To run BloclcSolve95, you need LAPACK; the BLAS 1, 2, and 3 libraries; and an MPI imple-
mentation for the particular architecture being used. If M P I has not been installed on your
system, we recommend your using MPICH. This package is a.vailable via anonymous ftp from
info .mcs e an1 . gov in the directory pub/mpi. More information on MPI can be found on the
WWW athttp://www.mcs.anl.gov/mpi/index.html.

7.2 UNIX man Pages

UNIX man pages have been generated for the BZockSoZae95 routines and are located
in the directory doc/man. To use these pages you must include the path to the directory
BlockSolve95/doc/man in your MANPATH environmental variable. This variable can be set
with the command setenv. The tool xman provides a nice interface to these man pages. The

BlockSolve95 routines can be accessed in Section 3 and the include files in Section h from the
pull-down menu given by the “Sections” button on the xman 1,oolbar.

7.3 Availability of BlockSolve95

The BlockSolve95 package can obtained via anonymous ftp from info .mes . an1 . gov. The pack-

age is in the directory pub/BlockSolve95. In addition, BlockSolve95 is available from netlib.
The current version number and last date of modification are in the file include/BSsparse . h.
Please send any questions via e-mail to j onesOcs . utk. edu or plassman@mcs. an1 . gov. Include

your name, affiliation, U.S.-mail address, and e-mail address, along with a description of what
you might be interested in doing with BlockSolve95.

Information on the current status of BlockSolve95 can be obtained on the WWW at
http://www,mcs.anl.gov/blocksolve95/index.html.

‘24

http://www,mcs.anl.gov/blocksolve95/index.html

7.4 Differences between Previous BlockSolve Versions

BlockSolwe95 incorporates many improvements over BlockSolve vl.1 and v2.0. Among these
improvements are the following.

0 A compile-time option has been added that directs BZockSoEve95 to use no blocking sends
(see 56 or the include file include/BSdepend.h for details). This feature is necessary

because certain machines (e.g., the IBM SP series architecture) have inadequate message
buffering space allocated to use blocking sends.

munication.
0 BZockSoEve95 now uses the MPI message-passing standard instead of Chameleon for com-

Blocksolve95 can now compute incomplete LU factorizations for matrices that have a

symmetric nonzero pattern but nonsymmetric entries. Also, the iterative solver GMRES

has been added, which can be used to solve these nonsymmetric systems. See $5 for
details.

A subroutine, BSeasyAO, has been added that allows the user to convert a sparse matrix
stored in a familiar storage format to the BZockSolve95 data structure used for parallel
computation (see $4 for details). In addition, the routine BSfree-easymato has been
added to free the data structures that BZockSoZve95 allocates when BSeasyAO is called.

The matrix reordering routines called in BSmain_perm(have been significantly modified
to greatly reduce the runtime of BlockSolwe95 for problems with only one degree of
freedom per grid point. BEockSoZve95 is still designed for more complex problems, but
the reordering time for these simpler problems is now more satisfactory.

0 The code is now ANSI-C. This should result in fewer user errors because of the type
checking that can now be done on argument lists. Note that the user’s code does not
have to be ANSI-C to use the libraries.

0 BlockSolve95 has special macros for handling the level-2 BLAS GEMV and TRMV for
small i-node sizes. The performance of the vendor-supplied BLAS have proven to be
inadequate in this parameter range, so inline versions of specific BLAS are now included
in the include file include/BSmy-blas .h.

0 The set of example programs is greatly expanded and can be used to test most aspects

of BZoclcSolve95. See 58 for a description of the program examples.

25

8 Example Programs

BlocLSolveSC includes a number of example programs that demonstrate most aspects of the
software library. The code for these examples is contained in ,the examples directory.

A description of BlockSolve95 example programs, a description of

the problem calling arguments is given below.
.

grid0 -- Simple example. Uses 3-d %-point finite-difference

stencil.

inodes, Symmetric problem.

BlockSolve context set not to look for cliques or

. mpirun -np P grid0.ARCH PX PY PZ NX NY NZ
...
grid1 -- An unbalanced grid example. The processors on the left

and right ends of the grid use a 7 pt stencil, those in the middle

use a 27-pt stencil.

and inodes. Symmetric problem.

BlockSolve context set not to loolk for cliques

e mpirun -np P gridl.ARCH PX PY PZ NX NY NZ

ge_m_-__-----p------_____o___________o__-------------------------

grid2 -- A demonstration of running BlockSolve on two independent

This problem is partitioned sets of processors simultaneously.

in only the x and y directions.

and right ends of the grid use a 7 pt stencil; those in the middle

use a 27-pt stencil.

cliques or inodes. Symmetric problem.

The processors on the :Left

BlockSolve context set not to loo!k for

mpirun -np P grid2.ARCH PX PY NX NY NZ

__p__oo_------------___p____o___________-------------------------

grid3 -- A 2-D grid distributed across the processors. The 2-D
grid is partitioned in both dimensions among the processors.

The number of processors *must* be the square of an intceger,

e.g., 9 but not 8 .

specified.

inodes. Symmetric problem.

Either a 5-pt or 9-t stencil can be

BlockSolve context set not to look for cliques or

mpirura -np P grid3.ARCH NXY NST

..
grid4 -- Simple example (same as grid01 but this code uses lower level

Uses 3-d 7-point finite-difference

BlockSolve functions to set up the parallel sparse matrix data

structures (done in get-mat4.c).

stencil.

Symmetric problem.

BlockSolve context set not to look for cliques or inodes.

mpirun -np P grid4.ARCH PX PY PZ NX BIY NZ

grid5 -- Can be used to test a variety of BlockSolve features.
The grid problem is based on the 7-pt stencil; however, one
can specify a number of components at each grid points. Each

26

of these components will have an identical nonzero structure

(inode) in the sparse matrix.

or nonsymmetric nonzero structure.

BlockSolve is to look for inode/cliques or not.

One can specify either a symmetric

One can specify whether the

. mpirun -np P grid5.ARCH PX PY PZ NX NY NZ SYM NC IN PRE METHOD SCALE NUM-RHS

...
grid6 -- A demonstration of setting up the BlockSolve communication
structure and using the same structures to solve multiple linear

systems with the same nonzero structure but different nonzero

values.

by varying the diagonal shift applied to the matrix used to

compute in the computation of the incomplete factor.

In this case, we compute a sequence of preconditioners

. mpirun -np P grid6.ARCH PX PY PZ NX NY NZ SYM IN NC
...
grid7 -- This example uses SYMMLQ to solve the symmetric shifted
system (A-s*B)x = b, where s is a shift and A and B are symmetric.

(Note that this system is indefinite for large enough shift s .)

Systems of this kind form the core computation in a shift

and invert strategy within a Lanzcos iteration. In the usual

case, A would be the assembled stiffness matrix and B would be
the associated mass matrix. For this example, B has the same

nonzero structure of A and its values are the absolute values

of the values of A. Note that SYMMLQ requires that the preconditioner

(the incomplete factorization of A) be positive definite!

. mpirun -np P grid7.ARCH PX PY PZ NX NY NZ PRE IN NC BMAT SHIFT
...
grid8 -- This example solves the same problem as that in grid7

except here we explicitly form the indefinite matrix C=(A-s*B) and

solve the resulting linear system system, Cx = b, using GMRES.

One can use either ILU or ICC as a preconditioner, although

for large shifts the diagonal of C must be shifted to avoid

breakdown in the computation of the incomplete Cholesky factor.

A description of possible example program arguments:

ARCH = Machine architecture, e.g., sm4, rs6000, IRIX, etc.
P = number of processors

PX = the number of processors in the x direction
PY = the number of processors in the y direction

PZ = the number of processors in the z direction
NX = number of points in the x direction on each processor

NY = number of points in the y direction on each processor

NZ = number of points in the z direction on each processor

NXY = number of points in the x and y directions on each processor

NST = number of points used in the stencil

SYM = 0, use symmetric data structure, = 1 , use nonsymmetric

NC = number of components per grid point

IN = 0, do not use, = 1, use inode/clique stuff

27

. PRE = 0, use ICC, = 1 , use ILU

METHOD = 0, use CG, use GMRES
SCALE = 0, do not sca le system, = 1 , sca le system

NUM-RHS = number of RHSs t o so lve f o r simultaneously

BMAT = 0 = use identity f o r s h i f t , 1 = use pos i t ive of A

SHIFT = s h i f t t o use i n the s h i f t and invert system

.

.

.

.

28

9 Limitations and Future Plans

The user should be aware of a few limitations in BlockSolve95

0 Each row of the matrix must have a diagonal entry. That entry may be zero, but it must
be explicitly represented in the matrix structure.

0 If the matrix is indefinite, one cannot solve for a block of vectors simultaneously in the

current code.

0 BlockSolve95 does not check for or catch exceptions associated with floating-point errors.

0 Each processor involved in a BlockSolve call must have at least one row of the matrix.

0 BlockSolve95 does not allow the user to mix machines with different byte orderings or

different sizes for datatypes in the same computation.

Another limitation involves coloring options. It is possible with the current version that
if the portion of the matrix structure contained on some processors is very different from the

structure contained on other processors, then the number of colors on each of these processors
can be quite different. Such a situation could arise if different-order finite elements are used
on different processors (but would not arise just by applying boundary conditions to some
processors, but not to others). This imbalance in the number of processors could degrade
performance. A balanced coloring heuristic that addresses this situation is described in [3];

however, this heuristic is not yet included in BlockSolve95.

29

10 Related Software

A number of software packages are closely related to BlockSolve95 and may be of use in par-

ticular applications.

o The software package PETSc [l] contains an interface to BEockSoZwe95. It can be used
to access a larger number of iterative solvers, nonlinear methods, and a large number
of other useful features. Information on PETSc may be obtained on the WWW at
http://www.mcs.anl.gov/petsc/petsc.html.

0 The SUMAA3d (Scalable Unstructured Mesh Algorithms and Applications) project is
developing algorithms and software for many of the tasks associated with unstructured
mesh computation. Current information about this project can be obtained on the WWW
at http://www.mcs.anl.gov/sumaa3d/index.html~

in two and three dimensions [la]. This software is part of the SUMAA3d project.
e Preliminary adaptive refinement software has been developed for finite element methods

30

http://www.mcs.anl.gov/petsc/petsc.html

Acknowledgments

We acknowledge Wing-Lok Wan for the monumental summer project of adapting the incomplete

Cholesky factorization to the incomplete LU case. We thank William Gropp for his help with
the MPI message-passing implementation and for his inspiration on a large number of software
issues. We thank Lois Curfman McInnes, Barry Smith, and the PETSc team for the makefile
facilities, motivation for conversion to ANSI-C, help with the documentation and testing, and
numerous suggestions for improving the software. We also thank Satish Balay for discussions
on the implementations of the required BLAS macros.

31

References

[l] S. BALAY, L. CURFMAN MCINNES, W. D. GROW, AND B. F. SMITH, PETSc 2.0 users
manual, ANL Report ANL-95/11, Argonne National Laboratory, Argonne, Ill., Nov. 1995.

[2] R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J . DONGARRA, V. EI-
JKHoUT, R. PozO, c. ROMINE, AND H . v. DER VORST, Templates for the Solution of

Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[3] R. K. GJERTSEN, JR., M. T. JONES, AND P. E. PLASSMANN, Parallel heuristics for
improved, balanced graph colorings, Journal of Parallel and Distributed Computing, 37

[4] W. GROPP, E. LUSK, AND A. SKJELLUM, Using MPI: Portable Parallel Programming
with the Message Passing Interface, NIIT Press, 1994.

[5] B. HENDRICKSON AND R. LELAND, The Chaco user's guide: Version 2.0, Sandia Report
SAND94-2692, Sandia National Laboratories, Albuquerque, N.M., June 1995.

[6] M. T. JONES AND P. E. PLASSMANN, The eflect of many-color orderings on the conver-
gence of iterative methodss, in Proceedings of the Copper Mountain Conference on Iterative
Methods, SIAM LA-SIG, 1992.

[TI - , Solution of large, sparse systems of linear equations in massively parallel applica-
tions, in Proceedings of Supercomputing '92, IEEE Computer Society Press, 1992, pp. 551-
560.

PI - , Computation of equilibrium vortex structures for lype-11 superconductors, The In-

[91 - , A parallel graph coloring heuristic, SIAM Journal on Scientific Computing, 14

P O I - , Computational results for parallel unstructured mesh computations, Computing Sys-

6111 - , Scalable iterative solution of sparse linear systems, Parallel Computing, 20 (1994),

[I21 - , Parallel algorithms for adaptive mesh refinement, SIAM Journal on Scientific Com-

[13] MESSAGE PASSING INTERFACE FORUM^ MPI: A message-passing interface standard, In-

(1996), pp. 171-186.

ternational Journal of Supercomputer Applications, 7 (1993), pp. 129-143.

(1993), pp. 654-669.

terns in Engineering, 5 (1994), pp. 297-309.

pp. 753-773.

puting, 18 (1997), pp. 686-708.

ternational Journal of Supercomputing Applications, 8 (1994)

32

Subject Index

adaptive refinement, 30

availability, 24
ANSI-C, 25

balanced colorings, 29

block Jacobi, 4, 11
blocking messages, 22

cliques, 4, 5, 10
compiler options, 24
conjugate gradients, 4, 11

convergence testing, 11

BLAS, 3, 5, 23-25

diagonal scaling, 4, 10
different byte orderings, 29
directory structure, 24

error checking, 21
examples, 25, 26

flop counting, 21

GMRES, 4, 11

graph coloring, 2, 6, 10

i-nodes, 10
identical nodes (i-nodes), 4, 5, 10
incomplete Cholesky, 4, 11, 16
incomplete LU, 4, 11, 16
indefinite systems, 4
inline macros, 23, 25

installation, 24

Jacobi preconditioning, 11

LAPACK, 24

matrix partitioning, 4
matrix reordering, 10
memory, 2
message numbers, 22
MPI, 2
MPI communicators, 22
MPICH, 24

multiple right-hand sides, 3, 11

new features, 25
nonblocking messages, 22
nonsymmetric matrix, 2, 16

parallel inner products, 4

PETSc, 24, 30
processor performance, 5

scalable performance, 3, 6
single and double precision, 24

SSOR, 4, 11
SUMAA3d, 30
symmetric matrix, 2, 16

SYMMLQ, 4, 11

UNIX man pages, 24
unstructured meshes, 3

WWW address, 24

33

Function Index

$PETSCARCH, 24
BMcompmsg(), 6, 7
BScopy-parnat(), 18
BScreate-ctx(), 8
BSctx-print(), 9
BSct xse t -cs () , 10
BSctxset-ct(), 10
BSctxset-err(), 9
BSctx-set-guess(), 11, 19
BSctxsetid(), 9
BSctx-set-is(), 10
BSctx-set-maxito, 11

BSctx-set-method(), 11
BSctx-set-np(), 9
BSctx-set-numihs(), 11
BSctx-set-pr(), 9
BSctx-set-pre(), 11
BSctx-set-printlogo, 9
BSctx-set-ps(), 9, 22
BSctx-set-restart(), 11
BSctx-set-rt(), 10, 16
BSctxsetscaling(), 10
BSctxset-si(), 10

BSctxset-tolo, 11
BSDOUBLE, 24
BSeasy-A(), 12, 25
BSfactor(), 18, 19
BSfinalizeO, 8
BSforwardO, 7

BSfree-comm(), 17
BSfree-copy-parmat () , 20
BSfree-ctx(), 8, 21
BSfree-easymat (), 25
BSfree-parmat (), 20
BSglobalflops(), 21
BSglobalnnz(), 22
BSglobalnum-cliques(), 22
BSglobalnuminodes() , 22
BSinit(), 8
BSlocalflops(), 21
BSlocalxnz(), 22
BSlocalxumxliques() , 22
BSlocalnuminodes() , 22
BSmain-perm(), 9, 12, 25
BSmainreperm(), 17
BSnum-colors() , 22
BSparisolve(), 11, 19
BSparsolve(), 11, 19

BSprintlog(), 9, 21

BSscale-diag(), 10, 17, 18
BSset-diag 0, 19
BSset-maticcstorage(), 16, 18
BSset-matsymmetric(), 16, 18
BSsetup-block(), 11, 20

BSsetupfactor(), 17
BSsetup-forward(), 7, 17

CHKERRO, 21
DEBUGALL, 21, 24
include/BSdepend.h, 21,22, 25

include/BSlog.h, 24
include/BSmy-blas.h, 23, 25
include/BSprivate.h, 22
include/BSsparse .h, 24
MEOG, 24
MPI-Finalize(), 8
MPIlnit() , 8
NOBLOCKING-SEND, 22
SETER.R(), 21

typedef BScomm, 17
typedef BSpar-mat, 12, 16, 22

typedef BSprocinfo, 8
typedef BSspmat, 12, 14
typedef BSsprow, 13

34

Internal :

Distribution for ANL-95/48

J. M. Beumer (10)
F. Y. Fradin

G. W. Pieper
P. E. Plassmann (20)
R. L. Stevens

C. L. Wilkinson

TIS File

External :

DOE-OSTI , for distribution per UC-405 (52)

ANL-E Library

ANL-W Library

Manager, Chicago Operations Office, DOE

D. Hitchcock, DOE, Mathematical, Information, and Computational Sciences Div.

F. Howes, DOE, Mathematical, Information, and Computational Sciences Div.

M. Jones, The University of Tennessee (20)

D. Nelson, DOE, Office of Energy Research

35

	Abstract
	1 Introduction
	2 Algorithm Descriptions
	2.1 Processor Performance
	2.2 Multicolor Ordering
	2.3 Communication Efficiency

	3 The BlockSolve95 Computing Environment
	3.1 Initializing and Finalizing the BlockSolve95 Environment
	3.2 The BlockSolve95 Context BSprocinf o
	3.2.1 Parallel Environment Options
	3.2.2 Factorization Options
	3.2.3 Solver Options

	4 The User Matrix Data Structure BSspmat
	The Easy Way to Convert Your Data to BSspmat
	The Advanced Way to Convert Matrix Data to BSspmat

	5 Manipulating and Solving Sparse Systems
	5.1 Manipulation and Setup
	5.1.1 Symmetric and Nonsymmetric Matrices
	5.1.2 Fast Reorderings for Different Matrix Nonzero Values
	5.1.3 Diagonal Scaling of the Linear System
	5.1.4 The Communication Data Structure BScom
	5.1.5 Computing an Incomplete Factorization
	5.1.6 What to Do If the Factorization Fails

	5.2 Solving the Linear System
	5.3 Freeing Matrices

	Error Checking Flop Counting Message Passing and the BLAS
	6.1 Error Checking within BlockSolve95
	6.2 Flopcounting
	6.3 Matrix Statistics
	6.4 Blocking and Nonblocking Messages
	6.5 MPI Communicators and Message Number Conflicts
	6.6 Inline Macros for the BLAS

	7 Installation
	7.1 Other Libraries
	7.2 UNIXmanPages
	7.3 Availability of BlockSolve95
	7.4 Differences between Previous BlockSolve Versions

	8 Example Programs
	9 Limitations and Future Plans
	10 Related Software

