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Abstract
The clinical presentation of Parkinson’s disease (PD) is both complex and heterogeneous, and its precise classification 
often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic 
responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and 
fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, 
signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the 
necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomark-
ers and present both a researcher’s and a clinician’s perspective on recent developments and potential future applications.
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Introduction

Parkinson’s disease (PD) is a complex and heterogeneous 
neurodegenerative movement disorder that presents in vari-
ous clinical phenotypes ranging from tremor-predominant 
syndromes to bradykinetic-rigid manifestations and inter-
mediate types (Bloem et  al. 2021). Similarly, disease-
causing and disease-promoting pathomechanisms may be 
diverse and involve various molecular and cellular aspects 

including alpha-Synuclein (aSyn) conformational changes 
and its propagation, alterations in biology of amyloid-beta 
and tau proteins, cellular damage resulting in increase of 
neurofilaments, but also modified small non-coding RNA 
levels, lymphocyte, and inflammatory profiles.

However, these underlying processes do not consistently 
translate to individual clinical presentations and the indi-
vidual course of disease might be quite different. Recent 
data from large cohort studies support the finding that mild 
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motor-predominant, intermediate, or diffuse malignant PD 
progression subtypes exist (Pablo-Fernández et al. 2019), 
but correlations of molecular and cellular alterations with 
different subtypes have so far only been rare (Mestre et al. 
2021). To improve the diagnosis of PD, assess disease pro-
gression, evaluate therapeutic responses, or identify PD 
subtypes, various tissue- and fluid-based biomarkers are 
currently being investigated. Blood biomarkers that are 
relatively easy to obtain would have a great potential for use 
if they were able to meet the necessary requirements in a 
research setting and clinical practice. In this review article, 
we assess the current state of blood-based PD biomarkers, 
and present both a researcher's and a clinician's perspective 
on recent developments.

What is a biomarker?

A biomarker, as defined as a “biological marker”, is “a char-
acteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathogenic pro-
cesses or pharmacological responses to a therapeutic inter-
vention” (Biomarkers Definitions Working Group 2001, 
FDA-NIH Biomarker Working Group 2016). As such, a 
biomarker should help us (1) to understand the physiology 
and the pathological mechanism underlying the disease pro-
cess, (2) to support the diagnostic workup including disease 
prediction and monitoring, and (3) to generate evidence for 
the therapeutic efficiency of any given treatment (Hampel 
et al. 2010; Jack et al. 2013).

A variety of quality criteria definitions exist for bio-
marker in general depending on the different application 
areas described above (Editorial 2010). To meet endophe-
notype criteria, candidate markers have to be (1) heritable, 
(2) relatively state-independent and stable over time, (3) 
associated with the illness, and (4) to be found in affected 
as well as unaffected family members at a higher rate than in 
the general population. Biomarkers should support/replace 
clinical endpoints, because they (1) are earlier/easier/quicker 
to measure, (2) reduce trial duration, size, and costs, (3) 
are more mechanistic, accurate, and reproducible, and 
(4) change dynamics in proportion to what they represent 
(Hampel et al. 2010; Jack et al. 2013; Ravina et al. 2005; 
Prasad and Hung 2021; Heldman et al. 2014; Benz et al. 
2021).

Further statistical quality criteria that have to be evaluated 
before acceptance as a biomarker include (1) > 85% sensi-
tivity (100% indicates that all patients are identified with 
the disease), (2) > 85% specificity (100% of a test identi-
fies all individuals free of the disease), (3) positive predic-
tive value (> 80%; refers to % of people, who are positive 
for the biomarker and have definite disease at autopsy), (4) 
negative predictive value (is the % of people with a negative 

test; means no disease at autopsy), and (5) prior probability 
(the background prevalence of the disease in the population 
tested) (Shaw et al. 2007; Gerlach et al. 2012).

Traditionally, biomarkers were derived as lab-based bio-
logical measures from specimens including body fluids or 
tissues. They are commonly analyzed with biochemical, 
molecular, cellular, and histological analytics or related 
methods derived from procedures of clinical chemistry and 
laboratory medicine. The present manuscript will address 
blood-based biomarkers, since they are the best-studied bio-
markers in PD and easiest to be translated into everyday clin-
ical practice. Particularly with respect to the relationship to 
clinical care procedures and implementation in clinical care, 
it is important to place the traditional laboratory-based bio-
markers in the context of other relevant measures that could 
also be understood as biomarkers: clinical assessments such 
as quantitative scores and scales may also be considered 
biomarkers of a “clinical nature”, because they are widely 
used for the purpose originally defined for biomarkers, e.g., 
to measure and assess disease mechanisms and diagnostic/
therapeutic procedures.

The clinical assessments are nowadays electronically 
recorded as electronic clinical outcomes assessments 
(eCOA) including clinician, observer, or patient-reported 
outcomes (PROMS) (Boyle et al. 2021). The ability to elec-
tronically record clinical outcomes makes these measures 
“available” similar to the classical biosampling procedures 
for lab-based biomarker. Vice versa, lab-based biomarker 
measures increasingly turn into data entries stored in 
large multidimensional registries for data-driven research 
approaches.

In addition, “technical biomarkers” are typically under-
stood as biological information recorded by technical 
devices such as imaging technologies or objective technical 
measures (e.g., ECG, blood pressure, etc.). Their assessment 
procedure fits very well with the newly developing group 
of “digital” biomarker covering patient-centric technical 
measures such as wearable sensors and smartphone-based 
patient-reported outcome measures—partially referred to as 
“real-world outcome measures” (Rovini et al. 2017). The 
current biomarker developments primarily serve such pur-
poses, as summarized in Table 1.

Biomarker applications in Parkinson’s 
disease

The most extensive biomarker research for PD stems from 
lab-based biological measures so far. To date, however, not 
a single marker has been generally accepted or entered clini-
cal practice. A major unmet need is to identify biomarkers 
facilitating diagnosis and therapy of PD: particularly at early 
disease stages, diagnosing PD can be challenging, but even 
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at later stages, the rate of incorrect diagnoses is still remark-
ably high (Rizzo et al. 2016). A biomarker that is able to 
validate the diagnosis of PD could be helpful here. At the 
same time, such a diagnostic marker should be able to dif-
ferentiate between idiopathic PD and other Parkinsonian 
syndromes (PS), such as atypical PS (aPS) and secondary 
PS. An example of a clinically useful and widely employed 
technical biomarker is the 123I-FP-CIT SPECT, which dif-
ferentiates PD from other movement disorders without dopa-
minergic deficit with high sensitivity and specificity (Var-
rone and Halldin 2010). However, it fails at differentiating 
PD from aPS and thus remains a more general marker for 
identifying degenerative disorders with striatal dopaminer-
gic deficiency. Table 2 provides an overview of currently 
investigated blood biomarkers for PD.

Biomarkers could also facilitate clinical trials as surro-
gates for disease progression. Whereas in clinical routine, 
disease progression is mostly quantified by an increase in a 
symptom severity score and application of clinical-type bio-
marker (e.g., MDS-UPDRS, NMSS, or PDQ-39), symptom 
severity scores can be significantly skewed by symptomatic 
therapies that are commonly used in PD. A laboratory-based 
biomarker that indicates disease progression independent 
of clinical symptoms could be very useful, particularly for 
clinical trials of disease-modifying substances. For example, 
procalcitonin is a widely used biomarker for sepsis and indi-
cates therapeutic response well before the patients’ clinical 
condition improves (Carrol et al. 2002).

Finally, biomarkers could facilitate the identification of 
subtypes of patients with similar clinical phenotypes, but 
differing etiopathogenesis. For example, genotyping can 
identify multiple independent genotypes that are responsi-
ble for the development of a PD phenotype. Clearly, also 
idiopathic PD is a heterogeneous disorder, even in prodromal 
stages (Berg et al. 2021; Qian and Huang 2019). Biomarkers 
permitting the identification of defined molecular subgroups 
could enable the selection of clinical subgroups for clinical 
trials and subsequently pave the way for tailored therapies. 
Such molecular stratification strategies are already success-
fully employed in clinical oncology, where, for example, 
breast cancer subtypes expressing certain hormone and/or 

growth factor receptors have direct implications for thera-
peutic decisions (Bou-Dargham et al. 2021).

The following section reviews the most extensively 
studied and best characterized blood-derived laboratory-
based biomarkers for PD concerning (differential) diagno-
sis, disease progression/therapy response, and PD subtype 
differentiation/individualization.

Blood‑based biomarker

Alpha‑synuclein

Alpha-synuclein (aSyn) is a small protein of 140 amino 
acids located at the presynaptic nerve terminals where it 
presumably exerts its regulatory role in synaptic function 
and neurotransmitter release (Stefanis 2012). Importantly, 
this protein is neuropathologically and genetically closely 
linked to PD. aSyn undergoes extensive posttranslational 
modifications including phosphorylation as well as confor-
mational transformations leading to the formation of aggre-
gates and neuronal toxicity (Zhang et al. 2019). Since aSyn 
is considered central to PD pathogenesis, it is most promis-
ing to serve as a biomarker.

Beyond its neuronal expression, aSyn can also be detected 
in blood, most abundantly in erythrocytes (red blood cells; 
RBCs) (Barbour et al. 2008). However, studies on total aSyn 
revealed inconsistent results. As compared to controls, total 
aSyn levels in PD serum or plasma were either increased 
(Lin et al. 2017; Ng et al. 2019), not significantly different 
(Mata et al. 2010; Goldman et al. 2018), or even reduced 
(Li et al. 2007; Besong-Agbo et al. 2013). Preanalytical 
factors, particularly aSyn contamination from RBCs due to 
hemolysis, use of different analytical assays, and sampling 
procedures across studies, may have contributed to these 
discrepancies. Notably, higher aSyn levels in plasma and 
serum showed a significant correlation with motor sever-
ity (Wang et al. 2019a; Chang et al. 2020) and cognitive 
decline (Lin et al. 2017; Ng et al. 2019). Exosomes are part 
of extracellular vesicles (EV) that can transfer αSyn across 
cells and from brain to the peripheral blood. Significantly 
higher concentrations of exosomal aSyn have been observed 

Table 1  Purposes of biomarker

Biomarker class Application type

Diagnostic biomarker For differential or presymptomatic diagnosis, screening for susceptibility and risks
Prognostic biomarker For the prognosis/chance of healing, therapeutic decision support
Monitoring biomarker For objective confirmation of therapeutic efficacy, detection of non-responsiveness, progression detection and 

classification, safety and quality control
Individualization biomarker To stratify the individual patient profile to assign the patient characteristics to a better—more personalized—ref-

erence group
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in PD patients compared to controls (Shi et al. 2014). A 
recent study with a small sample size and a follow-up period 
of 22 months confirmed this finding in patients with early 
stage PD, although not baseline, but longitudinal increase 
of exosomal aSyn level was associated with higher risk of 
motor progression (Niu et al. 2020).

Given the conflicting data on total aSyn levels, attention 
has been directed to more disease-specific types of aSyn. 
Oligomeres of aSyn are considered as toxic forms that pre-
cede aggregation and neuronal death. Increased levels of 
oligomeric forms of aSyn have been found in plasma (El-
Agnaf et al. 2006), serum (Williams et al. 2016), and RBCs 
(Wang et al. 2015; Daniele et al. 2018) with moderate ability 
to differentiate PD from controls. Phosphorylation at serine 
129 is the most common posttranslational modification of 
aSyn. PD patients displayed elevated levels of phosphoryl-
ated aSyn in plasma (Foulds et al. 2013) and in RBCs (Tian 
et al. 2019). The diagnostic accuracy can be increased by 
composite biomarkers including total, proteinase-K resist-
ant, and phosphorylated aSyn that differentiated PD from 
controls with an AUC of 0.81 (Abd Elhadi et al. 2019). One 
of the rare longitudinal studies assayed total aSyn and phos-
phorylated aSyn at 4–6 monthly intervals from plasma of 
189 newly diagnosed PD patients over a period of 3–4 years 
(Foulds et al. 2013). Whereas total plasma aSyn levels in PD 
were not different from controls at baseline and increased 
over time, higher phosphorylated aSyn levels were found 
in PD plasma which remained stable during the follow-ups. 
Regarding the total aSyn dynamics, a higher clearance from 
the site of aSyn pathology to the general blood circulation 
has been discussed. Another longitudinal study reported that 
both baseline and longitudinal increases in total plasma aSyn 
predicted the progression of cognitive decline in individu-
als at risk for PD, presenting with hyposmia and dopamine 
transporter (DAT) binding reduction (Wang et al. 2018).

Overall, we conclude that the plasma level of oligomeric 
and phosphorylated aSyn has potential value as a diagnostic 
tool, whereas the level of total aSyn could act as a surrogate 
marker for the progression of PD. The utility of aSyn con-
taining exosomes needs to be further validated. Standardiza-
tion of preanalytical factors to allow comparability will be 
necessary.

Amyloid‑beta/tau

Amyloid beta peptides (Aβ) are cleaved from the amyloid 
precursor protein (APP) into the isoforms Aβ42 and Aβ40 
that can further assemble into extracellular plaques (Chen 
et al. 2017). Hyperphosphorylation of tau protein can lead 
to intracellular accumulations appearing as neurofibrillary 
tangles (NFTs) (Lei et al. 2010). Amyloid plaques and NFTs 
are characteristic of Alzheimer’s disease (AD), but can also 

coexist with Lewy body pathology in PD correlating with 
an accelerated cognitive decline (Jellinger et al. 2002; Irwin 
et al. 2013). Aβ and tau synergistically interact with aSyn 
promoting their mutual accumulation (Clinton et al. 2010).

In CSF, a trend toward lower Aβ42 levels has been 
reported in PD, mostly associated with cognitive dysfunc-
tion (Alves et al. 2014; Parnetti et al. 2014). Aβ42 can also 
be measured in blood. Earlier reports did not find a cor-
relation with cerebral Aβ pathology as indicated by CSF or 
positron emission tomography (PET) (Zetterberg 2015). It 
has been discussed that high amounts of the Aβ peptides in 
plasma could have derived from extra-cerebral sources such 
as platelets leading to these negative findings (Lim et al. 
2019). However, novel ultrasensitive immunoassay technolo-
gies including immunomagnetic reduction (IMR) suggest 
that plasma Aβ level could correlate with cerebral amyloido-
sis (Teunissen et al. 2018). Only a few studies have assessed 
Aβ42 in PD blood, reporting inconsistent findings regarding 
blood level or correlation with cognitive functions (Lin et al. 
2018a; Chojdak-Łukasiewicz et al. 2020; Chen et al. 2020). 
With regard to PD motor symptoms, lower Aß42 levels in 
plasma were shown to be associated with postural instability 
gait difficulty (PIGD) subtype (Ding et al. 2017). Of note, 
this motor subtype in turn predisposes to the risk of develop-
ing cognitive impairment.

Evidence on tau protein level in PD blood is even more 
limited. Furthermore, rapid changes in tau concentrations in 
blood as demonstrated in patients with acute hypoxic brain 
injury could hamper a correlation with CSF tau (Randall 
et al. 2013). Increased and similar total tau levels have been 
observed in PD compared to controls (Chen et al. 2020; 
Chojdak-Łukasiewicz et al. 2020). A recent study with 55 
PD patients did not compare total tau levels with controls, 
but demonstrated a correlation between higher t-tau levels 
with lower cognitive performance (Lin et al. 2022). Among 
patients with parkinsonian syndromes, plasma levels of total 
and phosphorylated Tau were significantly increased in all 
disease groups compared to controls, with the highest level 
in patients with FTD that in combination with Aβ42 could 
differentiate FTD from PD/APS with high accuracy (Lin 
et al. 2018a).

Aβ and tau have also been detected in exosomes/extracel-
lular vesicles (EV). Although tau and Aß42 plasma EV lev-
els did not differ between PD patients and controls, elevated 
levels of both proteins were significantly associated with 
cognitive impairment and combined with other parameters 
including aSyn in EV identified cognitively impaired PD 
patients with high accuracy (Chung et al. 2021).

Taken together, given the limited number of studies that 
primarily had a cross-sectional design and only small sample 
size, it remains unclear to what extent AD core peptides in 
the blood can reflect neuronal conditions in PD. Larger stud-
ies using ultrasensitive assay methods are needed to better 
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assess the validity of Aβ and tau particularly for detecting 
and tracking cognitive dysfunction in PD. Future investiga-
tions should also include Aβ42/Aβ40 ratios to correct for 
interindividual differences.

Neurofilament light chain

Neurofilament light chain (NfL) is a structural protein highly 
expressed in axons and released upon neuronal damage, ren-
dering it a robust marker for neuronal injury. NfL concen-
trations in blood and CSF strongly correlate (Hansson et al. 
2017; Wang et al. 2019b; Marques et al. 2019). Therefore, 
blood NfL is a promising biomarker for neurodegeneration 
including Parkinson´s disease (PD). CSF NfL levels in dif-
ferent Parkinsonian syndromes were found to correlate with 
pathological changes in presynaptic putaminal dopamine 
transporter (DAT) density reflecting nigrostriatal degenera-
tion (Diekämper et al. 2021) and higher baseline serum NfL 
was associated with greater reduction of putaminal DAT-
binding ratio over time (Ye et al. 2021).

Blood NfL is higher in atypical parkinsonian syndromes 
(APS), such as multiple system atrophy (MSA), progressive 
supranuclear palsy (PSP), and corticobasal syndrome (CBS) 
(Lin et al. 2019; Hansson et al. 2017; Marques et al. 2019; 
Mollenhauer et al. 2020) compared to PD and therefore 
might serve as biomarker to distinguish between APS and 
PD, even in early stages of APS, when clinical symptoms 
are not yet conclusive (Hansson et al. 2017; Marques et al. 
2019). Accuracy levels up to 91% (sensitivity = 86% and 
specificity = 85%) for distinguishing APS from PD apply-
ing a cut-off value of 14.8 g/L have been suggested (Marques 
et al. 2019). In PD and controls, but not in APS (Marques 
et al. 2019), serum NfL concentrations correlate with age 
(Lin et al. 2018b, 2019; Marques et al. 2019; Mollenhauer 
et al. 2020).

Blood NfL seems to be higher in more advanced 
PD patients compared to controls, while the situation 
is described controversially for early disease stages. A 
metaanalysis showed no differences in blood NfL in PD 
patients not stratified by disease severity compared to con-
trols (Wang et al. 2019b). While recently blood NfL concen-
trations at baseline and at follow-up (mean of 6.4 years) were 
found higher in de novo PD patients compared to controls 
(Ma et al. 2021), others did not find a difference for earlier 
PD disease stages (means for age, H&Y, and disease dura-
tion: 57y/2.0/34mo) (Marques et al. 2019). In another study, 
only in advanced PD patients (65y/2.5/9.7y) but not in a less 
severely affected group of comparable age (65y/1.9/5.3y), 
NfL blood levels were higher compared to controls (Hansson 
et al. 2017). For advanced PD patients (68.5y/3.1/7.8y), a 
plasma NfL cut-off value of 12.34 pg/ml has been suggested 
to have a modest sensitivity (53.2%) and a high specificity 

(90.5%) for distinguishing between patients and controls 
(Lin et al. 2019).

Cross-sectional studies showed heterogeneous results 
with respect to association of blood NfL concentrations with 
motor impairment in PD, revealing positive (Lin et al. 2019; 
Niemann et al. 2021) and negative results (Oosterveld et al. 
2020). Higher NfL levels are associated with more severe 
motor impairment in the long-term disease course. Baseline 
serum NFL levels showed significant hazard ratios for four 
out of five disease progression milestones in the long-term 
course, indicating that patients with higher blood NFL levels 
have a higher likelihood for later motor and social impair-
ment, expressed by the need for a walking-aid, nursing-home 
living, reaching final H and Y stage 5 or death (Ygland Röd-
ström et al. 2021). In de novo PD patients, higher baseline 
serum NfL was associated with greater increases of UPDRS-
III and total UPDRS scores, with greater worsening of pos-
tural instability and gait disorder (PIGD) scores—but not 
tremor scores—over time (Ye et al. 2021).

Blood NfL was also found associated with PIGD-sub-
type of PD (Pötter-Nerger et al. 2022; Ng et al. 2020). At 
2 year follow-up, NfL levels were higher in PIGD compared 
to tremor-dominant subtype, and within the PIGD group, 
higher blood NfL was associated with worse global cogni-
tion and UPDRS III at baseline and predicted motor and 
cognitive decline (Ng et al. 2020). Furthermore, NfL base-
line levels were associated with greater worsening of PIGD 
scores over 8 year follow-up (Kim and Jeon 2021).

Consistent inverse associations of blood NfL levels 
with cognitive scores have been reported (Oosterveld et al. 
2020; Lin et al. 2019, 2018b). Except for one study (Ye et al. 
2021), all identified publications described a positive asso-
ciation between baseline blood NfL levels and negative cog-
nitive outcome by applying different cognitive measurement 
instruments. This association was found for all PD sever-
ity stages, i.e., in a heterogenous PD cohort (Aamodt et al. 
2021), in prodromal and de novo patients (Mollenhauer et al. 
2020; Ma et al. 2021), in moderately (Lin et al. 2019), and 
advanced (Choe et al. 2020; Niemann et al. 2021) diseased 
PD patients. NfL values in the range from 14 to 19 pg/ml 
have been suggested as cut-off values for a higher risk of 
cognitive decline (MoCA) (Aamodt et al. 2021; Lin et al. 
2019), but likely cohort-related age-adjusted NfL levels are 
more reliable (Buhmann et al. 2022; Ma et al. 2021).

Furthermore, blood NfL and NT-proBNP levels are asso-
ciated with PD (Niemann et al. 2021) indicating subclinical 
cardiac damage. In line, cardiac microdamage and vascular 
risk factors have been found associated with motor symp-
toms and progression in PD (Choe et al. 2020; Mollenhauer 
et al. 2019) which might be part of the body-first type of PD 
(Horsager et al. 2020).
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Overall, there are increasing data suggesting blood NfL 
as biomarker for disease severity and predictor for cogni-
tive decline. Blood NfL concentration seems to be associ-
ated with PD patients of the PIGD subtype and subclinical 
cardiomyopathy.

sncRNAs

RNA species that are not translated into a protein, but con-
tribute to the regulation of gene expression are called non-
coding RNA (ncRNA). In contrast to long non-coding RNA, 
small ncRNA (sncRNA) are shorter than 200 nucleotides 
and consist of different species, such as miRNA, piRNA, and 
siRNA. SncRNA has been previously shown to have a poten-
tial as biomarker in various types of cancers (Esteller 2011). 
However, the identification of such markers is complicated, 
among other things, by the fact that blood is composed of 
different non-exclusive components, e.g., plasma, serum, 
PBMC, or exosomes, each of which contains sncRNA in a 
different composition (Roser et al. 2018). Furthermore, the 
method that is used to detect and quantify sncRNAs as well 
as the sample pre-analytics may significantly alter the results 
of sncRNA analyses (Kuo et al. 2021).

A multitude of PD patient cohorts has been analyzed 
for differential expression of sncRNA in the hope to iden-
tify individual sncRNAs or combinations thereof that can 
be used as a biomarker. One of the largest studies to date 
used 4.440 samples from 1.511 individuals in the discovery 
cohort and 1.440 samples from 988 donors in an independent 
validation cohort (Kern et al. 2021). As in most other stud-
ies, more than 90% of all detected sncRNA species belonged 
to miRNA. Analysis of the discovery cohort showed miR-
6836-3p and miR-6777-3p to be upregulated in PD, whereas 
miR-493-5p, miR-487b-3p, and miR-15b-5p supported the 
general trend of miRNA downregulation in PD patients com-
pared to controls. The latter two were also reproduced in the 
validation cohort. Being able to study longitudinal data, the 
authors also suggest that miRNAs can be used as progres-
sion markers in PD. Although the miRNA identified in this 
study are involved in biological processes that are commonly 
associated with PD pathogenesis (mitochondrial function, 
oxidative stress, and protein degradation), the correlation of 
the deregulated miRNAs with those identified in previous 
studies is limited. Only miR-15b-5p was previously shown 
to be regulated in the same direction (Ding et al. 2016). The 
authors clearly show an age-dependence in the expression of 
sncRNA and, by deconvolution, relate the origin of the miR-
NAs mostly to cells of the immune system. Other summaries 
of the recent work on blood-based sncRNA biomarker in PD 
display a plethora of different miRNA that were found to be 
deregulated in cohorts of different sizes and compositions 
(Schulz et al. 2019; Kuo et al. 2021; Roser et al. 2018).

Although there is no doubt that sncRNAs play an impor-
tant role in the regulation of disease-relevant mechanisms 
and show a correlation with disease state and progression, 
it remains to be determined if they can be established as a 
clinically useful biomarker for PD. The weak correlation 
of individual sncRNA targets even from large studies does 
not allow designating specific sncRNAs as biomarker in 
PD. An important prerequisite for comparability between 
studies will be the choice of a uniform sampling source as 
well as a uniform quantification and analysis pipeline. Other 
sources which may show less variability, such as CSF, may 
be equally promising to explore (Caldi Gomes et al. 2021).

Lymphocyte cell profiles

Inflammation that is associated with neurodegeneration is 
gaining increasing attention in PD research. However, there 
is an ongoing discussion on whether inflammation is an 
important trigger factor for disease development or a con-
sequence of degeneration (Hirsch and Hunot 2009).

A variety of studies with mostly retrospective and cross-
sectional approaches have described alterations attributable 
to both pro- and anti-inflammatory cellular responses in PD. 
ASyn was identified as a possible causal link between PD 
and inflammation, as it was shown to be able to trigger spe-
cific responses in both helper and cytotoxic T cells (Sulzer 
et al. 2017). T helper cells, also called CD4 + T cells, occupy 
a key position in the regulation of the immune system via 
cytokines and, taken together with CD8 + T cells, comprise 
the largest proportion of T cells (Luckheeram et al. 2012). 
CD4 + T cells can adopt both a pro- (e.g., T helper (Th) 1) 
and an anti-inflammatory phenotype (e.g., Th2 or T regula-
tory (Treg)). Regardless of dopaminergic therapy, a decline 
of CD4 + cells was observed with a shift toward Th1 and a 
concomitant decrease in Th2 and Treg, representing a tip-
ping of the balance toward a proinflammatory state (Kus-
trimovic et al. 2018; Rocha et al. 2018; Sun et al. 2019). 
Regarding Tregs, only the subtypes of suppressor, active 
and type 1 Tregs are diminished in PD, whereas classic and 
resting Tregs remain stable (Álvarez-Luquín et al. 2019). 
In contrast, Schröder et al. found no difference in the total 
number of CD4 + and CD8 + T lymphocytes, but observed 
an increased proportion of activated cells (Schröder et al. 
2018). In parallel, a shift from naive to activated Treg cells 
(CD45RA + to CD45RO +) was observed with higher levels 
of CD45RO + cells associated with more severe motor and 
cognitive impairment (Magistrelli et al. 2020; Saunders et al. 
2012). The proportion of Tregs expressing CD49d, coding 
for a molecule that enables migration into the central nerv-
ous system, is increased in PD and linked to lower motor 
impairment, suggesting a protective influence (Karaaslan 
et al. 2021). Significantly decreased expression of CD57 
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was observed on CD8 + T cells accompanied by increased 
expression of CD28. This is inverse to the surface expression 
observed in physiological immunosenescence, indicating 
pathological immunological aging in PD and representing a 
possible link to the increasing incidence of disease with age 
(Williams-Gray et al. 2018).

In addition to lymphocyte profiles analyzed by flow 
cytometry, the neutrophil-to-lymphocyte ratio (NLR) is 
increasingly reported as an easily determinable and cost-
effective biomarker. NLR is an indicator of the inflamma-
tory status, that is evaluated not only in infectious but also 
in neurodegenerative disorders such as Alzheimer’s disease 
(Dong et al. 2019; Russell et al. 2019). Elevated NLR was 
found in PD compared to healthy controls in a case–con-
trol study and confirmed in a subsequent meta-analysis of 
nine studies (Muñoz‐Delgado et al. 2021). Late-onset PD is 
reported to have a higher NLR than early onset PD (Jin et al. 
2020). Regarding paraclinical and clinical parameters, a neg-
ative association between NLR and striatal-binding ratios in 
DaTScan analysis as a surrogate parameter for nigrostriatal 
degeneration was observed as well as a positive association 
with motor impairment indicating NLR as a potential bio-
marker for disease progression. However, this is limited by 
the fact that the associations were observed only for tremor-
dominant PD but not for other subtypes (Muñoz‐Delgado 
et al. 2021, Sanjari Moghaddam et al. 2018).

Taken together, lymphocyte profiles and NLR represent 
an interesting approach as biomarkers for both diagnosis 
and disease progression of PD. While the NLR is supported 
by its easy accessibility and association with nigrostriatal 
degeneration as one of the pathophysiological hallmarks of 
PDs, lymphocyte profiles could potentially play a role in 
the identification of subtypes within PDs and contribute to 
the pathophysiological understanding of the disease. Further 
prospective studies with clearly defined a priori hypotheses 
and sufficient power are needed to conclusively assess the 
value of lymphocyte profiles as biomarker.

Cytokines and other inflammatory markers

The altered composition of lymphocytes leads to and is in 
turn influenced by an altered composition of cytokines. Sev-
eral cytokines and inflammatory markers were investigated 
as a potential biomarker in PD. Elevated levels of CRP and 
hs-CRP were found in patients with PD compared to healthy 
controls in a large number of studies, though with limited 
sample sizes. These results have now been confirmed in 
recent meta-analyses (Akıl et al. 2015; Jin et al. 2020; Qiu 
et al. 2019). Additionally, higher CRP levels, measured in an 
infection-free interval, are associated with reduced survival 
(Sawada et al. 2015).

Interleukins comprise a group of more than 50 cytokines 
that can exert both a pro- and anti-inflammatory effect 

(Brocker et al. 2010). Results to date suggest differences in 
interleukin levels between PD and healthy controls, although 
interleukins must be considered separately, and also conflict-
ing results have been published in recent years. For Il-6 and 
Il-10, a meta-analysis of 13, respectively 5, studies demon-
strated increased levels compared with healthy individuals, 
though with only a small-to-intermediate effect size (Qin 
et al. 2016). Subsequent studies yielded mixed results and 
found no difference (Schröder et al. 2018) or even decreased 
interleukin levels compared to healthy subjects (Rocha et al. 
2018). A positive association was observed between Il-6 
and depression in a 2 year follow-up (Veselý et al. 2018). 
Concerning Il-10, a positive association with autonomic, 
especially gastrointestinal symptoms, was described, while 
others found a positive association with anxiety and depres-
sion (Karpenko et al. 2018; Kim et al. 2018).

Compared to interleukins, data for TNF-α are even more 
inconclusive with mixed results being reported for TNF-α 
levels, with increased (Dufek et al. 2009; Kouchaki et al. 
2018; Wang et al. 2016), decreased (Gupta et al. 2016), or 
equal levels (Lindqvist et al. 2012) compared to healthy 
controls. Nevertheless, associations were observed with 
disease stage, fatigue, depression, and anxiety (Menza et al. 
2010). Chemokine ligand 5 (CCL5, RANTES) levels were 
elevated in PD compared to controls with a positive cor-
relation with Hoehn and Yahr stage, motor impairment, and 
disease duration (Rentzos et al. 2007; Tang et al. 2014). In a 
large prospective study, elevated proinflammatory and low 
anti-inflammatory cytokine levels were associated with an 
unfavorable outcome for both motor deficits and cognition 
(Williams‐Gray et al. 2016). However, these results could 
not be confirmed in a trial with a similar design (Yilmaz 
et al. 2018).

Taken together, the value of individual inflammatory 
markers in PD is low as both diagnostic and prognostic bio-
marker. Studies that combine several pro- and anti-inflam-
matory markers showed promising results both in diagnostic 
performance and as predictors of individual disease progres-
sion (Rathnayake et al. 2019; Williams‐Gray et al. 2016). 
More prospective studies that are adequately powered are 
required to conclusively assess the potential of inflammatory 
markers in PD.

Methods for biomarker identification using 
machine learning techniques

Biomarker development is particularly challenging in dis-
eases that involve multiple subgroups or when a confirmed 
diagnosis cannot be made until autopsy, as is the case with 
Parkinson’s disease. This represents a vicious circle, e.g., 
in PD patients with multifaceted manifestations, as the 
demand for universal biomarkers has often resulted in them 
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being representative of PD subtypes at best (Eggers et al. 
2012). One solution could lie in increasing computational 
capacity for multiparametric assessment and improving data 
availability, including data-driven biomarker identification 
based on clinical data (Xie et al. 2021; Mamoshina et al. 
2018). The basis for biomarker identification using data-
base information is a thorough clinical description and a 
sufficient number of samples. Databases containing informa-
tion on a large number of participants have been previously 
established and are in part openly available to researchers 
(Simuni et al. 2016; Usnich et al. 2021). However, acces-
sible data are not sufficient for biomarker development and 
new possibilities of data analysis in large samples have 
revealed limitations in traditional statistical analyses. For 
example, divergent clinical and statistical significance may 
require cautious interpretation, as do small-effect sizes with 
high case numbers. Moreover, rather trivial problems are 
encountered, such as, e.g., the handling of excessive type I 
errors (Smith and Nichols 2018). Yet, problems of frequen-
tist approaches may be remedied with probabilistic methods 
such as Bayesian statistics or what is broadly categorized as 
artificial intelligence.

Thanks to ever-increasing computing power, machine 
learning approaches have found their way into everyday 
life, but especially into science. Such approaches usually 
train in a representative dataset and are verified in the sec-
ond set of data with characteristics as similar as possible 
(Mitchell 2010). Two approaches to biomarker discovery 
can be identified: classification and feature selection. For 
PD patients specifically, classification, on the one hand, 
may enable stratification according to, e.g., disease progres-
sion, age at onset, but more recently also to genetic profiles 
(Simuni et al. 2020); machine learning techniques thereby 
enable almost unlimited complexity, permitting the inclusion 
of thousands of genes or imaging results. Feature selection 
methods, otherwise, can be divided into (1) filter methods 
selecting features as per, e.g., correlations, (2) wrapper 
methods using objective functions such as classification 
accuracy to identify important feature combinations among 
all possibilities, and (3) embedded functions that incorporate 
feature selection and penalize overfitting (He and Yu 2010). 
In general terms, feature selection aims at liberating data 
from factors with only limited contribution, so that interest-
ing markers remain. What sounds simple and purposeful, 
however, also has some disadvantages in practice.

Classical statistical inference methods are beyond doubt 
in terms of scientific verification and application for bio-
marker discovery. To what extent machine learning algo-
rithms will enable biomarker identification remains yet 
unresolved, whereas some aspects are already becoming 
clear. In contrast to traditional statistical analyses neces-
sitating specific distributional assumptions which may not 
always be met, machine learning usually requires fewer 

assumptions. More importantly, however, interactions 
between variables can be accounted for—approximating 
closer to complex biological systems. Particularly, combin-
ing feature selection and classification has already been put 
into practice (Leclercq et al. 2019). Otherwise, especially 
unsupervised algorithms deliver conflicting specificity and 
accuracy results, a major drawback. Thus, ethical and prac-
tical implications arising from that dilemma have yet to be 
assessed, such as the question of how to disclose the lack 
of explicability of the algorithms and the resulting medi-
cal decisions to patients (Beil et al. 2019) or how the fact 
should be handled that important clinical aspects may not 
have been incorporated to the training, so that generalizabil-
ity may be questionable. Besides, the resulting multidimen-
sional patterns must not be fully intuitive, as they may not be 
traceable or show a relationship to the original data. These 
findings can emerge as a sort of “black box”-like markers 
which, however, have scientific value and have to be put into 
relation with other already established biomarkers or clini-
cal findings. To a certain degree, one may therefore argue 
that machine learning models and the set of features may 
be coined as biomarker, themselves. Finally, it needs to be 
borne in mind that multidimensional biomarker patterns are 
only tangible and useful through representative training data 
sets.

Current trends in PD biomarker research

Currently, a biomarker with a high sensitivity and specificity 
does not exist for diagnostic and/or therapeutic purposes in 
PD. The heterogeneity of PD is caused by both phenotype 
and genotype or epigenetic factors. Especially, the results of 
molecular genetics over the last decades have raised hopes 
of earlier diagnosis and opened new therapeutic neuropro-
tective approaches (Cook et al. 2021). However, there is a 
lively debate on the etiology of the disease and some studies 
challenge theories that have been favored for a long time 
(Horsager et al. 2020; Fearon et al. 2021). For example, the 
“brain first versus body first” dichotomization (Horsager 
et al. 2020) classified PD patients into two subgroups with 
premotor rapid eye movement (REM) sleep behavior disor-
der (RBD) at least 1 year prior to the onset of a motor phe-
notype (“body-first”) and those characterized by the absence 
of RBD at motor onset (“brain-first”). However, neither is 
this simplification sufficient for patients in clinical practice 
nor for clinical studies. Therefore, while understanding the 
underlying disease mechanism is key, the goal of a single 
biomarker for PD patients will be difficult to achieve in the 
future. We have to move away from the idea of a single, ideal 
biomarker for diagnostic, progression purposes, or monitor-
ing therapeutic interventions in PD. As mentioned above, 
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there is a significant overlap of a potential biomarker such 
as aSyn species, Aß, tau, and miRNA (Sadlon et al. 2019) 
in many patients with neurodegenerative diseases like AD 
and PD.

Further research activity will be necessary to improve 
current or identify new techniques for the analysis of bio-
materials. The real-time quaking-induced conversion (RT-
QuIC) is one example of a promising new tool for measuring 
aggregated aSyn in CSF of PD which could be applied also 
to blood specimens (van Rumund et al. 2019; Iranzo et al. 
2021). However, the value of RT-QuIC in diagnostics or 
for monitoring the disease course is controversial (Nakagaki 
et al. 2021; van Rumund et al. 2019). In addition, pattern 
recognition methods will play a major role in the identifica-
tion of disease pathways, as has been previously shown in 
cancer research (Cheng and Zhan 2017). The selection of 
cohorts included in biomarker analyses is also of utmost 
importance and needs to be considered when interpreting 
data from biomarker trials. Findings from other fields may 
lead the way: in analogy to reverse phenotyping of genetic 
findings, it would, e.g., also make sense for biomarker 
research in PD to assign a phenotype to biological signals 
instead of assigning biological signals to a phenotype (Stur-
chio et al. 2020).

Therefore, the multidimensional analysis of combined 
“dry” (clinical data including genetic information, artificial 
intelligence, imaging data including MRI, nuclear medicine, 
and ultrasound) and “wet” (biochemical or metabolic param-
eters in serum, urine, stool, and tissue samples) biomarker 
may provide sufficient information to facilitate accurate 
diagnosis and treatment in PD.

A clinician’s view on PD biomarker

Over the past decades, many initiatives focused on research 
into clinically relevant diagnostic and prognostic biomark-
ers for Parkinson’s disease. Biomarkers are looked upon as 
excellent tools to screen for PD or PD-at risk-individuals. 
They may facilitate prodromal risk even before the onset 
of motor symptoms (Berg et al. 2013). However, to date, 
PD is mostly still diagnosed relatively late in the disease 
process, sometimes even years after the initial manifesta-
tion of motor symptoms. It is also the common belief that 
the application of an available disease-modifying treatment 
following the earlier diagnostic screening will reduce the 
currently abundant missing motivation of chronic neurode-
generative disease-at-risk individuals for a testing procedure 
(Müller 2017).

PD is mostly diagnosed, when approximately 60% of 
dopaminergic axons and 70% of nigral dopaminergic neu-
rons are already gone. At that stage, frequently only transient 
motor symptoms occur (Chen 2010). The hypothesis is that 

a reliable and clinically relevant biomarker could enable an 
earlier implementation of, e.g., a disease-modifying therapy. 
A reliable biomarker should also enable the reflection of 
clinically relevant changes over the course of PD. An impor-
tant step forward was to raise awareness for early non-motor 
signs based on initiatives for earlier detection of PD in the 
past years to characterize the so-called “prodromal” or “pre-
motor” interval. However, heterogeneity of symptoms and 
the individually differing progression do not even allow a 
reliable classification of early signs and the various sub-
types of the disease entity PD (Berg et al. 2013; Mahlknecht 
et al. 2015). Currently, no validated, reliable, specific, easy 
to apply biomarker for PD is yet available. A popular model 
of dopaminergic neuron degeneration, the Braak model, con-
siders PD as α-synucleinopathy and sets Lewy body pathol-
ogy as the essential lime light (Braak et al. 2003; Kings-
bury et al. 2010; Halliday et al. 2012). However, recently 
failed anti-alpha-synuclein approaches with cinpanemab and 
similar results with prasinezumab leave doubts about aSyn 
as a therapeutic target in PD (Przuntek et al. 2004; Mül-
ler and Kohlhepp 2016; Müller et al. 2016; Jellinger 2019; 
Espay 2022). One could postulate that Lewy body pathology 
with aSyn pathology is not primarily responsible for nigral 
degeneration in PD (Muller et al. 2021; Espay, 2022) or 
that the enrichment of “pathologic” proteins as aSyn, tau or 
β-amyloid are not specific (Müller et al. 2021; Espay 2022). 
Concepts of purely aSyn-based biomarker in PD may fall 
short to address the entire pathophysiology of the disease.

On the other hand, there is no doubt that a certain genetic 
impact exists for some PD forms. More than 20 so-called 
“PD genes” are known. However, these genetic risk factors 
and mutations in familial PD forms, such as DJ-1, PINK-1, 
and UCHL-1, only account for approximately 10% of idi-
opathic PD patients. The penetration, the age of onset, and 
symptoms are highly variable. This was also shown in Glu-
cocerebrosidase (GBA) mutation carriers (Thaler et al. 2020; 
Mullin et al. 2021; Greuel et al. 2020). Thus, these genetic 
mutations do not allow any conclusion on the progression of 
PD, which is essential from the patients’ view.

Another interesting approach to develop biomark-
ers for measuring the progression of PD was published 
recently. Here, a PD prediction algorithm compromised of 
ALDH1A1, LAMB2, UBE2K, SKP1A, and age was created 
by logistic regression for predicting progression to ≤ 70% 
Modified Schwab and England Activities of Daily Living 
within 3 years. Hoehn and Yahr Scale (HYS) had worsened 
from HY stage ≤ 2 to 3 (Rabey et al. 2020). This study dem-
onstrates that a set of biomarker (instead of a single marker) 
could be more suitable to follow disease progression and 
should be equally considered for future biomarker develop-
ment approaches.

Nevertheless, most PD patients suffer from sporadic 
PD forms (Emamzadeh and Surguchov 2018). There are 
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environmental epigenetic influences, such as chronic toxin 
exposure or still unknown for instance viral or bacterial 
infections, all of which may serve as further still hypotheti-
cal causes for the onset of sporadic PD forms. Therefore, 
the concept of a more or less singular molecular pathologic 
biomarker approach is misleading, in particular when it is 
based on a pathological finding (Müller et al. 2021).

Conclusions

Recent research into Parkinson's biomarker has not been able 
to identify a biochemical biomarker that could be translated 
into clinical practice so far. Clinical history taking and clin-
ical examination are still the most important tools in the 
assessment of the disease. Different diagnostic tools are used 
to confirm the clinical diagnosis or to rule out other diseases 
in the differential diagnosis. Blood-based biomarker tests 
for PD are currently evaluated in research settings if they 
can help to support the diagnosis or rule out other diseases 
with relative probabilities. We realize that probably due to 
the rather heterogeneous spectrum of Parkinson's disease, 
no biomarker will be able to describe the disease using a 
“black and white” differentiation, to predict its course or 
even to clearly assign subtypes. Multidimensional analyses 
will be necessary for this in large patient cohorts, which, 
in addition to blood-based biomarker, should also include 
cerebrospinal fluid, tissue and other non-biological markers 
such as novel digital movement profile markers. A compari-
son of patient cohorts characterized in the best possible and 
multidimensional manner with the highest quality has the 
greatest long-term potential to contribute reliable results and 
to identify valuable biomarker sets for PD.
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