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Abbreviations 41 
 42 
CBC – Complete blood cell  43 

CP – Constrained projection  44 

EWAS – Epigenome-wide association study  45 

L-DMR – Leukocyte differentially methylated regions  46 

MAPE – Median absolute prediction error  47 

PBMC – Peripheral blood mononuclear cell 48 

WBC – White blood cell  49 
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 85 
Abstract 86 

The potential influence of underlying differences in relative leukocyte distributions in 87 

studies involving blood-based profiling of DNA methylation is well recognized and has 88 

prompted development of a set of statistical methods for inferring changes in the 89 

distribution of white blood cells using DNA methylation signatures.  However, the extent 90 

to which this methodology can accurately predict cell type proportions based on blood-91 

derived DNA methylation data in a large-scale epigenome-wide association study 92 

(EWAS) has yet to be examined.  We used publicly available data deposited in the Gene 93 

Expression Omnibus (GEO) database (accession no. GSE37008), which consisted of 94 

both blood-derived epigenome-wide DNA methylation data assayed using the Illumina 95 

Infinium HumanMethylation27 BeadArray and complete blood cell (CBC) counts among 96 

a community cohort of 94 non-diseased individuals.  Constrained projection (CP) was 97 

used to obtain predictions of the proportions of lymphocytes, monocytes, and 98 

granulocytes for each of the study samples based on their DNA methylation signatures.  99 

Our findings demonstrated high consistency between the average CBC-derived and 100 

predicted percentage of monocytes and lymphocytes (17.9% and 17.6% for monocytes 101 

and 82.1% and 81.4% for lymphocytes), with root mean squared error (rMSE) of 5% and 102 

6%, for monocytes and lymphocytes, respectively.  Similarly, there was moderate-high 103 

correlation between the CP predicted and CBC-derived percentages of monocytes and 104 

lymphocytes (0.60 and 0.61, respectively) and these results were robust to the number 105 

of leukocyte differentially methylated regions (L-DMRs) used in CP.  These results serve 106 

as further validation of the CP approach and highlight the promise of this technique for 107 

EWAS where DNA methylation is profiled using whole-blood genomic DNA. 108 

 109 

 110 
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Introduction:  111 

Methylation of a cytosine residue in the context of a CpG dinucleotide on DNA is a 112 

normal epigenetic regulatory mark that contributes to the control of gene expression and 113 

genomic stability.  Epigenetic processes such as DNA methylation allow a single 114 

genome to elicit the multitude of transcriptional programs characteristic of multicellular 115 

organisms, whose various cell types have distinct phenotypes and functions. Of course, 116 

because epigenetic patterns are linked to cell-specific gene expression patterns, several 117 

studies have successfully identified differentially methylated regions (DMRs) among 118 

various cell types,1-5 i.e. CpG sites whose methylation state is stable and differs among 119 

two or more cell types.  120 

When studying DNA methylation in human health and disease, DMRs present an 121 

important challenge and a unique opportunity.  For instance, DNA from peripheral blood 122 

is a mixture of genetic substrate from various leukocyte subtypes, and variation in 123 

leukocytes proportions could confound true epigenetic associations between methylation 124 

and a dependent variable of interest, since there is the potential for associations 125 

between phenotype and DNA methylation to be mediated by shifts in leukocyte 126 

proportions.  Indeed, the potential for shifts in leukocyte composition to confound 127 

associations in epigenome-wide association studies (EWAS) has been recognized.6-12  128 

The underlying proportion of leukocytes could also confound or bias other leukocyte 129 

DNA biomarker relationships, such as that between telomere length, repetitive element 130 

DNA methylation,13 or mitochondrial copy number14 and exposures or disease outcomes.   131 

Motivated by work from our group and others that identified L-DMRs that 132 

distinguish white blood cell types,10, 15-17 we recently developed a set of statistical 133 

methods that exploit the use of L-DMRs for inferring changes in cell mixture proportions 134 

based solely on DNA methylation profiles of peripheral blood.18  In this approach (Figure 135 

1), data obtained from a target set (S1) consisting of DNA methylation profiles from a 136 
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heterogeneous mixture of cell populations, is assumed to be a high-dimensional 137 

multivariate surrogate for the underlying distribution of cell types.  Houseman et al.18 138 

proposed a cell mixture deconvolution methodology that involves the projection of DNA 139 

methylation profiles from S1 onto a reference data set (S0 ), which is comprised of the 140 

DNA methylation signatures for isolated leukocyte subtypes.  Under certain constraints, 141 

which we describe in more detail in the Statistical Methods section, the cell mixture 142 

deconvolution approach can be used to approximate the underlying distribution of cell 143 

proportions within S1 via constrained projection (CP).   144 

Currently, leukocyte differential counts and flow cytometry measurements (the 145 

gold standard for identifying subsets of cells within heterogeneous mononuclear cell 146 

samples), are often not possible because they require fresh samples with intact cells, or 147 

are too costly. Thus, as epigenome-wide DNA methylation can be measured using 148 

archival peripheral blood with relatively straightforward protocols and commercially 149 

available array technology or bisulfite sequencing, the capacity to accurately predict cell 150 

type proportions using L-DMRs has important implications for any study of health, 151 

disease, or pharmacologic intervention where measurement of leukocyte proportions is 152 

of interest.  For instance, in EWAS19 (Langevin et al. under review) obtaining reliable 153 

estimates of relative leukocyte proportions using DNA-based methods could be used for 154 

better understanding the extent to which observed differences in whole blood DNA 155 

methylation are due to underlying differences in leukocyte subtypes themselves or 156 

reflect direct changes in the methylome.  Along these lines, the predicted cell type 157 

proportions obtained from constrained projection could be added as additional covariate 158 

terms to control for the confounding effects of variable leukocyte distribution when 159 

examining the association between DNA methylation and some phenotype/exposure of 160 

interest.  In fact, the approach described in Houseman et al.18 has been successfully 161 

applied in the context of several EWAS 19 (Langevin et al. under review, Koestler et al. 162 
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provisionally accepted) and was shown to reliably estimate leukocyte proportions in a 163 

small-scale mixture experiment involving six known mixtures of monocytes and B cells 164 

and six known mixtures of granulocytes and T cells18.  However, a comprehensive 165 

examination of the potential for constrained projection to accurately predict cell type 166 

proportions in large-scale epigenome-wide DNA methylation data sets has not been 167 

shown.  168 

 Lam et al.20 recently investigated the relation of peripheral blood DNA 169 

methylation with demographic, socioeconomic, and psychosocial factors among a cohort 170 

of 94 healthy individuals using commercially available epigenome-wide methylation array 171 

technology.  In addition, these authors subjected each blood sample to a detailed 172 

differential blood cell count.  As further validation of the methods of Houseman et al.18 for 173 

estimating relative leukocyte proportions in peripheral blood using L-DMRs, here we 174 

present an analysis of their methylation and differential blood cell count data.  175 

Specifically, we focus our attention on the utility of the constrained projection approach18 176 

for accurately predicting relative leukocyte distributions, comparing our predictions to 177 

those obtained from a widely accepted method for determining cell type distributions in 178 

blood.  Since there is interest in balancing the number of L-DMRs and cell-type 179 

prediction performance, we also present an examination of the sensitivity of our 180 

predictions to varying numbers of L-DMRs used in the constrained projection procedure.  181 

 182 

Results:  183 

As previously described,20 proportions of lymphocytes, monocytes, basophils, 184 

eosinophils, and neutrophils were assessed in whole blood by complete blood count 185 

(CBC) with differential, for each of the 99 samples among the 94 study subjects.  The 186 

percentage of granulocytes in whole blood, which ranged from 36.1% - 77.5% across the 187 

study subjects, comprised the vast majority of underlying cell types, constituting on 188 
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average 61.7% (SD = 8.6%) (Figure 2A).  On average, lymphocytes and monocytes 189 

constituted 31.6% (SD = 8.3%) and 6.7% (SD = 2.1%) of the underlying cell types, and 190 

like granulocytes, exhibited substantial variability across the study subjects (range 191 

15.1% – 57.4% and 1.5% - 13.1%, respectively) (Figure 2A).   192 

Since DNA methylation was assessed in PBMCs, which are mostly devoid of 193 

granulocytes, the percentage of lymphocytes and monocytes in PBMCs were taken to 194 

be the percentage of these cell types in the absence of granulocytes.  From this, we 195 

estimated the average percentage of lymphocytes and monocytes in PBMCs to be 196 

82.1% and 17.9%, respectively (Figure 2B).   197 

 As in Lam et al.20 we first began by implementing a principal components 198 

analysis (PCA) to gain an understanding of the extent to which variation in DNA 199 

methylation across the array could be explained by differences in the underlying 200 

distribution of cell types.  PCA represents a feature extraction technique where the data 201 

is orthogonally transformed, such that the first principal component has the largest 202 

possible variance (accounts for maximal amount of variability in the data), and each 203 

succeeding component in turn has the next highest variance possible.  As we detected 204 

substantial variability in DNA methylation due to BeadChip (Supplementary Figure 1), we 205 

first applied the ComBat21 methodology to normalize the methylation data based on 206 

Beadchip.  After adjusting out the effects of BeadChip on variability in DNA methylation, 207 

we computed the principal components, or otherwise eigen-probes, based on the 208 

adjusted DNA methylation data.  Not surprisingly, the CBC-derived proportions of 209 

lymphocytes and monocytes were found to be associated with the first and third eigen-210 

probes (p = 0.07 and p = 0.06, respectively), which accounted for 16.5% and 5.4% of the 211 

variation of DNA methylation across the array.  The second eigen-probe, which 212 

accounted for 9.1% of the variation in DNA methylation, was found to be significantly 213 

associated with exercise (minutes per week) (p = 0.04), ethnicity (Caucasian versus non-214 
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Caucasian) (p = 0.03), and marginally significantly associated with age, gender, and 215 

smoking status (yes versus no) (p = 0.07, 0.06, 0.09, respectively). Thus, even among 216 

the study subjects considered here, which were all non-diseased at the time of sample 217 

collection, differences in white blood cell distributions are contributing to the observed 218 

variation in PMBC DNA methylation.  These results provide further support for the 219 

adjustment cell type distributions when analyzing blood-derived DNA methylation data, 220 

particularly in situations where the phenotype or exposure of interest is responsible for 221 

shifts in leukocyte subpopulations.  222 

We next examined the extent to which CP is capable of producing reliable and 223 

accurate estimates of the underlying relative distribution of leukocytes.  To discern L-224 

DMRs, we examined the association between methylation and leukocyte subtype (i.e., 225 

CD4+ T cells, CD8+ T cells, B cells, ect.) for each of the 26,486 autosomal CpG loci.  226 

This revealed 10,370 significantly differentially methylated CpGs among the leukocyte 227 

subtypes (fdr q-value < 0.05), which we ranked by q-value.  Consistent with Liu et al.19 228 

we applied CP using the top 500 L-DMRs, allowing us to obtain predictions for the 229 

proportions of CD8+ T-lymphocytes (CD8T), CD4+ T-lymphocytes (CD4T), Natural Killer 230 

cell (NK), B-cells (Bcell), Monocytes (Mono), and Granulocytes (Gran) across the 99 231 

individual samples.  As there were 5 subjects in S1 with replicate samples (collected at 232 

the same time), we had the unique opportunity to assess the similarity in cell type 233 

predictions within a replicate pair; which would be expected to be high.  The results of 234 

this analysis are given in Figure 2C, and show a high-degree of similarity between the 235 

predicted cell type proportions among the 5 technical replicates – indicated by colored 236 

points.  Within a specific cell type, differences between the predicted percentages 237 

among technical replicates was minimal,,with a mean difference of 2% (SD = 2%).  This 238 

is also captured in the intra-class correlation coefficients (ICCs), which ranged from 0.85 239 
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– 0.95, demonstrating a high-degree of similarity in the predicted cell type proportions 240 

among technical replicates.   241 

As DNA methylation was profiled in PBMCs, we were also interested in 242 

examining the specificity of CP by investigating the predicted proportions of granulocytes 243 

– which would be expected to be approximately zero, allowing for some small residual 244 

contamination in purification.  As noted in Figure 2C the predicted percentage of 245 

granulocytes was minimal, ranging from 0% - 7% with a mean value across the study 246 

samples of 1% (SD = 1.3%).  Examining the correlation between the predicted 247 

percentage of lymphocytes, obtained by summing the individual predictions among the 248 

lymphoid-derived cells (i.e., CD4T, CD8T, NK, and Bcells), and the percentage of 249 

lymphocytes via CBC (Figure 3A), demonstrated a moderate-high correlation between 250 

predicted lymphocyte proportions and those obtained from CBC (r = 0.61; p < 0.0001).  251 

Similarly, we also observed a moderate-high correlation between predicted monocyte 252 

proportions and those obtained from CBC (r = 0.60; p < 0.0001) (Figure 3B).   253 

Across the study samples, there was remarkable consistency between the 254 

average percentage of monocytes and lymphocytes via CBC (17.9% and 82.1%, 255 

respectively) and the average predicted percentage of monocytes (17.6%) and 256 

lymphocytes (81.3%).  Furthermore, the root mean squared error (rMSE) (i.e., 257 

1

n
(Ŵik

i=1

n

å -Wik

(CBC ))2 , for ) based on comparisons of the predicted and 258 

CBC percentages of lymphocytes and monocytes was 6% and 5%, respectively.  We 259 

also note that the vast majority of our subject-specific cell type predictions were within 260 

the global 95% bootstrap prediction interval (Figure 3C,D).    Examining the bias in our 261 

cell type predictions based on characteristics of the study subjects showed some 262 

evidence of an association between cell type-specific prediction error and stress (p = 263 

0.06 and 0.05 for monocytes and lymphocytes, respectively), depression (p = 0.07 and 264 

k Î {1,2,...,K}
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0.03 for monocytes and lymphocytes, respectively), and current SES status (p = 0.02 for 265 

lymphocytes) (Supplementary Tables 1-2).  However none of the aforementioned p-266 

values remained statistically significant after controlling for multiple comparisons.  267 

Two possibilities to explain this phenomenon include that the accuracy of CBC 268 

counts are themselves associated stress, depression, and current SES.  Since this is 269 

unlikely, the second possibility is that the accuracy of cell type predictions via CP is 270 

associated with these covariates.  Or in other words, a subject’s value for these 271 

covariates is adversely influencing the accuracy of our predictions.  Since our predictions 272 

were based on CP using the top 500 L-DMRs, this would necessarily imply that the 273 

methylation status of the top 500 L-DMRs are themselves altered based on the values of 274 

these covariates.  To this end, we conducted an additional analysis aimed at 275 

investigating the association between the methylation status of the top 500 L-DMRs and 276 

each of the previously mentioned covariates.  For this analysis, we fit a series of 277 

generalized estimating equations (GEE) that modeled the methylation M-values for the 278 

top 500 L-DMRs, the above covariates as a dependent variable, and incorporated 279 

dependency based on replicate samples from the same subject.  These models were 280 

also adjusted for either the CBC-derived proportion of lymphocytes or the predicted 281 

proportion of lymphocyte subtypes (i.e., CD4T, CD8T, ect.) to remove the confounding 282 

effect due to interpersonal differences in immune cell subsets.  The p-values reported in 283 

Supplementary Table 3 reflect the omnibus p-value obtained from a permutation test 284 

(further details provided in the Supplementary Material) and demonstrated no 285 

association between the top 500 L-DMRs and stress, depression, and current SES (p = 286 

0.45, 0.56, and 0.12, respectively).  While a number of other covariates demonstrated a 287 

significant association with the top 500 L-DMRs (i.e., age, gender, ethnicity), none of 288 

these covariates were associated with bias in our cell type predictions (Supplementary 289 

Tables 1-2).  Furthermore, removing the L-DMRs that were significantly associated with 290 
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age, gender, and ethnicity followed by the subsequent application of CP using the 291 

remaining L-DMRs, showed a very high correlation with the previously obtained cell-type 292 

estimates (Pearson correlation = 0.99, 0.99, 0.98, 0.96, 0.99, and 0.97 for CD4T, CD8T, 293 

Bcell, NK, Mono, and Gran, respectively).  294 

We also considered a negative control analysis as a further validation of CP and 295 

of the utility of L-DMRs in inferring cell type proportions.  While our previous analysis 296 

used the top 500 L-DMRs (Supplementary Figure 2A) for predicting cell type proportions 297 

in our target data set, as a negative control we used 500 CpGs among the set of non-L-298 

DMRs (i.e., those with fdr q-value > 0.05).  Specifically, the 500 least discriminative 299 

CpGs across the leukocyte subtypes were selected for this analysis (Supplementary 300 

Figure 2B) and used in the previously described CP procedure to arrive at predictions for 301 

cell type proportions.  The results of this analysis, showed very little correlation between 302 

the between predicted cell type proportions and those obtained from CBC (r = 0.10 for 303 

both monocytes and lymphocytes, respectively) and an rMSE of 34% between the 304 

predicted and CBC-derived cell type percentages for both lymphocytes and monocytes.   305 

We next implemented a sensitivity analysis aimed at understanding the 306 

sensitivity of the predicted cell type proportions attempted to gain an understanding of 307 

the sensitivity of our predictions when m, or the number of L-DMRs used in CP, was 308 

varied.  For this analysis, m was varied from 20 to 10,000 and as previously, for each 309 

selection of m, the correlation and rMSE were used to compare the predicted and CBC-310 

derived proportions of monocytes and lymphocytes.  Additionally, for each selection of 311 

m, the predicted proportion of granulocytes was recorded and used to assess the 312 

specificity of CP across differing selections of m.  Our choice of 10,000 L-DMRs as the 313 

upper limit in our sensitivity analysis was based on the number of statistically significant 314 

CpG loci across the leukocyte subtypes (10,370 with fdr qvalues < 0.05).  The results of 315 

this analysis are given in Figure 4 and show minimal variation in the correlation 316 
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coefficients between the predicted and CBC-derived proportions of monocytes and 317 

lymphocytes across different selections of m (Figure 4A).  Specifically, beyond 1000 L-318 

DMRs correlations between the predicted and CBC-derived proportions of monocytes 319 

and lymphocytes varied by at most 0.04 on the correlation scale and both appeared to 320 

achieve maximum correlation at m = 6,000 (i.e., the top 6,000 L-DMRs).  Similarly, there 321 

was minimal variation in the rMSE between the predicted and CBC-derived proportions 322 

of monocytes and lymphocytes across different selections of m, with differences of at 323 

most 1.5% in rMSE across the selected numbers of L-DMRs (Figure 4B).  While the 324 

median percent of granulocytes was minimized at approximately m = 800, like the 325 

correlation and rMSE between predicted and CBC-derived proportions of monocytes and 326 

lymphocytes, there was a fair degree of stability in the median percent of granulocytes 327 

as a function of m (Figure 4C).   328 

In a manner similar to the sensitivity analysis described above, we also examined 329 

the correlation and rMSE based on predicted and CBC-derived proportions of 330 

monocytes and lymphocytes as a function of the number of non L-DMRs used in CP..  331 

Contrary, to the relative stability in both correlation and rMSE as a function of the 332 

number of L-DMRs, the correlation between predicted and CBC-derived proportions of 333 

monocytes and lymphocytes based on non L-DMRs varied considerably as a function of 334 

m (-0.18 – 0.25 across the range of m) and tended to be centered at 0 (Figure 4D).  335 

Similarly, the rMSE for monocytes and lymphocytes was as large as 47% and 48%, 336 

respectively, but stabilized at around m = 6,000 with an rMSE of approximately 15% for 337 

both monocytes and lymphocytes (Supplementary Figure 3).   338 

 339 

Discussion: 340 

Using a publicly available data set consisting of PBMC-derived DNA methylation and 341 

CBC counts for 99 samples across 94 healthy non-diseased subjects, we have 342 
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investigated the extent to which the constrained projection approach of Houseman et 343 

al.18 provides reliable and accurate estimates of the underlying relative leukocyte 344 

distribution in blood.  Owing to the fact that blood is a readily accessible tissue and 345 

because peripheral blood leukocytes have been suggested to directly or indirectly 346 

participate in the pathophysiology of a vast array of disease states,22-24 DNA methylation 347 

analyses using blood-derived genomic DNA have been conducted across a variety of 348 

different human diseases8, 9, 12, 25-28 and also in the context of exposures.29-31  The 349 

validation analysis considered here is motivated both by (i) the increasing number of 350 

EWAS using blood-based assessment of DNA methylation and (ii) the recognized 351 

potential for confounding based on underlying interpersonal differences in circulating 352 

immune profiles characteristic of such studies.15  While several recent works have 353 

adjusted for CBC counts20, 32 for identifying differential patterns of methylation in blood 354 

that are independent of the underlying distribution of leukocytes, in many cases CBC 355 

counts may not be readily available (or even feasible), and in any case can not provide 356 

complete information on immune variability due to their inability to discriminate 357 

lymphocyte subtypes.  While FACS can be used to identify lymphocyte subtypes, this 358 

method bears a relatively high cost per sample and generally requires fresh samples. 359 

The limitations of current approaches underscore the vast potential utility of DNA 360 

methylation-based methods and accompanying statistical techniques that are capable of 361 

accurately and reliably estimating the distribution of cell types. 362 

 Our initial analyses, which used the top 500 L-DMRs in CP, first focused on the 363 

investigating the specificity of this approach.  As DNA methylation was profiled in 364 

PBMCs (devoid of multinucleate granulocytes) for the samples in our target methylation 365 

data set, the percentage of granulocytes would be expected to be approximately zero – 366 

potentially subject to some granulocyte contamination in the isolation process.33  Our 367 

findings, which demonstrated a minimal predicted percentage of granulocytes across the 368 
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target study samples (1%; mean across study samples) illustrate the specificity of CP 369 

and are even more noteworthy when considering that granulocytes typically comprise 370 

the vast majority of white blood cell types (50% - 70%) in the whole blood of non-371 

diseased individuals.  As our target methylation data set consisted of technical replicate 372 

samples for five subjects, we were also interested in investigating the reproducibility of 373 

CP by comparing the predicted cell type proportions within a replicate pair.  Overall, our 374 

results demonstrated a high-degree of similarity in the predicted cell type proportions 375 

within replicate pairs.  The minor differences between the predicted cell type proportions 376 

between replicate samples from the same subject is not unexpected given the less than 377 

perfect nature of cell sorting (>97% purity) to obtain S0, the role of measurement error in 378 

array-based DNA methylation assessment,34 and the well established issue of technical 379 

variability in DNA microarrays arising from plate/BeadChip effects.35-37   380 

Our findings also demonstrated high consistency between the average CBC-381 

derived and predicted percentage of monocytes and lymphocytes (17.9% and 17.6% for 382 

monocytes and 82.1% and 81.4% for lymphocytes), with rMSE of 5% and 6%, for 383 

monocytes and lymphocytes, respectively.   Moreover, bias in our estimates of the 384 

proportion of monocytes appeared to be independent of most potential confounders in 385 

DNA methylation array analyses.  Of those that showed some evidence of an 386 

association with cell type-specific prediction error (i.e., stress, depression, and current 387 

SES status), none were significantly associated with the methylation status of the top 388 

500 L-DMRs.  While there were some covariates that exhibited significant associations 389 

with the top 500 L-DMRs (i.e., age, gender, and ethnicity), these results are likely to be 390 

conservative as the models we fit controlled for only the CBC-derived proportion of 391 

lymphocytes and not individual lymphocyte subtypes, which were not available in the 392 

target data set.  Moreover, removal of those specific L-DMRs followed by the 393 

subsequent estimate of cell type proportions based on the remaining L-DMRs showed a 394 
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very high correlation with the previously obtained estimates.  Based on these findings, L-395 

DMRs that exhibited covariation with subject-specific characteristics do not seem to be 396 

substantially influencing our estimates of cell type proportions. 397 

Reinforcing the potential of CP for producing accurate cell type predictions, we 398 

also observed a moderate-high correlation between predicted monocyte and lymphocyte 399 

proportions and those obtained from CBC counts.  These results, taken together with the 400 

findings of our negative control analysis indicating poor prediction performance when CP 401 

is based on the least discriminative L-DMRs, stand as testament to the value of L-DMRs 402 

in deconvoluting cellular mixtures based on blood-derived DNA methylation profiles in a 403 

target methylation data set.  While our reference data set allowed us to predict the 404 

proportion of specific lymphocyte subtypes (i.e., CD4T, CD8T, ect.), such a detailed 405 

speciation of lymphocytes was not available for the target data set considered here.  As 406 

a result, this limited our ability to assess the predictive accuracy of CP for these cell 407 

types.  We do note however that future work involving measurements of individual 408 

lymphocyte subtypes in a target data set is currently underway. 409 

As the capacity to accurately predict the underlying relative leukocyte distribution 410 

in blood is principally driven by DMRs across leukocyte subtypes, Illumina’s most recent 411 

BeadArray, the HumanMethylation450 BeadArray, which simultaneously profiles the 412 

methylation status for >485,000 CpGs, is likely to reveal additional L-DMRs.  In doing so, 413 

these additional L-DMRs could be added to our existing set of L-DMRs, which might 414 

further improve the accuracy and precision of cell type predictions.  As a cautionary 415 

note, attention should be given toward selecting L-DMRs containing SNPs at/near the 416 

targeted probe, which might affect the measurement of DNA methylation.  Furthermore, 417 

while the top 500 L-DMRs used here comprised only autosomal CpG loci (X and Y 418 

linked loci were removed) due to the potential for gender associated biases, the 419 

application of the methods described here to gender-specific data sets (i.e., ovarian 420 
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cancer, prostate cancer, ect.) could be augmented by including both autosomal and non-421 

autosomal L-DMRs.  However, we expect only marginal differences in cell type 422 

estimates, as only a small fraction of the top L-DMRs were associated with non-423 

autosomal CpG loci (i.e. 6 out of 500).  Similarly, future work involving methylation 424 

profiling of additional sorted cell types, such as nucleated red blood cells present at birth 425 

and in cord blood, M1 and M2 macrophages, and myeloid derived suppressor cells, 426 

have the potential to further refine studies of infant cord blood methylation profiles.   427 

It should also be noted that while confounding in blood-based assessment of 428 

DNA methylation by variation in circulating immune cells motivated the methods 429 

described in Houseman et al.18, the underlying proportion of leukocytes could also 430 

confound other leukocyte DNA biomarker relationships, including the relationship 431 

between telomere length, repetitive element DNA methylation,13 or mitochondrial copy 432 

number14 and exposures or disease phenotypes.  Thus, future applications might involve 433 

an extension of the methods of Houseman et al.18 for deconvoluting cell mixtures using 434 

DNA methylation data and controlling for this confounding in studies of these and other 435 

leukocyte-based biomarkers. 436 

 Our sensitivity analysis of cell type predictions as a function of the number of L-437 

DMRs, m, used in CP, demonstrated that both the rMSE and the correlation between 438 

predicted and CBC-derived cell type proportions were relatively stable as a function of 439 

m.  While we and others19 have found that using the top 500 L-DMRs in CP works well, 440 

we recommend that investigators interested in implementing this methodology do so 441 

using a range of L-DMRs, checking ensure that cell type predictions remain relatively 442 

stable as a function of m.  We also note that other algorithms, i.e., ones other than using 443 

omnibus F-statistic for the one-way ANOVA problem for identifying L-DMRs, might result 444 

in different optimal number of L-DMRs.  For example, t-statistics for pairwise 445 

comparisons of CpG-specific DNA methylation across leukocyte subtypes may actually 446 
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result in a fewer number of total L-DMRs while maintaining or exceeding the prediction 447 

performance.    448 

 In summary this work serves as further validation of the CP approach of 449 

Houseman et al.18 using an independent data set based on a large-scale EWAS focused 450 

on healthy non-diseased adults.  The increasing numbers of EWAS that involve DNA 451 

methylation profiling in unfractioned whole blood coupled with the well-established role 452 

of confounding due to cell type distributions, highlight the promise and future 453 

applications of this technique.   454 

 455 

Materials and Methods:  456 

Target samples S1, DNA methylation from heterogeneous mixture of cell types 457 

To investigate the extent to which patterns of blood-based DNA methylation can be used 458 

for inferring the underlying distribution of cell types, we used publicly available data 459 

deposited in the Gene Expression Omnibus (GEO) database (accession no. 460 

GSE37008).  This study, which has been previously described,20 consisted of 461 

epigenome-wide assessment of DNA methylation based on genomic DNA derived from 462 

purified peripheral blood mononuclear cells (PBMCs) from a community cohort of 94 463 

non-diseased individuals in the Vancouver, BC lower mainland area.38  Individuals in this 464 

study ranged in age from 24 to 45 years (median = 33, SD = 5.08), were predominantly 465 

female (63%; n = 59), and non-smokers (87%; n = 82).  466 

The Illumina Infinium HumanMethylation27 array platform, which enables the 467 

quantitative assessment of the DNA methylation status of 27,578 CpG loci at single-468 

nucleotide resolution, was used to measure DNA methylation in genomic DNA derived 469 

from PBMCs.  The methylation status for each individual CpG locus was calculated as 470 

the ratio of fluorescent signals (β = Max(M,0)/[Max(M,0)+Max(U,0) + 100]), ranging from 471 

0 (no methylation) to 1 (complete methylation), using the average probe intensity for the 472 
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methylated (M) and unmethylated (U) alleles.  CpG loci associated with X and Y 473 

chromosomes were removed from our analyses, due to gender-associated biases.  The 474 

DNA methylation status was assessed in replicate for 5/94 of the individuals in this study 475 

(samples collected at the same time point), giving rise to a total of 99 samples that 476 

comprised the target set (S1) used in our validation analysis. 477 

 478 

Assessment of cell type proportions in target samples, S1 479 

As previously described by,20 blood draw samples were processed immediately with 480 

density-gradient centrifugation for isolation of peripheral blood mononuclear cells 481 

(PBMCs). At the time of blood draw, samples were subjected to complete blood count 482 

(CBC) with differential using an Advia 70 Hematology System (Siemens Medical) to 483 

estimate the proportions of lymphocytes, monocytes, basophils, eosinophils, and 484 

neutrophils.  In addition, in a subset of PBMC samples, subpopulations of lymphocytes 485 

were captured by immunomagnetic selection for CD14+ lymphocytes as well as CD3+ 486 

monocytes.  487 

 488 

Reference samples S0, DNA methylation from isolated cells 489 

As previously described,10, 18 our reference set (S0) consisted of sorted, normal, human, 490 

peripheral blood leukocyte subtypes, purchased from AllCells.  Leukocytes were isolated 491 

from different, anonymous, nondiseased individuals' whole blood by magnetic-activated 492 

cell sorting (MACS) using a combination of negative and positive selection with highly 493 

specific cell surface antibodies conjugated to magnetic beads. The purity of separated 494 

cells was confirmed with flow cytometry to be >97% and included 46 white blood cell 495 

samples, comprising lymphoid (B cells, Natural Killer (NK) cells, and Pan-T-cells) and 496 

myeloid (Monoctyes and Granulocytes) derived cells (Table 1). Genomic DNA was 497 

extracted and purified from cell pellets using a commercially available method (Qiagen), 498 
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treated with sodium bisulfite (Zymo Research) and subjected to methylation profiling 499 

using the Infinium HumanMethyation27 BeadArray (Illumina); the same platform used for 500 

the DNA methylation analysis of the target samples described above. 501 

 502 

Statistical methods 503 

While a complete description of the constrained projection (CP) approach for predicting 504 

cell type proportions based on DNA methylation signatures from a heterogeneous 505 

mixture of cells has been described previously Houseman et al.18, below we summarize 506 

the salient aspects of this approach with specific attention given towards those that 507 

relate to this validation analysis.  As described above, let S0 denote the reference 508 

sample of DNA methylation profiles from isolated cells and let S1 denote the 509 

corresponding set of target DNA methylation profiles, which are assumed to arise from 510 

mixtures of the cell types isloated in S0 (Figure 1B).  Here, S0 is comprised of the DNA 511 

methylation profiles for n0  specimens (i.e, n0 = 46 based on our reference data set), Y0i, i 512 

= 1, 2, …, n0, an m×1 vector of DNA methylation measurements.  Similarly, S1 consists 513 

of the DNA methylation profiles for n1 samples (i.e., n1 = 99 based on our target data 514 

set), Y1i, i = 1, 2, …, n1,  for the same m CpG sites in Y0i (and in the same order).  Each 515 

element in Yhi, corresponds to a specific, pre-selected L-DMR chosen to 516 

distinguish one or more of the cellular subtypes assayed in S0 and contributing to the 517 

mixtures measured in S1.  As previously described,10, 18 L-DMRs were identified by rank 518 

ordering CpGs based on the F-statistics for distinguishing cell types, obtained from a 519 

series of linear mixed effects models fit to each CpG independently among the 520 

specimens in S0.  Assuming that S0 is comprised of K different cell types (i.e., K = 6 521 

based on our reference data set), each of which has mean , we have that 522 

, where ci denotes cell type and .  Therefore, 523 

h Î {0,1}

m
k

E(Y
0i

|c
i
= k) = m

k
c
i
= {1,2,...,K}
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represents an m×K matrix of mean methylation for the m selected L-524 

DMRs across the K different leukocyte subtypes.  Here, we used a series of mixed 525 

effects models (i.e., treating chip as a random effect) to obtain . 526 

 Assuming that subject i assayed in S1 is a mixture of the K leukocyte subtypes 527 

assayed in the reference set S0, with mixing coefficients represented by a K x 1 vector 528 

, , where , then .  That is, the methylation 529 

profile of subject i in the target data is assumed to arise as the weighted methylation 530 

profile across the K leukocyte subjects, such that the contribution of each subtype, or 531 

otherwise the proportion of each leukocyte subtype, is reflected by .  Thus, interest 532 

here is focused on the estimation of .  Houseman et al.18 demonstrate that  can be 533 

estimated using constrained projection, i.e., by setting  to the value of  that 534 

minimizes  with the constraint and the additional 535 

constraint that .  The former constraint ensures non-negativity among for 536 

estimated proportion of particular cell type and the later ensures that the coefficients 537 

have the “multinomial” interpretation of additive proportions. 538 

Bootstrap resampling was used to quantify uncertainty in the estimation of .  539 

Since there are several sources of variability; including variability in the observed 540 

methylation values for the samples in S1 and in the estimate of M, a parametric bootstrap 541 

procedure was used to obtain resampled estimates of the cell type proportions, 542 

 for each sample in S1.  The standard deviation of the resampled 543 

estimates of the cell type proportions were computed and used to construct 95% 544 
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prediction intervals for .  Further details regarding the parametric bootstrap procedure 545 

are provided elsewhere18. 546 

In our examination, we focused first on obtaining the estimate followed by the 547 

subsequent comparison of and , where represents the proportions of 548 

the K leukocyte subjects obtained using complete blood cell count measurements.  549 

Additionally m, or the number of L-DMRs used in the constrained projection, is a tuning 550 

parameter.  Thus, we also examined the sensitivity of as value of m was varied from 551 

20 to 10,000.  552 

We note a few considerations that arise in the comparison of and .  As 553 

previously mentioned, our target data set consisted of whole-blood, CBC counts of 554 

lymphocytes, monocytes, basophils, eosinophils, and neutrophils (whereas DNA 555 

methylation was profiled in PBMCs).  The percentage of these cells in whole blood was 556 

taken to be the count of the various cell types per 10-9 liter of whole blood dived by the 557 

sum of the counts over all cell types. The percentage of granulocytes was computed as: 558 

granulocyte(%) = basophil(%) + eosinophils(%) + neutrophil(%).  Since DNA methylation 559 

was assessed in PBMCs, which contain a negligible proportion of granulocytes, the 560 

percentage of lymphocytes and monocytes in PBMCs were taken to be the percentage 561 

of these cell types in the absence of granulocytes, i.e., the count of these cell types per 562 

10-9 liter of whole-blood by the sum of the counts of only lymphocytes and monocytes per 563 

10-9 liter of whole-blood.  Thus,  is a 1 x 3 vector, representing the proportions of 564 

lymphocytes, monocytes, and granulocytes in PBMCs. 565 

In combination with the methylation data available for our target data, our 566 

reference data on isolated leukocyte subtypes, allowed us to obtain estimates of the 567 

proportions of each of the cell types given in Table 1.  Since such a detailed speciation 568 
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of leukocytes was not available from the CBC measurements in the target data - 569 

particularly for the lymphoid derived cell types - we took our estimate of the proportion of 570 

lymphocytes to be the sum of the individual estimates of the lymphoid derived cells, i.e., 571 

Lymphocyte(%) = CD4+Tcell(%) + CD8+Tcell (%) + NK cell(%) + Bcell(%).  Hence,  572 

represents a 1 x 3 vector, indicating the estimated proportions of lymphocytes, 573 

monocytes, and granulocytes for sample i within the target data. 574 

Given the potential for confounding in the analysis of DNA methylation data 575 

based on factors such as age, gender, race and smoking status etc., we conducted a 576 

series of analyses aimed at examining the association between the prediction error and 577 

absolute prediction error ( (Ŵi -Wi

(CBC )) and Ŵi -Wi

(CBC )
) and potential confounders.  578 

Specifically, we examined the extent to which bias in our predictions are associated with: 579 

age (yrs), gender, smoking status (yes/no), childhood socio-economic status (high/low), 580 

current socio-economic status (high/low), alcohol consumption (drinks per week), BMI, 581 

exercise (min. per week), stress (perceived stress scale questionnaire), depression 582 

(center for epidemiologic studies depression scale), and ethnicity (Caucasian/non-583 

Caucasian).  For each of the above factors, a linear mixed effects model was fit that 584 

modeled prediction error or absolute prediction error as the response, the potential 585 

confounder as the independent variable, and a included random effect term for subject 586 

to account for correlated errors among replicate samples collected from the same 587 

subject.  Unadjusted and false discovery rate adjusted P-values were computed for each 588 

of aforementioned factors.  Along these lines, we also examined the association 589 

between the top 500 L-DMRs and each of the covariates described above.  Further 590 

details regarding the methods used in the analysis are given in the Supplementary 591 

Material. 592 

 593 

Ŵ
i
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 719 
Figure Legends: 720 
 721 
Figure 1: Illustration of the blood cell mixture deconvolution approach.  This 722 
approach involves, (A) constrained projection of DNA methylation profiles from a target 723 
methylation data set (S1) onto a reference data set (S0 ), which is comprised of the DNA 724 
methylation signatures for isolated white blood cell types (i.e., shapes reflect different 725 
white blood cell types). The result is an estimate of the underlying distribution of cell 726 
proportions (i.e., circle, triangle, and hexagon) for each sample within S1.  (B) This 727 
approach assumes that the methylation signature for samples within S1 are the weighted 728 
sum of the methylation signatures from individual white blood cell types, where the 729 
weights are proportional to the cell type frequencies. 730 
 731 
Figure 2: Complete blood cell (CBC) and predicted proportions of white blood cell 732 

types in the target methylation data set.  CBC derived proportions (i.e., ) of 733 
white blood cell types in (A) whole blood and (B) peripheral blood mononuclear cell 734 
(PBMCs) (i.e., devoid of granulocytes) for the samples in the target methylation data set.   735 

(C) Predicted proportions (i.e., ) of CD8+ T-lymphocytes (CD8T), CD4+ T-736 
lymphocytes (CD4T), Natural killer cells (NK), B cells (Bcell), Monocytes (Mono), and 737 
Granulocytes (Gran) for the target samples using constrained projection (CP).  Black 738 
bars denote the median and the red dashed bars denote the 75th and 25th percentiles for 739 
the predicted cell type proportions.  Colored points indicate subjects with replicate 740 
samples, where two points of the same color denote replicate samples for the same 741 
subject. 742 
 743 
Figure 3: Comparison of the predicted and CBC derived proportions of monocytes 744 
and lymphocytes among the target samples.  Scatter-plot of the predicted and CBC-745 
derived proportions of (A) monocytes and (B) lymphocytes.  Solid red lines represent the 746 
unity lines (i.e., y = x).  Bland-Altman plots for (C) monocyte and (D) lymphocyte 747 
proportions.  Y-axes represent the difference in the predicted and CBC-derived cell type 748 
proportions and X-axes represent the mean cell type proportions based on CP prediction 749 
and CBC-based proportions.  Red-dotted lines indicate the global bootstrap-based 95% 750 
prediction intervals for the difference in predicted and CBC-derived cell type proportions. 751 
 752 
Figure 4: Prediction performance as a function of the number of L-DMRs used in 753 
CP.  (A) Pearson correlation between the predicted and CBC-derived proportions of 754 

W(CBC)

Ŵ
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monocytes (blue line) and lymphocytes (red line) as a function of the numbers of L-755 
DMRs used in CP.  (B) root mean squared error (rMSE) for monocytes and lymphocytes 756 
and (C) median (%) granulocytes as a function of the numbers of L-DMRs used in CP.  757 
(D) Pearson correlation between the predicted and CBC-derived proportions of 758 
monocytes and lymphocytes as a function of the numbers of non L-DMRs (negative 759 
controls) used in CP. 760 
 761 
 762 
Tables: 763 
 764 
Table1: Sorted white blood cell types in reference set, S0. 765 
 766 

Cell lineage  Cell type  Description Sample size 

Lymphoid 

B cells CD19+ B-lymphocytes 6 

NK cells  CD56+ Natural Killer (NK) cells 11 

CD4+ T cells1,2 CD3+CD4+ T-lymphocytes  8 

CD8+ T cells1,3 CD3+CD8+ T-lymphocytes  2 

NKT T cells1 CD3+CD56+ T-lymphocytes  1 

T cells {other}1 CD3+ T-lymphocytes  5 

Myeloid 
Granulocytes CD15+ granulocytes 8 

Monocytes CD14+ monocytes  5 

Total   -  - 46 

1: Considered as a member of the “pan-T-cell” group 767 
2: Pan T-cell further refined as also belonging to the “CD4+” group 768 
3: Pan T-cell further refined as also belonging to the “CD8+” group 769 
 770 


