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BlockSolve95 Users Manual:
Scalable Library Software for the
Parallel Solution of Sparse Linear Systems

by

MARK T. JoNEs AND PauL E. PLASSMANN

Abstract

BlockSolve35 is a software library for solving large, sparse systems of linear
equations on massively parallel computers or networks of workstations. The ma-
trices must be symmetric in structure; however, the matrix nonzero values may
be either symmetric or nonsymmetric. The nonzeros must be real valued. Block-
Solvedd uses a message-passing paradigm and achieves portability through the use
of the MPI message-passing standard. Emphasis has been placed on achieving both
good processor performance through the use of higher-level BLAS and scalability
through the use of advanced algorithms. This report gives detailed instructions on
the use of BlockSolved5 and descriptions of a number of program examples that
can be used as templates for application programs.




1 Introduction

BlockSolve§7 is a scalable parallel software library primarily intended for the solution of sparse
linear systems that arise from physical models, especially preblems involving multiple degrees
of freedom at each node. For example, when the finite element method is used to solve practical
problems in structural engineering, each node typically has twe to five degrees of freedom; Block-
Solved5 is designed to take advantage of problems with this type of local structure. BleckSolve95
is also reasonably efficient for problems that have only one degree of freedom associated with
each node, such as the three-dimensional Poisson problem. BlockSelve94 is general purpose;
we require only that the matrices be sparse and symmetric in structure (but not necessarily in
value).!

BlockSolved5 has incorporated several features that allow efficient performance on diverse
parallel architectures. We summarize these features below:

+ Every aspect of the linear system solution—the computation of a matrix ordering, the
renumbering, the computation of the preconditioner, and the iterative solution—is done
in parallel.

* BlockSolve95 tuns on a variety of parallel architectures and can easily be ported to
others. The MPI message-passing standard [4, 13] is used to achieve portability across
architectures. Machines on which BlockSofve95 has been tested include the IBM SP
series, the Cray T3D and T3E, the SGI Cray Origin2000, the HP-Convex Exemplar, the
Intel Paragon, and networks of Sun, SGI, DEC alpha, and HP workstations. The bnake
directory contains contains a complete set of the machine-dependent makefiles for the
architectures currently supported.

o The software uses an efficient implementation of the paralle] coloring algorithm described
in [9] that allows for the efficient computation of matrix orderings and the scalable per-
formance of the linear solver described below.

o The software is designed to solve linear systems whose sizes are the same order as the
fotal amount of memory available on a parallel machine. For example, Table 1 shows
how effectively BlockSolve25 uses the available memory on two different architectures for
the high-temperature superconductor modeling application described in [8]. Note that
some of each processor’s memory is used by the operating system and program executable
(e.g., approximately 4 MBytes and 1 MByte, respectively, on the Intel DELTA}. For this
application an unpermuted version of the matrix is maintained in addition to the memory
required by BlockSolved5. Moreover, the memory required to store only the indices and
the double-precision values for 1.0 x 10% nonzeros is 1.2 GBytes.

Table 1: Effective use of total memory by BlockSolve95

"Whenever we use the term nonsymmelric with respect to BlockSolve95, we mean symmetric in

structure and nonsymmetric in value.
element calculations; however, it cannot handle general nonsymmetric matrices.

Thus, BlockSolve85 handles most matrices arising in finite-

Memory per | Total
Number of | Processor Memory
Number of |  Matrix | {Usable (Usable
Machine | Processors | Nonzeros | Memory) Memory)
Intel : 16 MBytes 8 GBytes
DELTA 512 1.9 x 10% | (11 MBytes) | (5.6 MBuytes)
IBM SP1 128 81 x 10° | 128 MByies | 16 GBytes




¢ The software is designed to achieve scalable performance. With a constant number of un-
knowns per processcr, a matrix nonzero structure resulting from local graph connections
{(the usual case with any finite-element mesh), and a reasonable partitioning of vertices
to processors, the average processor performance is roughly constant. For example, for
the piezoelectric crystal modeling application described in [7], the average processor per-
formance on the Intel DELTA varted from 4.16 MFlops to 3.83 MFlops when the number
of processors was increased from 128 to 512.

o The software is designed to use Level 2 and Level 3 dense BLAS (the Basic Linear Algebra
Subroutines) to achieve efficient use of processors on different architectures. For example,
Table 2 shows the average processor performances for the application described in [8].
Note that a reasonable percentage of the LINPACK benchmark performance is achieved
for a sparse matrix calculation on these very different processor architectures.

Table 2: Efficient use of different processor architectures by BlockSelve25

Number Avg. Proc.
Processor of Performance | Total
Machine Architecture | Processors | Achieved Performance
Intel DELTA || Tntel 18360 b12 8.3 MFlops | 4.26 GFlops
IBM SP1 RS/6000-370 | 128 20.5 MFlops | 2.62 GFlops

e The software is a general-purpose sparse solver. Hence, BlockSolve8s is effective also
on problems arising from unstructured meshes. For example, a total performance of
2.2 GFlops was achieved on 512 processors of the Intel DELTA for an adapiive mesh
calculation using high-order shell elements in a three-dimensional geometry [10].

» The software requires minimal input. You must give BlockSolve95 the matrix nonzeros
and global indices of rows corresponding to the unknowns assigned to each processor and
the mapping functions to translate between global and local indexing.

e BlockSolve2 1s designed to be most effective within real application codes. In our expe-
rience, most application codes must solve the same linear systems with several different
right-hand sides and /or solve linear systems with the same structure, but different matrix
values, multiple times. BlockSolve9) has, therefore, been designed to work well in this
situation.

The remainder of this manual is organized as follows. We begin in §2 with a brief deseription
of the algorithms used in BlockSolve85. In §3, §4, and §5 we present the routines required to set
up the context and matrix data structures and solve linear systems with BlockSolved5. In §6
we discuss a number of details dealing with flop counting, BLAS performance, message-passing
options, and other issues that arise in tuning the performance of an application. The installation
and availability of BlockSolved5 are discussed in §7, and in §8 we describe the program examples
that are included with this version. Finally, in §9 we discuss related software and plans for future
versions of the code.

This document is intended to be used primarily as a reference. If you are a new user, we
recommend using the BlockSolve857 examples as templates for your application codes.




2 Algorithm Descriptions

The primary algorithmic components of BlockSolved5 are

¢ the computation of a matrix ordering allowing for the scalable inversion of the triangular
systems arising from incomplete matrix factorizations;

e the automatic extraction of clique and identical node {i-node) information from unstrue-
tured systems that allows for the use of higher-level BLAS; and

» the computation of incomplete sparse matrix factorizations for use as preconditioners in
the iterative solution of linear systems.

The mairix-ordering algorithms are used to ensure that, for many problems, the performance
per processor remains roughly constant as the problem size and number of processors are in-
creased. Computational efficiency is obtained through the use of higher-level BLAS, efficient
matrix storage schemes, and precomputed communication data structures. For symmetric
matrices, incomplete Cholesky factorizations may be computed; and for general matrices, in-
complete LU factorizations may be obtained. These preconditioners are designed so that their
application is both efficient and as scalable as passible.

In addition, BleckSolve95 contains implementations of several well-known iterative meth-
ods. A preconditioned conjugate gradient method can be used for symmetric, positive definite
systems. For symmetric indefinite systems, the preconditioned SYMMLQ algorithm may be
used.? For nonsymmetric systems, the GMRES methed may be used. In addition, the PETSc
software package [1] contains an interface to the BlockSolve5 preconditioners; this interface
may be used if other iterative methods are required. For basic information on iterative methods,
see [2]. :

You can select from a number of different preconditioners. The first is a simple diagona
scaling of the matrix, which can he used by itself or in conjunction with another preconditioner.
The other preconditioning options are incomplete Cholesky or LU factorization, SSOR. (w — 1),
and block Jacobi (where the blocks are the cliques of the graph associated with the sparse
matrix}. Perhaps the most generally applicable selection is the incomplete factorization with
diagonal scaling.? The incomplete factorization is the algorithm for which BlockSolved5 was
designed; this approach has proved useful in a wide variety of practical problems.

BlockSolve95 does not partition a matrix across the processors. Instead, BlockSolve95
assumes that the given partitioning is a good one. As such, its performance may be limited by
the quality of the partitioning. We assume that the right-hand side and the solution vector are
partitioned in the same manner as the rows of the sparse matrix. See [5] for more information
on partitioning heuristics.

We achieve parallelism in the conjugate gradient, SYMMLQ, and GMRES implementations
by partitioning the vectors used in these algorithms in the same manner that the rows of the
matrix are partitioned across the processors. For these algorithms it is {for the most part) a
simple matter of executing inner products and daxpy operations in parallel.

2.1 Processor Performance

To achieve good performance on each node, we reorder the mairix and use a layered data struc-
ture to allow the use of the higher-level dense BLAS. This recrdering is particularly important

2The SYMMLQ algorithm requires a positive definite preconditioner, and this requirement can be
a serious limitation if the matrix being solved is very indefinite. By “very indefinite,” we mean that
the matrix has many negative and many positive eigenvalues.

3Two possible exceptions to this recommendation are (1) if the matrix has no or very small cliques
and identical nodes (in which case the factorization may be very slow} and (2) if the space for the
mcompiete factorization is not available.




on machines that use high-performance RISC chips on which good performance can be achieved
only by using such operations. The reordering of the matrices is based on the identification of
two structures that commonly arise in the graph associated with the matrix nonzeros: identical
nodes and cliques.

Identical nodes (i-nodes) typically exist when multiple degrees of freedom are associated
with each vertex in the graph. Cliques are found in many graphs associated with sparse matri-
ces, but cliques typically are found in graphs where multiple degrees of freedom are associated
with each vertex and the local connectivity of the graph is large. For example, if one uses a
second-order, three-dimensional finite element in a typical structural engineering problem {with
three degrees of freedom per vertex), clique sizes of up to 81 can be found. In general, the larger
the cliques or identical nodes, the better the performance. This technique has been used with
great success in direct matrix factorization methods. '

We illustrate these structures in Figure 1 where we depict a subsection of a graph that
would arise from a two-dimensional, bilinear, multicomponent finite-element model with three
degrees of freedom per discretization point. We illustrate the three degrees of freedom by the
three dots at each node point; the linear, quadrilateral elements imply that the twelve degrees
of freedom sharing the four node points of each face are completely connected. In the figure
we show edges only between the nodes, these edges represent the complete interconnection of
all the vertices on each element or face.

The dashed lines in the figure represent a geometric partitioning of the grid; we assume
that the vertices in the central region are all assigned to one processor. We note that the
adjacency structures of the vertices at the same geometric node (i.e., the nonzero structure of
the associated variables) are identical. BlockSolve9d5 takes advantage of these so-called i-nodes
by maintaining only one copy of the indexing for each set of identical rows and by storing
nonzeros for these rows in a dense matrix form that can be used with the BLAS.

A second data structure layer is determined by the cligue structure of the graph. Recall
that a clique is a completely connected subgraph. In the upper right of Figure 1, the grouping
of vertices by the dotted lines partitions the graph into cliques. BlockSolvedJ associates a “su-
pernode” with each clique and orders the unknowns associated with each clique consecutively.
Based on this ordering, the submatrix corresponding to the unknowns in the same clique cor-
responds to a dense matrix. In the sparse matrix, these dense matrices manifest themselves as
dense blocks on the matrix diagonal. The BlockSolve95 data structures explicitly store these
dense blocks to allow for greater efficiency in using the BLAS. '

2.2 Multicolor Ordering

Following the graph reduciions that are accomplished after the identification of i-nodes and
cliques in the sparse matrix structure, BlockSolve95 must construct a matrix ordering based
on the reduced graph, illustrated at the bottom of Figure 1. To achieve scalable parallel
performance in the incomplete factorization and SSQR preconditioners, BlockSolve5 colors
the reduced graph using a paralle! coloring heuristic [9]. The graph reduction and coloring
phases of the computation are efficient and typically require & small amount of time relative to
the incomplete matrix factorization routine.

The advantage of using a graph coloring is that the number of colors required is essentially
a local property of the graph; thus, the number of colors is roughly independent of the number
processors used for a fixed discretization scheme. This fact allows for the scalable performance of
the BlockSolved5 package {11]. The trade-off for this scalability is that these multicolor orderings
may not be the optimal orderings to choose for minimizing the number of iterations required for
the iterative solver; the convergence of the iterative solver with respect to different orderings is
highly problem dependent. However, the combination of coloring a general symmetric sparse
matrix and the incomplete Cholesky algorithm has proved to be successful for solving large
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Figure 1: A subgraph generated by a two-dimensional, bilinear finite-element model
with three degrees of freedom per discretization point. The geometric partition shown
by the dotted lines yields an assignment of the vertices in the enclosed subregion to
one processor. The upper right figure shows one possible decomposition of the graph
into local cliques, and the lower figure shows the corresponding clique (or supernode)
graph.

problems on scalable parallel architectures {7]. In [6] we address the issue of convergence of this
combination of algorithms for the model problem.

2.3 Communication Efficiency

The computational kernel of the BlockSeolve95 package is the solution of triangular matrix
systems and triangular matrix multiplication. Triangular matrices of the same structure are
solved and multiplied in parallel many times in the use of une of the iterative solvers. The
key observation is that the required interprocessor comimunmication in triangular system solve
or multiply is the same every time; the only difference is in the floating-point values that are
sent and received.

To take advantage of this repeated communication pattern, the BlockSolve95 routines in
BMcompnmsg() are used to build reusable data structures. During each communication phase
each processor needs to send and receive data from some subset of the processors (a small
subset, if the partitioning is good). Each message to be sent is an array of floating-point values
and an array of integer values (matrix indices). A key observation is that these integer values
do not change; only the floating-point values change.




Prior to any triangular matrix solution and multiplication, each processor declares {(via
function calls in BMcomp.msg()) the messages that it will be sending and receiving and specifies
the integer index values associated with these messages. The routines in BMcompusg() buiid
data structures by assembling the declarations from each processor. In addition, the integer
index values assoctated with the messages are sent to the appropriate processor and stored
there; these values will not be sent in the future. Since the size of the required messages is now
known, message buffers can be preallocated.

We currently perform no special communication pattern optimizations in BMcompmsg()
although these routines have been set up for this possibility. The optimizations currently
performed are

1. presending of integer values;

2. preallocation of message buffers, allowing “forced” messages: MPI_Irsend(), to be used;
and

3. no requests are made between processors for non-local data (processors use local infor-
mation to know what messages to expect and what to send).

For an example of the message setup process, see the routine BSsetup forward(). For an
example of how the message data structures are used, see the routine BSforward().




3 The BlockSolved5 Computing Environment

In this section we describe the BlockSolve85 computing environment. BlockSolve95 has an
initialization routine that must be called prior to any other BlockSelve25 routine and a final-
ization routine that must be called last. We also iniroduce the most important BlockSelveds
data structure—BSprocinfo—the BlockSolve2d context. All information about the parallel
environment, preconditioner options, and settings for the iterative solvers is communicated to
the BlockSelvedd package through the BSprocinfo context data structure,

3.1 Initializing and Finalizing the BlockSolve95 Environment

The first call to a BlockSolve5 routine must be the Initialization routine BSinit(). The
definition and arguments for this rouiine are as follows.

int BSinit(int xarge, char #**args);

The arguments argc and argv should be the command line arguments as delivered in all C
and C++4 programs. If you have not already done so, this routine initializes MPI with a call
to MPI_Tnit{) and initializes any logging routines that have been specified {see §6 for more
information on logging within BlockSalved5).

The final call to a BlockSolve95 routine must be the routine BSfinalize().

int BSfinalize(};

This routine calls MPI_Finalize{) if BlockSolved5 initialized MPI.

3.2 The BlockSolve95 Context BSprocinfo

The BlockSolve8d context data structure, typedef BSprocinfo, contains all the information
about the parallel environment, options for computing the preconditioner, and settings for the
iterative solver. Before calling any BlockSolve5 routines, the user must first allocate a context
of data type BSprocinfe for BlockSolveds using the routine EScreate_ctx().

BSprocinfo *BScreate_ctx();

After the last BlockSolve95 routine has been called, the context should be freed by calling the
routine BSfree_ctx(). :

void BSfree_ctx(BSprocinfo #context);

After the call to BScreate_ctx(), you can then call one of many routines to modify the context.
We provide default settings for the context that we think will, in general, provide the best
performance, but you may benefit from changing some of the settings.

The context options can be broken into three broad categories: (1) the parallel environment,
(2) options concerning the computation of preconditioners, and (3) settings for calls to an
iterative solver. In the following three subsections we describe the possible options and give
the rouiine names that modify the context.

3.2.1 Parallel Environment Options

The following options concern the general parallel environment in which BlockSolve95 operates.
The settings and routines for changing them are as foliows:




e Processor Set: Definition of the processors that are participating in this call to Block-
Solvedd. If the number of processors participating is equal to the pumber of processors
that are allocated to the user {(this is the default case}, this value should he set to
MPI_COMM WORLD. If, for example, you wish to work on different matrices on different sets
of processors at the same time and perhaps later combine the answers, you must set the
procset parameter accordingly. The program example grid2 solves two linear systems
simultaneously on & partitioned set of processors. The default setting for this parameter
is MPI_COMM WORLD. To reset the value, call the routine BSctx set psa{).

void BSctx_set_ps(BSprocinfo *context,ProcSet #ps);

You may wish to set the processor set to a duplicate communicator (using HPI_Comm dup()})
to ensure that there are no message conflicts.

« Processor i1d: The id number of this processor. The default setting is given by the
routine MPI Comm rank(). To reset the value, call the routine BSctx_set_id().

void BSctz_set_id(BSprocinfo *context,int id);

s Number of processors: The number of processors that are calling BlockSolze25 with
a portion of the matrix. The default setting is given by the routine MPI_Comm _size{).
To reset the value, call the routine BSctx_set np().

void BSctx_set_np(BSprocinfo *context,int np);

e Error checking: Simple error checking on the user’s matrix structure and on some
intermediate data structures. The error checking is not very time consuming and is
probably a good option to use for the first few runs. The default setting is FALSE (i.e.,
no error checking). To change this value, call the routine BSctx set.err().

void BSctx_set_err(BSprocinfo *context,int err);

¢ Print information: Print information about the coloring, reordering, and linear system
solution options. If set to TRUE this information is printed during execution. The default
setting is FALSE. To change this value, call the routine BSctx_set pr().

void BSctx_set_pr{BSprocinfo *context,int pr);

¢ Print logging information: Print logging information when the routine BSprint log()
is called. If set to TRUE this information is printed, the default setting is FALSE. To change
this value, call the routine BSctx_set _print_log().

void BSctx_set_print_log(BSprocinfo *context,int print};

s Print current context options: The current context options. To print information
on how the context is currently set, call the function BSctx print ().

veid BSctx_print(BSprocinfo *context);

3.2.2 Factorization Options

The following options concern the computation of incomplete factorizations by BlockSolve8s.
Calls to these routines must be made prior to calling BSmain. perm(). The settings and routines
for changing them are as follows: '




» Maximum cligue size: The maximum number of rows in a single cligue. You may wish
to limit this value if the cliques become too lazge and performance is impaired (an unlikely
case in most applications and something that requires understanding the algorithms in
BlockSolve93). The default setting is INT_MAX, which is defined in the system include file
limits._h. To change this value, call the routine BSctx set_cs().

void BSctx_set_cs{BSprocinfe *context,int cs);

Maximum identical node size: The maximum number of rows combined into an
identical node. You may wish to limit this value if the i-nodes become too large and
performance is impaired (an unlikely case in most apglications and something that re-
quires understanding the algorithms in BlockSolve95). The default setting is INT MAX.
To change this value, call the routine BSctx set_is().

void BSctx_set_is(BSprocinfo *context,int is);

Type of local coloring: The type of local coloring heuristic used. There are two phases
1n obtaining a coloring of the matrix graph: a global phase in which the Jones/Plassmann
algorithm is used and a local phase where either an incident degree ordering {IDQ)
coloring or a saturated degree ordering (SDQ) coloring is used. In general, the SDO
colorings are slightly better but take more time to find. The default setting is IDO. To
change this value, call the routine BSctx_get ct().

void BSctx_set_ct(BSprocinfo *context,int c¢t);

Retain data structures: Information retained during the reordering process. The
information saved (if the flag is set to TRUE) allows a fast reordering if a matrix with
the same structure is to be reordered later. The default setting is FALSE. To change this
value, call the routine BSctx_set rt().

void BSctx_set_rt(BSprocinfo *context,int rt);

Ne clique/i-node reordering: Ne atternpt to find cliques or i-nodes. This flag should
be set to TRUE (i.e., no search for i-nodes or cliques will be made) when you know that the
i-node or clique sizes will be 1 or very close to 1 (you may wish to experiment with this).
The default setting 1s FALSE. To change this value, call the routine BSctx _set_si().

void BSctx_set_si{BSprociafe *context,int si);

Scale linear system: Scaling of the linear system. The default setting is TRUE. To
change this valie, BSctx.set scaling{) may be called.

void BSctx_set_scaling(BSprocinfo *context,int scale);

Note that if this function is set, the routine BSscaleliag() must be called to do the
scaling. We recommend using the matrix diagonal for scaling sc that the absolute value
of the diagonal of the scaled system is set to one.




3.2.3 Solver Options

The following options concern the solution of linear systems by BlockSolve95. Clalls to these
routines must be made prior to calling BSpar_solve() or BSpar_isolve(). The settings and
routines for changing them are as follows:

-

Maximum number of iterations: The maximum number of iterations allowed the
iterative solver. The default setting is 100. To change this value, call the routine
BSctx setmax_it().

void BSctx_set_max_it({BSprocinfo *context,int max_it)

GMRES restart value: The maximum number of vectors allowed GMEES before restart-
ing. The default setting is 20. To change this value, call the routine BSctx set restart().

void BSctx_set_restart(BSprocinfo *context,int restart);

Initial guess for iterative method: The initial vector used by the iterative method.
If this flag is TRUE, the initial guess is the zero vector. If FALSE, the iterative method uses
the vector passed to it. This option is useful if a good estimate of the solution is available.
The default setting is TRUE. To change this value, call the routine BSctx set_guess().

void BSctx_set_guess{BSprocinfo *context,int guess);

Convergence tolerance: The relative residual tolerance requested from the itera-
tive solver. The default setting is 1.0e-E. To change this value, call the routine
BSctx set_tol().

void BSctx_set_tol(BSprocinfo *context,FLOAT tol);

If the linear system being solved is Ax = b, the relative residual is || Az — b} /|5l

Number of RHS vectors: The number of right-hand side (RHS) vectors to be input
to the linear solver. The iterative solvers in BlockSolved95 can solve for multiple RHS
simultaneously. The default setting is 1. This routine should not have to be called by the
user because it is set to the correct value if the routine BSsetup_block{) is called. The
prograrn example grids demonstrates how to solve for various numbers of RHS vectors.
To change this value, call the routine BSctx_set numrhs().

void BSctx_set_num_rhs(BSprocinfo *context,int num_rhs);

Preconditioner: The preconditioner to be used by the iterative solver. The choices are
incomplete Cholesky (PRE_ICC), incomplete LU (PRE_ILU), SSOR (PRE_SSOR), or block
Jacobl (PRE.JACOBI). The default setting is PRE.ICC. Note that the preconditioner spec-
ified must agree with the preconditioner computed. For example, if PRE_ICC is specified
but an ILU preconditioner is passed to the solver, a BlockSolve9§ error will be returned.
To change this value, call the routine BSctx_set _pre(). '

void BSctx_set_pre(BSprocinfo *comtext,int pre);

Iterative method: The iterative method to be used. The choices are conjugate gradi-
ents (CG), GMRES (GMRES), or SYMMLQ (SYMMLQ). The default setting is CG. To change
this value, call the routine BSctx_set_method(). '

void BSctx_set_method(BSprocinfe *context,int method);




4 The User Matrix Data Structure BSspmat

To pass your matrix to BlockSolve25, you must use the matrix data structure typedef BSspmat.
Given this data structure, BlockSolve$d will convert the matrix to a BlockSolve95 internal data
structure of typedef BSpar mat in the routine BSmain_perm() (we discuss this routine in detail
in §5). In this section we describe two approaches for converting sparse matrix data into the
BSspmat format. The first, using the routine BSeasy.A(}, is recommended and should be
fairly painless starting with most standard sparse matrix storage schemes. The second, directly
inserting the data and mappings into the structure BSspmat, allows for greater flexibility but
is more complicated.

4.1 The Easy Way fto Convert Your Data to BSspmat

We recommend that you use, if pessible, the routine BSeasy_A() to generate the BSspmat data
structure. The following are the essential data that you must specify for BSeasy A()}.

e The matrix rows must be pariitioned onto processors such that each processor has at
least one row, each row has a unique global number, and each row is assigned to a unique
processor,

o The global row numbers assigned to each processor must be contiguous.® If processor p
is assigned n; rows, and the rows numbers start at 7,, the rows assigned to processor p
must be i,,i, +1,...,4, + n, — 1. For example, if there are two processors, processor )
could have rows 0, 1,2 and processor 1 could have rows 4, 5,6 but not rows 4,6,7. Note

* that the global row numbering can skip numbers; in the above example we did not use
the row value 3.

s The nonzero structure and matrix values for the rows assigned to each processor must
be given in the three arrays rp, cval, and aval. The storage format for these arrays
corresponds to the standard compressed row storage {CRS) scheme for sparse matrices.
See pages 58-69 of [2] for a detailed discussion of various sparse storage schemes. Each
processor uses the local numbering of its rows 0,1,...,n, — 1 to index these arrays. The
first array rp is an index of pointers into the two other arrays indicating where the global
column numbers and nonzero values for each row begins. Thus, the ith row has nongeros
m columms cvallrplil], cvallrplil+i],...,cvallrpli+1}-1]. The nonzero values
are given in corresponding locations in the array aval. The column values for each row
in the array cval must be sorted from lowest to highest. Note that the entire matrix row
must be represented in these arrays even if the matrix is symmetric.

(Given this data, the routine BSeasy A{) can be called by each processor to generate the
typedef BSspmat data structure. The function arguments for BSeasy_A() are as follows.

BSspmat *BSeasy_A(int start_num,int n,int #rp,int #®cval,
FLOAT #aval,BSprocinfo *procinfa);

Note that start_num is the starting global row number (i, in the above example), and n is the
mumber of rows assigned the processor (n, in the above example).
To illustrate the information BSeasy_A{) requires, we consider the following 4 x 4 matrix:

a b 0 0

c d e 0 '
A= 0 f ¢ h - (1)

0 6 i j

*This limitation applies enly to BSeasy A{). BlockSolve25itself does not require that row numbers
" be contiguouns; an arbitrary row mapping can be used.
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Let the global numbering of the rows and columns of the matrix be 0 to 3 (e.g., 412 = e).
Suppose that we have two processors, 0 and 1, and that we assign rows  and 1 of the matrix to
processor 0 and rows 2 and 3 to processor 1. Given this distribution of the rows of the matrix
and the global numbering of the columns, we would have the arrays rp, cval, and aval as
shown in Figure 2. When processor p calls BSeasy A(), its value of start_num would be given
by i, and its value of n would be n,.

processor
cval G| 1o 1]2

aval 1 al b|c|d]| e

processor 1
cval 11 2)13;2|3

(]

0=2 JD=2

aval | S g1 kR J

Figure 2: The values of the arrays rp, cval, and avel for the matrix given in equation 1.
The matrix is partitioned so that processor 0 is assigned rows 0 and 1 and processor 1
has rows 2 and 3. Note that indexing of the arrays and the matrices rows and columns
begins with 0.

4.2 The Advanced Way to Convert Matrix Data to BSspmat

You can also allocate the BSspmat without using BSeasy_A{). Although this approach requires
a bit more work, it can be more flexible. For example, we had no difficulty in writing a C
interface routine to take a matrix written in a standard sequential format by a Fortran code
and put this structure around it without duplicating the data in the Foriran sparse matrix.

Within the BSspmat data structure, each row of the matrix is represented by the structure
typedef BSsprow. The data structures are specified as follows:

typedef struct __BSsprow {

int diag.ind; /* index of diagonal in row */
int length; /% num. of nz in row %/
int ®col: /* col numbers */
double =*nz; /* nz values */
} BSsprow;

typedef struct __BSspmat {

int num_rows; /# number of local rows %/

int global num_rows;/» number of global rows */

int symmetric; /% if TRUE, the matrix should be symmetric =/

int icc_storage; /% if TRUE, storage scheme used for ICC preconditicner */

/+ if FALSE, ILU storage scheme used #/
HSmapping #map; /* mapping from local to global, etc */
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BSsprow »*rows; /* the sparse rows */
} BSspmat;

First, we discuss the structure BSspmat. The field num rows contains the number of rows
local to the processor. The field global num_rows contains the total number of rows in the
linear systerm. The fields symmetric and ice_storage respectively indicate whether the matrix
is symmetric and whether an incomplete Cholesky factorization will be computed. The field
map contains mapping information that will be discussed later. The field rows is an array of
pointers to local rows of the sparse matrix.

In the structure BSsprow, the field diag_ird is the index of the diagonal in this row. We
require that every row have a diagonal element (the value of this element could be zero). The
field 1ength contains the number of nonzero values in this row. The field col is a pointer to
an array of integer values that represent the column number of each nonzero value in the row.
These column numbers must be sorted in ascending order. The field nz is a pointer to an array
of double-precision values that are the nonzero values in the row.

The mapping structure serves three purposes: (1) the mapping of local row number to
global row numbers, (2) the mapping of global row numbers to local row numbers, and (3) the
mapping of global row number to processor number. We provide reutines for you to set up
and perform this mapping (details on these routines are given in the “man” pages). You may,
however, set up your own mapping and use your own routines through this data structure. The
local row numbers on every processor run from 0 to numrows ~ 1; the global row numbers run
from O to global num rows - 1. Each local row has a corresponding global row number.

typedef struct _ _BSmapping {
void #*vlocal2global: /* data for mapping local to global =/
void (*flocal2global)(); /+ a function for mapping local to global */
void (#free_12g) (; /* a function for free’ing the 12g data */
veid #»vglobal2local; /* data for mapping global to local */
void (#fglobal2local)(); /* a function mapping global to local */
void (*free_g21)(); /* a function for free’ing .the g2l data %/
void #vgloballproc; /* data for mapping global te proc *f
veid (#£global2proc)(); /% a function mapping global to proc #/
void (*free_g2p)(}; /% a function for free’ing the g2p data */

} BSmapping;

The field viocal2global is a pointer to data.that is passed into the local to global mapping
function {if you are doing the mapping, you can make this point to whatever you wish). The
field £1ocal2global is a pointer to a function for performing the local to global mapping. The
field free 12g is a pointer to a function for freeing the data in the field vlocal2global. The
function for performing the local to global mapping takes five arguments.

int length; /# the number of row numbers to translate %/

int *req_array; /* the array of local row numbers to translate »/
int *ans_array; /# the array of corresponding global row numbers #/
BSprecinfe sprocinfo; /# the processor information context */

BSmapping +*map; /* the mapping data structure #*/

The next three fields (vglobal2local, fglobal2lecal, and free_g21} are exactly the same
except the mapping is from global to local row number. The mapping is performed only for
rows that are local to the processor; if the mapping is attempted for a nonlocal global row
number, & value of -1 is placed in the ans_array. The arguments to the mapping function are
as follows.




.int length; /* the number of row numbers to translate /

int *req_array; /* the array of global row numbers to translate */
int *ans_array; /* the array of corresponding local row numbers */
BSprocinfo sprocinfo; /* the processor information context =/

BSmapping *map; /* the mapping data structure »/

The last three fields (vglobal2proc, fglobal2proc, and free g2p) are exactly the same
except the mapping is from global row number to processor number.® The arguments to the -

mapping function are as follows.

int length; /* the number of row numbers to translate */

int xreq_array; /* the array of global row numbers to translate */
int #ans_array; /* the array of corresponding processor numbers #/
BSprocinfo #procinfe; /+* the processor informatien context #/

BSmapping #map; /* the mapping data structure */

*This routine will be called by a processor for only those global row numbers that are local to that
processor or for those global row numbers that are connected in the sparse matrix to rows that are
local to that processor.
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5 Manipulating and Solving Sparse Systems

This section is divided into two parts. First, we describe how to set up the matrix and pre-
conditioner for parallel sclution. Second, we describe how to solve the linear systems after this
setup has taken place.

5.1 Manipulation and Setup

The data structure that BlockSolved5 uses to represent sparse matrices is typedef BSpar mat.
The routine that converts the user’s data structure BSspmat to BSpar_mat is BSmain_perm().
This routine is called as follows.

BSpar_mat *BSmain_perm(BSprocinfo #*procinfo,BSspmat *4);

This routine colors and permutes the sparse matrix to create a new version of the sparse
matrix appropriate for parallel computation. A large number of options are available that are
set through the context variable procinfo, as described in §3. The user’s sparse matrix is not
changed permanently by this routine, but may be manipulated and restored during execution.

5.1.1 Symmetric and Nonsymmetric Matrices

BlockSolve95 has two versions of its internal data structure based on whether (1} the matrix
nonzeros are symmetric and an incomplete Cholesky factor is to be computed, or (2) the matrix
nonzeros are to be treated as if they are nonsymmetric (even if the matrix values are actually
symmetric) and an incomplete ILU factor is to be computed.

The routine BESsetmat_icc_gtorage() must be called before BSmain perm() to inform
BlockSolve95 whether internal incomplete Cholesky storage or the incomplete LU storage is to
be used. The calling sequence is

void BSget_mat_icc_storage(BSspmat #4,int storage);

where the incomplete Cholesky storage will be used if storage is TRUE, and the incomplete LU
otherwise. Note that if the matrix is nonsymmetric and yet the incomplete Cholesky storage is
specified, Incorrect results will be obtained. BlockSolve95 assumes that the matrix is symmetric
if the incomplete Cholesky option is used to minimize the required storage.

The routine BSset mat_symmetric{) must be called to inform BlockSolve95 whether the
matrix is symmetric {even if you use the nonsymmetric ILU internal storage format). The
arguments to this routine are

void BSset_mat_symmetric(BSspmat *4,int sym);

where sym is TRUE if the matrix is symmetric and FALSE if the matrix is nonsymmetric.

In Table 3 we summarize the possible combination of options for the two functions
BSsetmat_icc_storage() and BSsetmat symmetric(). The tricky choice is whether to use
ILU for a symmetric matrix. If the system is very indefinite, you may be forced to this approach
to be able to compute an incomplete factor without breakdown. However, remember that this
approach requires essentially twice the storage of using the incomplete Cholesky option.

5.1.2 Fast Reorderings for Different Matrix Nonzero Values

Often you may wish to solve more than one linear system with the same nonzero structure but
different nonzerc values. In this case the context should be set to “retain™ important interme-
diate data structures by using the function BSctx_set xrt () cescribed in §3. If BSmain_perm()
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Table 3: Consequences of choosing incomplete Cholesky or incomplete LU for symmet-
ric or nonsymmetric matrices

[ BSset mat _symmetric() | BSsetmat_icc_storage() Consequences
Positive definite
TRUE TRUE preconditioner
* | ILU computed, twice the storage

TRUE FALSE of incomplete Cholesky
] Incorrect
' FALSE TRUE results

1LY computed, only
FALSE FALSE correct choice

has already been called with the “retain” parameter set to true, you can call BSmain_reperm()
to permute a matrix with the same structure. The routine BSmain reperm() is called with the-
following arguments.

void BSmain_reperm(BSprocinfo *procinfo,BSspmat *A,BSpar_mat *ph);

5.1.3 Diagonal Scaling of the Linear System

After calling BSmain perm(), the matrix then can be scaled diagonally by calling BSscale diag(). .
The function arguments are the following,.

void BSscale_diag(BSpar_mat *A,FLOAT *sc_diag,BSprocinfo #*procinfo);
Once the matrix has been scaled, BlockSolue93 automatically solves the scaled system
(D"'AD™ Y Dx) = (D7 '0), 2)

where D is the diagonal matrix whose values are the square root of the absolute value of the
vector sc_diag (usually chosen as the diagonal of A}. Thus, if the unscaled matrix has a
negative diagonal entry, it will be —1 after scaling.

5.1.4 The Communication Data Structure BScomm

Prior to either factoring or solving the matrix, the communication patterns used by BlockSolve25
must be created. For the factorization phase, this pattern is compiled by calling the routine
BSsetup factor().

BScomm *BSsetup_factor(BSpar_mat *A,BSprocinfo *procinfo);
For matrix selution, it is compiled by calling BSsetup_forward().
BScomm *BSsetup_forward(BSpar_mat #4,BSprocinfo #procinfo);

_ Both routines return a communication pattern of typedef BScomm. The communication pat-
terns may be freed by calling BSfree_comnm().

void BSfree_comm{BScomm *comm_ptr);
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5.1.5 Computing an Incomplete Factorization

If an incomplete factor is to be computed, a copy of the matrix must be made by using the
routine BScopy_par.mat ().

BSpar_mat *BScopy_par_mat(BSpar_mat *4);

The copy is necessary because the iterative solver will require both the initial matrix and the
factorization. As an aside, we note that (for the incomplete Cholesky storage scheme) the copy
of the sparse matrix shares the clique storage space with the matrix from which it is copied.
For more information see the man page on BScopyparmat().

The incomplete factorization is computed by calling the routine BSfactor(}.

int BSfactor(BSpar. mat *4,BScomm *comm,BSprocinfe *procinfo);

The matrix & will be overwritten with the incomplete factorization. H the factorization is
successful the routine returns 0; otherwise a negative integer is returned whose absolute value
is the row number of the color (less one) where the failure occurred. Note that the kind of
factorization computed is determined by the internal representation of the matrix produced by
BSmain_perm(). For example, consider the following code segment.

BSset_mat_symmetric(4,TRUE);
BSset_mat_icc_storage(4,FALSE);

pi = BSmain_perm(procinfo,4); CHKERR(O);

/* diagonally scale the matrix */
BSscale_diag(ph,pA->diag,procinfo); CHKERR{0);

/% set up the communication structure for triangular matrix solution */
Acomm = BSsetup_forward(pi,procinfo); CHKERR(0);

/* get a copy of the sparse matriz */

f_pA = BScopy_par_mat{pd}; CHKERR(O);

/* set up a communication structure for factorization */
£_comm = BSsetup_factor(f_pA,procinfo); CHKERR(D);

/* compute the incomplete LU factorization */

ierr = BSfactor(f_pA,f_comm,procinfo);

In this example the call to BSset mat _synmetric() specifies the matrix as being symmetric,
The internal storage format for the incomplete LU factorization is chosen prior to the call to
BSmain_perm() by calling the routine BSset mat_icc_storage(). Thus, the call to BSfactor()
will compute the incomplete L1 factorization rather than the incomplete Cholesky factorization
even though the matrix is specified as symmetric. Also, note that the matrix has been diagenally
scaled before the factorization with the call to BSscale diag().

5.1.8 What to Do If the Factorization Fails

An attempt to compute the incomplete Cholesky factorization of a positive definite matrix can
fail if a zero or negative diagonal is encountered during the factorization. We note that the
incomplete factorization has been shown to exist only if the rnatrix is diagonally deminant or
in several other special cases; in general, there is no guarantee that it will exist. In the case of
failure the mairix must be recopied and the factorization retried. We recommend diagonally
scaling the matrix and using the following loop to accomplish this task.

my_alpha = 1.0;
/% get a copy of the sparse matrix #/
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£_pAk = BScopy_par_mat{pl);

/% factor the matrix until successful #/
while (BSfactor(f_pA,f_comm,procinfo} != 0} {
/* recopy just the nonzerc values #/

BScopy_nz(pA,f_pA);

/% increment the diagonal shift */

my_alpha += 0.1;

BSset_diag(f_pd,my_alpha,procinfo);
}

In this code segment, we are shifting the diagonal of the matrix by 0.1 every time the
factorization fails. Other strategies are certainly possible and could easily be implemented by
the user. The routine BSset diag{) is used to change the entire diagonal to my_alpha.

void BSset_diag(BSpar_mat *A,FLOAT my_alpha,BSprocinfo #procinfo);

5.2 Solving the Linear System

Once the parallel matrix and the communication structures have been created, we are ready to
solve the sparse linear system. One of two routines can be called to do this: (1) BSpar_solve(),
for either symmetric or nonsymmetric linear systems; and (2) BSpar_isolve(), for symmetric
indefinite systems, especially those involved in “shift and invert” strategies.

BSpar solve() can be used repeatedly io solve systems of linear equations with one or with
multiple right-hand sides. The calling arguments are as follows..

int BSpar_solve(BSpar_mat *A, BSpar_mat *fact_A, BScomm *comm_4,
FLOAT *rhs, FLOAT #*x, FLDAT *residual, BSprocinfo #procinfo);

The routine returns the number of iterations taken by the solver. If the solver fails {for example,
a negative curvature direction is found in a conjugate gradient iteration), the solver returns the
negative of the iteration number.

The following code segment presents an example of how BSpar_solve() could be called.

BSctx_set_method(procinfe,GMRES);

BSctx_set_pre(procinfo,PRE_ILU);

BSctx.set_max_it{procinfo,50);

BSctx_set_restart(procinfo,25);

BSctx_set_guess(procinfo,TRUE);

BSctx_set_tol(procinfo,1.0e-T);

num_iter = BSpar_solve(pA,f_pA,Acomm,rhs,x,residual,procinfo); CHKERR();

In this example the GMRES iterative method has been specified, preconditioned by an
incomplete LU factorization. The preconditioner specified must agree with the preconditioner
that has been computed by BSfacter(). The maximum number of iterations allowed the solver
has been specified as 50, and the number of storage vector allowed GMRES before restart as
25. In this example BSctx set_guess() has specified that the solver use an initial guess for
x as the zero vector. Finally, the relative residual tolerance, ||Ax — b{]/]|5||, has been set to
i.0e-7. Additional details on the arguments used can be found in the nan page.

A second solver, BSpar_isolve(), is set up to solve the shifted system {4 — sB)z = b,
where A and B are symmetric matrices, ¢ is a real constant, z is the solution vector, and b
is the right-hand side, BlockSolved5 is set up to take advantage of B being NULL or ¢ being
zero. The calling sequence is the following.
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int BSpar_isclve(BSpar_mat *A, BSpar_mat *fact_A, BScomm *comm_4,
BSpar_mat *B, BScomm *comm_B, FLOAT #in_rhs, FLDAT *out_x,
FLOAT shift, FLOAT #residual, BSprocinfo *procinfa);

BSpar.isolwe() uses the SYMMLQ algorithm, which requires that the preconditioner, if
any, be positive definite. Symmetric diagonal scaling is not possible for an indefinite matrix,
so one of the other preconditioners must be used. The restriction that the preconditioner
be positive definite is too restrictive for many problems, but we know of no general-purpose
alternative to SYMMUL(Q that takes advantage of symmetry while allowing an indefinite precon-
ditioner. Another option would be to explicitly form (A — ¢ B) and solve the resulting system
with GMRES preconditioned with ILU {at the expense of twice the memory). The program
examples grid7 and grid8 compare these two options. See §8 for details.

If you wish simultaneously to solve for more than one right-hand side, you must call the
routine BSsetupblock() to modify the communication structure to accommodate the multiple
right-hand sides. The arguments for this function are the following.

void BSsetup_block(BSpar_mat *A,BScomm *comm,int block_size,
BSprocinfo *procinfo);

5.3 Freeing Matrices

To free the parallel matrix created by BSmain_perm(), call the routine BSfree_par mat ().
void BSfree_par_mat(BSpar_mat *A4);

To free a copy of a parallel matrix created by BScopyparmat(), call the routine
BSfree_copy.paramat (),

void BSfree_copy_par.mat (BSpar_mat *A);
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6 Error Checking, Flop Counting, Message Passing, and
the BLLAS

In this section we discuss a number of useful, miscellanecus features available in BlockSolve95.
These features include error checking, flop counting, matrix size and ordering information,
message-passing options, and BLAS options for optimizing processor performance.

6.1 Error Checking within BlockSolve95

BlockSolve85 uses an error-checking system based on the two macros SETERR() and CHKERR(),
which are defined in the file include/BSdepend.h. When BlockSolve25 is compiled with the
flag DEBUGALL defined in the file include/BSdepend.h, then when an internal error occurs
{such as a failed matloc{} call}, BlockSolve95 returns to the user, and the error code can be
checked and a traceback returned. The traceback includes the routine names and line numbers
where the error occurs; this information can be useful if you suspect an error in BlockSolved5.
We highly recommend the use of DEBUG_ALL until you are extremely sure of your code; even
then, it is inexpensive to use DEBUG_ALL with BlockSolve95. The default is that DEBUG_ALL is
set to TRUE in include/BSdepend.h.

6.2 Flop Counting

When the BlockSolved5 is compiled with MLOG defined, flops (floating-point operations) are
being logged. (See §7 for more information about compile-time options.) You can access the
current number of flops executed by BlockSolve95 on a particular processor with the call to the
function

double BSlocal_flops();

which refurns a double. The total number of flops performed on all processors can be obtained
by calling the function

double BSglobal flops(BSprocinfo *procinfc);

which also returns a double.
The following code segment demonstrates how you can estimate flop rates for a section of
code.

init_flops = BSglobal_flops(procinfe);

init_time = MPI_Wtime();

num_iter = BSpar_solve(pA,f_pA,Acomm,rhg,x,residual,procinfo); CHKERR{Q);
" total_time = MPI_Wtime() - init_time;

total_flops = BSglobal_flops(procinfo) - init_flops;

tmflop = total_flops/(total_time);

In this case, tmflop would be an estimate of the combined flop rate for all the processors
involved in the call to BSpar solve().

BlockSolve95 also does some rudimeniary logging of timing and flop counts of routines
within the package when compiled with MLDG defined. By calling the function

int BSprint_leg(BSprocinfe #procinfe);

before the final call to BSfree_ctx( ), this logging information can be printed out.
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6.3 DMatrix Statistics

BlockSolve95 includes a number of functions that can be called io obtain information about
a matrix of typedef BSpar.mat. For example, the following two functions may be called to
determine the matrix nonzeros locally assigned to a processor and the total (global) number of
nonzeros in the matrix.

int BRSlocal_nnz(BSpar_mat #*);
int BSglobal_nnz{BSpar_mat *,BSprocinfo *)};

The following two functions may be called to obtain the number of i-nodes locally assigned to
a processor and the global namber of i-nodes.

int BSlocal_num_inodes(BSpar_mat #);
int BSglobal_num_inodes(BSpar_mat *};

The following two functions return the the number of cliques locally assigned to a processor
and the global number of cliques.

int BSlocal_num_cliques(BSpar_mat *);
int BSglobal_num_cliques(BSpar_mat *);

The following function returns the number of colors used to color the graph associated with
matrix clique structure.

int BSnum_colors{BSpar_mat #);

6.4 Blocking and Nonblocking Messages

BlockSolved5 can be compiled so that it does not use blocking (synchronous) sends and receives.
{In MPI the blocking send is the function MPI_Send(); the nonblocking (asynchronous) send is
the function MPI_Isend().) The MPI standard does not require that two processors simulta-
neously issuing blocking sends buffer messages and return; therefore deadlock can result. This
probilem can be avoided by using nonblocking sends, at the expense of more memory (because
the message buffers cannot be freed until it is certain that the messages have been received).
The IBM SP requires the use of such nonblocking sends.

BlockSolve35 compiles with the blocking or nonblocking send versions based on whether
NO_BLOCKING SEND is defined in the include file include/BSdepend.h. If you are concerned
about performance or memory usage, you should experiment with the difference between block-
ing and nonblocking sends on your particular architecture.

6.5 MPI Communicators and Message Number Conflicts

BlockSolue85 currently does not make a copy of the user’s MPI communicator; instead it uses
as a default the current MPI_COMM WORLD. If there is any possibility of a message-passing conflict
(for example, unsatisfied wild card receives from the user’s code}, the communicator can be
copied by using MPI_Comm._dup{) and can be handed to BlockSolve95 by using BSctx_set ps().

BlockSolve85 uses message numbers beginning at 10,000, It uses a significant but variable
number of messages after that. Currently the number of messages used is 20+{10000*num-
ber_of_processors). The number of messages needed by BlockSolve95 depends on the problem
being solved, but if the number of messages allocated to it is too small, it will detect an er-
ror and return accordingly {if DEBUG_ALL is on). The current setting of 10,000 is generous.
The message numbers as well as the number of messages can be changed simply by alter-
ing include/BSprivate.h. The avoidance of conflicts in the use of message numbers can be
ensured by copying the communicator as described above.
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6.6 Inline Macros for the.BLAS

The performance of the vendor-supplied BLAS for small systems can be disappoeinting because
of the subroutine call overhead, error checking, and special case handling {overioading) in the
implementation of these BLAS. In addition, BlockSolve97 has to gather and scatter noncontigu-
- ous vector data (although not matrix data) to use the dense BLAS. A feature in BlockSolve95
is special handling of the Level-2 BLAS for small i-node sizes; BlockSolve95 uses macros to
put code inline for the special BLAS cases required. The performance improvement can be
substantial. For example, in Table 4 we show the processor performance improvement obtained
on the Argonne IBM SP system {RS/6000-370 processor).

Table 4: Comparison of the single-processor performance of BlockSelve95 conjugate
gradient and GMRES iterations, with vendor-supplied, Level-2 BLAS (GEMV and
TRMYV) and the new inline macros. The symmetric systems are solved with the con-
Jjugate gradient method; the nonsymmetric systems are solved with GMRES.

Size of | Symmetric | Vendor BLAS | B596 Macros | Improvement
t-node | (Y or N) (Mflops) (Mflops) Ratio

2 Y 3.5 8.3 2.35

3 Y 6.1 12.5 2.06

5 Y 10.3 18.3 1.77

] Y 14.7 22.3 1.52

7 Y 17.6 23.2 1.32

2 N 5.2 7.1 1.37

3 N 8.0 10.6 1.33

b N 16.1 19.1 1.19

These macros are defined in the include/BSmy blas.h. The default is that libraries are
compiled with the inline versions for small i-node sizes {less than 10); otherwise, the vendor-
supplied BLAS are used. These macros can be turned off by editing this file and not defining
MY_BLAS_DTRMV_ON and MY _BLAS DGEMV_ON. Also, the maximum level of unrolling can be changed
to tune performance for a particular architecture.
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7 Installation

Underneath the main BlockSolve95 directory are six other directories: (1) src, which contains
the source code and makefiles for BlockSolve$5, (2) doc, which contains the documentation for
BlockSolve8d5, (3) examples, which contains example programs that demonstrate the use of
BlockSolve83, (4) include, (3) 1ib, and (6) bmake.

BlockSolved5 uses the same makefile system as PETSc [1]. The README file in the main
directory gives details on how to build the libraries. The makefiles will build the BlockSelved5
library in a subdirectory of the 1ib directory based on the machine architecture and the level
of optimization. The machine architecture should be specified by the environmental variable
$PETSC_ARCH. You will have to modify the file bmake/$PETSC ARCH/$PETSC ARCH.site as di-
rected in the README file.

Several compiler options affect BlockSolved5. The DEBUG_ALL flags were described in §6.
The flag MLOG is associated with the logging facilities within BlockSolve94, and more information
can be found on them in the file include/BSlog.h. A preprocessor variable called BSDOUBLE
is defined in include/BSsparse.h. If BSDOUBLE is defined, BlockSolved5 will compile a double-
precision version; otherwise, a single-precision version is compiled. Unfortunately, the routine
names for both versions are the same.

There is special case on the Cray T3D because the C code requires that FLOAT be defined as
double but the BLAS and LAPACK rontines require the single-precision names (although they
are the double-precision versions). Details can be found in the include file include/BSsparse.h.

7.1 Other Libraries
To run BlockSolve93, you need LAPACK; the BLAS 1, 2, and 3 libraries; and an MPI imple-

mentation for the particular architecture being used. If MPI has not been installed on your
system, we recommend your using MPICH. This package is available via anonymous ftp from
info.mcs.anl.gov iu the directory pub/mpi. More information on MPI can be found on the
WWW at http://wew.nes. anl. gov/mpi/index.html.

7.2 TUNIX nan Pages

UNIX man pages have been generated for the BlockSolse?5 routines and are located
in the directory doc/man. To use these pages you must include the path to the directory
BlockSolve95/doc/man in your MANPATH environmental variable. This variable can be set
with the command setenv. The tool xman provides a nice interface to these man pages. The
BlockSolve95 routines can be accessed in Section 3 and the include files in Section h from the
pull-down menu given by the “Sections” button on the xman toolbar.

7.3 Availability of BlockSelve95

The BlockSolved5 package can obtained via anonymous fip from info.mes.anl,gov. The pack-
age is in the directory pub/BlockSolve9s. In addition, BlockSolve95 is available from netlib.
The current version number and last date of modification are in the file include/BSsparse.h.
Please send any questions via e-mail to jones@cs.utk.edu or plassman@mces. anl.gov. Include
your name, affiliation, U.5.-mail address, and e-mail address, along with a description of what
you might be interested in doing with BlockSolue95.

Information on the current status of BlockSolve95 can be obtained on the WWW at
http://www.mecs.anl.gov/blocksclveds/index . html.
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7.4 Differences between Previous BlockSolve Versions

BlockSolved5 incorporates many improvements over BlockSolve v1.1 and v2.0. Among these
improvements are the following.

¢ A compile-time option has been added that directs BlockSolve5 to use no blocking sends
(see §6 or the include file include/BSdepend.h for details). This feature is necessary
because certain machines (e.g., the IBM SP series architecture) have inadequate message
buffering space allocated to use blocking sends.

s BlockSolve95 now uses the MPI message-passing standard insiead of Chameleon for com-
munication.

o BlockSolved5 can now compute incomplete LU factorizations for matrices that have a
symmetric nonzero pattern but nonsymmetric entries. Also, the iterative solver GMRES
has been added, which can be used to solve these nonsymmetric systems. See §5 for
details.

o A subroutine, BSeasy A(}, has been added that allows the user to convert a sparse matrix
stored in a familiar storage format to the BlockSelve95 data structure used for parallel
computation (see §4 for details). In addition, the routine BSfree_easynat() has been
added to free the data structures that BlockSolve95 allocates when BSeasy A() is called.

o The matrix reordering routines called in BSmain perm() have been significantly modified
to greatly reduce the runtime of BlockSolve95 for problems with only one degree of
freedom per grid point. BlockSolve95 is still designed for more complex problems, but
the reordering time for these simpler problems is now more satisfactory.

e The code is now ANSI-C. This should result in fewer user errors because of the type
checking that can now be done on argument lists. Note that the user’s code does not
have to be ANSI-C to nse the libraries.

+ BlockSolve95 has special macros for handling the level-2 BLAS GEMV and TRMYV for
small i-node sizes. The performance of the vendor-supplied BLAS have proven to be
inadequate in this parameter range, so inline versions of specific BLAS are now included
in the include file include/BSmy blas.h.

+ The set of example programs is greatly expanded and can be used to test most aspects
of BlockSolve93. See §8 for a description of the program examples.
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8 Example Programs

BlockSolve85 includes a number of example programs that demonstrate most aspects of the
software library. The code for these examples is contained in the examples directory.

A description of BlockSelve95 example programs, a description of
the problem calling arguments is given belew.

grid0 —- Simple example. Uses 3-d 7-point finite-difference
stencil. BleckSolve context set not to lock for cliques or
inodes. Symmetric problem. i

. mpirun -np P grid0.ARCHE PX PY PZ KX NY N2

gridl —- An unbalanced grid example. The precessors on the left
and right ends of the grid use a 7 pt stencil, those in the middle
use a 27-pt stencil. BlockSolve context set not to look for cliques
and incdes. Symmetric problem.

. mpirun -np P gridi.ARCH PX PY PZ HX NY NZ

grid2 —— A demonstration of running BleckSolve on two indzpendent
sets of processors simultaneously. This problem is partitioned
in only the x and y directiens. The processors on the left
and right ends of the grid use a 7 pt stencil; those in the middie
use a 27-pt stencil. BlockSolve context set not to look for
cliques or inedes. Symmetric problem.

. mpirun -np P grid2.ARCH PX PY NX NY NZ

grid3 -~ A 2-D grid distributed across the processors. The 2-D
grid is partitioned in both dimensions among the processors.
The number of processors *must* be the square of an integer,
e.g., 9 but.not-8, Either a 5-pt or 9=pt stencil.-can be
specified. BlockSolve context set not to look for cliques or
inodes. Symmetric problem.

. mpirun -np P grid3.ARCH NXY NST

grid4 —- Simple example (same as grid0) but this code uses lower level
BlockSolve functions to set up the parallel sparse matrix data
structures (done in get_mat4.¢). Uses 3-d T-point finite-difference
stencil. BlockSolve context set mot to lock for cliquesz or incdes.
Symmetric preblea.

. mpirun -np P grid4.ARCH PX PY PZ NX NY NZ

grids -~ Can be used to test a variety of BlockSolve features.
The grid problem is based on the 7-pt stencil; however, one
can specify a number of components at each grid points. Each
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of these components will have an identical nonzero structure
{inode) in the sparse matrix. O0One can specify either a symmetric
or nonsymmetric nenzero structure. One can specify whether the
BlockSolve is to look for inode/cliques or not.

. mpiran -np P gridS5.ARCH PX PY PZ NX NY NZ 5¥Y¥ NC TN PRE METHOR SCALE NUM_RHS

gridé -- A demonstration of setting up the BlockSclve communication
structure and using the same structures to solve multiple linear
systems with the same nonzero structure but different nonzero
values. In this case, we compute a sequence of preconditioners
by varying the diagonal shift applied to the matrix used to
compute in the computation of the incompliete factor.

. mpirun -np P gridé6,.ARCH PX PY PZ NX NY NZ 5YM TN NC

grid7 -—- This example uses SYMHML( to solve the symmetric shifted
system (4-3*B)x = b, where s is a shift and A and B are symitetric.
(Note that this system is indefinite for large enough shift s.)
Systems of this kind form the core computation in a shift
and invert strategy within a Lanzcos iteration. In the usual
case, A would be the assembled stiffness matrix and B would be
the asseciated mass matrix. For thiz example, B has the same
nonzero structure of A and its values are the absolute values
of the values of A. Kote that SYMMLQ requires that the preconditioner
{the incomplete factorization of A) be positive definite!

. mpirun -np P grid7.ARCH PX PY PZ NX NY NZ PRE IN NC BMAT SHIFT

grid8 -~ This example solves the same preoblem as that in gridy
except here we explicitly form the indefinite matrix C={A-s*B) and
solve the resulting linear system system, Cx = b, using GMRES.
One can use either ILU or ICC as a preconditioner, although
for large shifts the diagonal of C must be shifted to avoid
breakdoun in the computation of the incomplete Cholesky factor.

A description of pessible example program arguments:

. ARCH = Machine architecture, e.g., sund, rs6000, IRIX, etc.

. P = number of processors

. PX = the number of processors in the x direction
. PY = the mmber of processors in the y direction
. PZ = the number of processors in the z direction

. NX = number of peints in the x direction on each processor
NY = pumber of points in the y direction on each processor
NZ = pumber of poin$s in the z direction on each processor

NXY = number of points in the x and y directions on each processor
. N5T = mumber of points used in the stencil

SYM = 0, use symmetric data atructure, = 1, use nonsymmetric
NC = number of components per grid point
N = 0, do not use, = 1, use inode/clique stuff
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. PRE =0, use ICC, = 1, use ILU

. METHGD = 0, use CG, nse GMRES

. SCALE = 0, do net scale system, = 1, scale system

. NUM_RHS = number of RHSs te solve for simultanecusly
BMAT = 0 = use identity for shift, 1 = use positive of A
SHIFT = shift to use in the shift and invert system
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9 Limitations and Future Plans

The user should be aware of a few limitations in BlockSolved5:

Each row of the matrix must have a diagonal entry. That entry may be zero, but it must
be explicitly represented in the matrix structure.

I the matrix is indefinite, one cannot solve for a block of vectors simultaneously in the
current code.

BlockSolue95 does not check for or catch exceptions associated with floating-point errors.
Each processor involved in a BlockSolve call must have at least one row of the matrix.

BlockSolve95 does not allow the user to mix machines with different byte orderings or
different sizes for datatypes in the same computation.

Another limitation involves coloring options. It is possible with the current version that
if the portion of the matrix structure contained on some processors is very different from the
structure contained on other processors, then the number of colors on each of these processors
can be quite different. Such a situation could arise if different-order finite elements are used
on different processors (but would not arise just by applying boundary conditions to some
processors, but not to others). This imbalance in the number of processors could degrade
performance. A balanced coloring heuristic that addresses this situation is described in [3];
however, this heuristic is not vet included in BlockSolve95.
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10 Related Software

A number of software packages are closely related to BlockSolved5 and may be of use in pax-
ticular applications.

e The software package PETSc [1] contains an interface to BlockSolve95. 1t can be used
to access a larger number of terative solvers, nonlinear methods, and a large number
of other useful features. Information on PETSc may be obtained on the WWW at
http://uwww.mcs.anl.gov/petsc/petsc.himl.

The SUMAA3d (Scalable Unstructured Mesh Algorithms and Applications) project is
developing algorithms and software for many of the tasks associated with unstructured
mesh computation. Current information about this project can be obtained on the WW'W
at http://wew.mcs.anl.gov/sumaa3dd/index . html.

Preliminary adaptive refinement software has been developed for finite element methods
in two and three dimensions [12]. This software is part of the SUMAA3d project.



http://www.mcs.anl.gov/petsc/petsc.html
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