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The blood–brain barrier (BBB) plays a vital role in maintaining the specialized

microenvironment of the neural tissue. It separates the peripheral circulatory system

from the brain parenchyma while facilitating communication. Alterations in the distinct

physiological properties of the BBB lead to BBB breakdown associatedwith normal aging

and various neurodegenerative diseases. In this review, we first briefly discuss the aging

process, then review the phenotypes and mechanisms of BBB breakdown associated

with normal aging that further cause neurodegeneration and cognitive impairments.

We also summarize dementia such as Alzheimer’s disease (AD) and vascular dementia

(VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption

in dementia correlated with cognition decline. Overlaps between AD and VaD are also

discussed. Techniques that could identify biomarkers associated with BBB breakdown

are briefly summarized. Finally, we concluded that BBB breakdown could be used as an

emerging biomarker to assist to diagnose cognitive impairment associated with normal

aging and dementia.
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INTRODUCTION

The central nervous system (CNS) comprises the brain and spinal cord that control all the essential
functions of the body. The distinctive physiological and anatomical structure of the brain and
spinal cord makes the CNS a largely immune-privileged organ (Engelhardt and Coisne, 2011;
Ransohoff and Engelhardt, 2012). Blood vessels are essential to transport oxygen and nutrients,
remove CO2 and other waste products, and, thus, maintain homeostasis in the body. Blood vessels
that vascularize the CNS acquire specific anatomical and functional characteristics that collectively
form the blood–brain barrier (BBB) (Obermeier et al., 2013; Zhao et al., 2015).

At the cellular level, the BBB is developed by continuous non-fenestrated endothelial cells (ECs)
encompassed by pericytes, smoothmuscle cells, astrocytes, microglia, oligodendroglia, and neurons
that are altogether called the neurovascular unit (NVU) (Zlokovic, 2011; Blanchette and Daneman,
2015; Chow and Gu, 2015). At the molecular level, the BBB ECs are compacted by claudins,
occludins, and ZO-1 [tight junction (TJ) proteins] and junction adhesionmolecules (JAM) proteins
to restrict the paracellular and transcellular diffusion of molecules in the CNS. In addition, the BBB
ECs mediate influx transporters to select metabolite uptake from the blood and efflux transporters
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to remove toxins and waste products from the brain into
the blood. In BBB ECs, leukocyte adhesion molecules (LAMs)
express very low to suppress immune surveillance in the brain
(Quaegebeur et al., 2011; Engelhardt and Ransohoff, 2012; Chow
and Gu, 2015; Xiao et al., 2020). Thus, the BBB confines the
access of neurotoxic compounds, blood cells, and pathogens to
the brain (Winkler et al., 2011). In addition, the BBB sustains the
homeostasis of the brain through tight regulation of the transport
of molecules between the brain parenchyma and peripheral
circulation (Abbott, 2013). Figure 1A shows the normal BBB.

Hence, the BBB is a fundamental and crucial element
of normal and healthy brain function. Any impairment
in the cellular or molecular components causes BBB
breakdown that results in BBB dysfunction. Aging is one
of several factors involved in the breaking of the BBB
and was first observed in aged patients reported in the
1970s (Tibbling et al., 1977). In dysfunctional BBBs, the
possibility of permeability increases; thus, toxic and blood-borne
inflammatory substances that infiltrate the brain could change
the biochemical microenvironment of the neurons, thus leading
to neurodegenerative diseases and dementia (Abbott et al., 2010;
Zeevi et al., 2010; Zlokovic, 2011; Rosenberg, 2014; Sweeney et al.,
2018b). It has been reported that BBB disruption in aged people
is strongly related to Alzheimer’s disease (AD) and cognitive
impairment (Farrall and Wardlaw, 2009; Van De Haar et al.,
2016; Skillbäck et al., 2017; Zenaro et al., 2017; Sweeney et al.,
2018b; Nation et al., 2019). Figure 1B shows the impaired BBB.

In this review, we first briefly discuss the aging process,
and then review the phenotypes and mechanisms of BBB
breakdown associated with normal aging that further cause
neurodegeneration and cognitive impairments. We also
summarize dementia such as AD and vascular dementia (VaD);
then, we discuss the phenotypes and mechanisms of BBB
disruption in dementia correlated with cognition decline.
Subsequently, we also discuss the overlap between AD and
VaD. Furthermore, we mention biomarkers associated with BBB
breakdown during aging and dementia; additionally, we also
briefly discuss various techniques to identify BBB biomarkers.
Finally, we conclude that BBB breakdown could be used as a
novel biomarker to diagnose cognitive impairment associated
with normal aging and dementia.

BBB BREAKDOWN IN NORMAL AGING

The universal process in an organism leads to the cumulation
of biological variations responsible for progressively diminishing
bodily functions over time, which is known as aging (Kritsilis
et al., 2018). Because of the advancement in medicine and
the living standard of humans, life expectancy has doubled
worldwide (Aw et al., 2007). Aged people are estimated to make
up approximately 20% of the world population in the next
50 years (Ellison et al., 2015). In terms of the brain and the
BBB, normal aging can be defined as a retrogression in the
activities of the body with no cognitive ailment and dementia.
Although ailments do not occur in this case, the frequency of
age-related diseases increases with the aging process. Alzheimer’s,

cardiovascular, Parkinson’s disease, stroke, and various other
neurological diseases commonly occur in aged people (Erdo
et al., 2017). A recent study demonstrated that BBB breakdown
could be considered a biomarker for the normal aging process
(Verheggen et al., 2020). Furthermore, BBB breakdown also
impairs the influx of nutrients (glucose) and oxygen and
efflux of waste products, which may cause hypoxia-associated
inflammation (Elahy et al., 2015; Raja et al., 2018). Subsequently,
age-related BBB pathology makes the brain more susceptible to
neuronal impairment and even causes neurodegeneration (Levit
et al., 2020; Banks et al., 2021). It has been reported that aged
people with prior cognitive impairment were more vulnerable
to BBB disruption than people with no cognitive dysfunction
of the same age; hence, BBB disruption can be considered an
early biomarker related to declines in human cognition (Nation
et al., 2019). All these studies show that the way alterations in
BBB components progress with time might be an interesting
research topic to explore in association with the normal
aging brain.

Phenotypes of BBB Breakdown in Normal
Aging
During aging, various changes occur in the structure and
function of brain vasculature. In the aged brain, the BBB
becomes broken; hence, the permeability of the BBB
elevates (Villeda et al., 2011; Hyman et al., 2012) and
declines in the cerebral blood flow (CBF) occur (Tarumi
and Zhang, 2018). The potency of neovascularization
diminishes (Rivard et al., 2000; Gao et al., 2009) and the
density of capillary of brain vasculature reduces with age
(Reeson et al., 2018). It has been observed that, during
aging, BBB breakdown is the first incident that starts in
the hippocampus, which may lead to declines in cognition
(Montagne et al., 2015). In normal aging, the main changes
that are strongly correlated to BBB breakdown are presented in
Table 1.

It has been reported that, in aging, the brain endothelium
becomes progressively dysfunctional, which is correlated with
aberrant changes in the BBB (Cai W. et al., 2017; Edwards et al.,
2019). The extracellular matrix (ECM) of the basal membrane
or basal lamina covers the brain endothelium and is considered
uniform and thin. In normal aging, the thickness of the ECM
increases with the increase in collagen IV and argin but decreases
in laminin concentrations (Candiello et al., 2010). Although
the ECM has a role in maintaining BBB integrity by inducing
TJ (occludin) protein expression, changes in the ECM cause
BBB disruption, and thus result in increased BBB permeability
(Hawkins and Davis, 2005; Candiello et al., 2010; Sanchez-
Covarrubias et al., 2014).

In the CNS BBB, ECs associated with pericytes, astrocytes,
neurons, and glial cells that develop and maintain their specific
phenotype led to BBB integrity (Erickson and Banks, 2018).
However, with aging, this association caused BBB breakdown.
During aging, physiological ultrastructure changes have been
reported in pericytes, such as an increase in mitochondria size
(Hicks et al., 1983), vesicular and lipofuscin-like inclusions
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FIGURE 1 | Schematic diagram shows the normal/young blood–brain barrier (BBB) and dysfunctional/aged BBB. (A) Shows BBB in a young or normal state with

tight and adherens junctions, a low rate of transcytosis, no diffusion of toxins, the presence of influx (Glut-1) and efflux (P-gp) transporters, and a low expression of

leukocytes adhesion molecules (LAMs). The basal lamina is thin and surrounded by pericytes, astrocyte endfeet, and microglia. (B) Shows BBB in an aged or disease

state with a high rate of transcytosis and diffusion of toxins, repression in influx and efflux transporters, upregulated expression of LAMs, and increased density of the

extracellular matrix (ECM). Pericytes, astrocytes, and microglia are not associated with the basal lamina.

(Rascher and Wolburg, 2002), and foamy transformations
(Sturrock, 1980). In addition, the protrusions on the basal
lamina or the ECM membrane of the microvessels have been
observed to result in the degeneration of pericytes (Ueno et al.,
1998). A loss of pericytes has also been reported in aging
mice, rats, and the human brain (Stewart et al., 1987; De Jong
et al., 1990; Bell et al., 2010; Duncombe et al., 2017; Goodall
et al., 2018) but some studies observed that the number of
pericytes increases in aged rat brains (Heinsen and Heinsen,
1983; Peinado et al., 1998). However, no change was observed
in the number of pericytes in aged monkey brains (Peters et al.,
1991).

Platelet-derived growth factor receptor beta (PDGFRβ)
maintains the phenotype of pericytes in the brains of aged
mice with PDGFRβ+/−, which shows that the loss of pericytes
leads to BBB breakdown and increased BBB permeability (Bell
et al., 2010). It has been reported, in the aged human brain, the
level of soluble PDGFRβ in cerebrospinal fluid (CSF) increases,
showing damage to the pericyte associated with BBB disruption
(Montagne et al., 2015; Sagare et al., 2015; Nation et al., 2019).
In addition, it has been reported that, in APOE4 carriers, the
elevated PDGFRβ in the CSF may be used as a biomarker of
cognitive impairment (Montagne et al., 2020).

The endfeet of astrocytes that ensheath the pericytes have
a contribution to BBB development and maintenance. With

the age, vascular coverage and aquaporin-4 (AQP4) expression
of astrocyte endfeet are reduced whereas glial fibrillary acidic
protein (GFAP) expression and endfeet sizes are increased
(Middeldorp and Hol, 2011; Duncombe et al., 2017; Goodall
et al., 2018), leading to increase in reactive astrogliosis.

Microglia are distributed ubiquitously in the CNS and
activated during aging and pathology (Kettenmann et al., 2011;
Kofler and Wiley, 2011; Harry, 2013; Sanchez-Covarrubias
et al., 2014). Microglia have a ramified structure in the
resting state, but when activated, this structure changes into an
amoeboidmorphology during aging or a pathophysiological state
(Kettenmann et al., 2011). During aging or stress, the activated
microglia produce tumor necrosis factor-α (TNF-α), proteases,
nitric oxide (NO), and peroxide (Ronaldson and Davis, 2012),
which are associated with an alteration in the TJ protein. This
alteration induces BBB leakage (Huber et al., 2006), which, in
turn, leads to cell injury and neurodegeneration (Ronaldson and
Davis, 2012).

Studies have shown that neurons directly connect with brain
ECs and astrocytes (Ben-Menachem et al., 1982; Cohen et al.,
1996, 1997; Tong and Hamel, 1999; Vaucher et al., 2000; Sanchez-
Covarrubias et al., 2014). Impairment in this association results in
BBB breakdown and leads to an increase in BBB permeability to
albumin (Berezowski et al., 2004). Figure 1 shows the difference
between young or normal BBB and aged or dysfunctional BBB.
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TABLE 1 | Changes associated with blood–brain barrier (BBB) breakdown in normal aging, Alzheimer’s disease (AD), and vascular dementia (VaD).

BBB

elements

Characteristics Aging References AD References VaD References

ECs • Endothelium degeneration,

Mitochondrial content

decrease, pinocytotic vesicle

increase

• Microvessel density decrease

Yes (Bell and Zlokovic, 2009;

Grinberg and Thal, 2010;

Richardson et al., 2012; Rouhl

et al., 2012; Sagare et al.,

2012)

Yes (Salmina et al., 2010;

Villar-Vesga et al., 2020;

Chacón-Quintero et al.,

2021; González-Molina

et al., 2021)

Yes (Wardlaw et al., 2003;

Zhang et al., 2014; Rajani

et al., 2018; Wang et al.,

2018; Tayler et al., 2021;

Zhu et al., 2021)

Extracellular

components

• Increase (accumulation) Yes (Brown and Thore, 2011) Yes (Zlokovic, 2011; Hawkes

et al., 2013; Morris et al.,

2014; Howe et al., 2020)

Yes (Ueno et al., 2002;

Rosenberg, 2017)

Basal

lamina

• Thickness increase Yes (Grinberg and Thal, 2010;

Richardson et al., 2012; Rouhl

et al., 2012)

Yes (Zlokovic, 2011; Morris

et al., 2014)

Yes (Ueno et al., 2002;

Iadecola, 2013;

Rosenberg, 2017)

Pericytes • Pericytes number decrease

• PDGFRβ in CSF increase

Yes (Bell et al., 2010; Montagne

et al., 2015; Sagare et al.,

2015; Duncombe et al., 2017;

Erdo et al., 2017; Goodall

et al., 2018; Nation et al.,

2019)

Yes (Sengillo et al., 2013;

Halliday et al., 2016;

Montagne et al., 2018;

Miners et al., 2019;

Uemura et al., 2020)

Yes (Iadecola, 2013;

Montagne et al., 2018;

Yang et al., 2018; Uemura

et al., 2020)

Astrocytes • Vascular coverage reduction

• GFAP upregulation

• AQP4 downregulation

Yes (Middeldorp and Hol, 2011;

Duncombe et al., 2017;

Goodall et al., 2018; Heithoff

et al., 2021)

Yes (Abbott et al., 2006; Yang

Y. et al., 2011; Kimbrough

et al., 2015; Ahmad et al.,

2019)

Yes (Wardlaw et al., 2003;

Iadecola, 2013; Saggu

et al., 2016; Price et al.,

2018; Wang et al., 2018;

Tayler et al., 2021)

Microglia • Release of neurotoxins

• Changes to

amoeboid morphology

Yes (Kettenmann et al., 2011;

Ronaldson and Davis, 2012)

Yes (Zotova et al., 2011;

Hansen et al., 2018;

Ahmad et al., 2019;

Hemonnot et al., 2019;

Leng and Edison, 2020)

Yes (Wu et al., 2016; Wang

et al., 2018; Tayler et al.,

2021)

Neurons • Synaptic plasticity

diminishment

• Impaired long-term

potentiation

• Dysfunctional neurogenesis

• Elevation in apoptosis

• Neurodegeneration

Yes (Buschini et al., 2011; Blau

et al., 2012; Cerbai et al.,

2012; Lucke-Wold et al.,

2014)

Yes (Crews and Masliah,

2010; Arendt et al., 2015;

Vasic et al., 2019; Bartels

et al., 2020)

Yes (Saggu et al., 2016;

Montagne et al., 2018;

Wang et al., 2018; Tayler

et al., 2021; Zhu et al.,

2021)

Tight

junctions

Proteins

• CLDN5, OCLN, ZO-1

expression decreases and

BBB integrity reduction, BBB

permeability increase

Yes (Bake et al., 2009; Wang

et al., 2011; Lassman et al.,

2012; Elahy et al., 2015)

Yes (Biron et al., 2011; Cuevas

et al., 2019; Yamazaki

et al., 2019)

Yes (Wang et al., 2018; Yang

et al., 2018)

Transporter

dysfunctions

• Influx transporter: Glut1

expression decrease, glucose

uptake reduction

• Efflux Transporter: LRP-1

(human) and P-gp expression

decrease (mouse)

Yes (van Assema et al., 2012;

Ding et al., 2013; Jiang et al.,

2013; Chiu et al., 2015;

Ramanathan et al., 2015;

Hoffman et al., 2017;

Patching, 2017; Sweeney

et al., 2019a)

Yes (Owen et al., 2010; Jaeger

et al., 2011; Ding et al.,

2013; Chiu et al., 2015;

Ramanathan et al., 2015;

Winkler et al., 2015;

Halliday et al., 2016;

Patching, 2017; Yu et al.,

2020; Kyrtata et al., 2021)

Yes (Hase et al., 2019)

Circulating

factors

• ASM (acid sphingomyelinase),

sphingomyelin

phosphodiesterase 1

(Smpd1) upregulation

Yes (Park et al., 2018; Wangb

et al., 2019)

* *

Other

factors

• SIRT1 expression decrease Yes (Chang and Guarente, 2014;

Imai and Guarente, 2014;

Stamatovic et al., 2019)

* *

“*” shows no obvious research studies are found related to AD and VaD.

Mechanisms of BBB Breakdown During
Normal Aging
During aging, various mechanisms cause BBB breakdown and
increase BBB permeability. For example, in aging, oxidative stress

induces ECs to produce TNF-α that cause the degradation of
the basement membrane, and TJs (Occludin, Zonula occludins-
1), which, in turn, results in BBB disruption and an increase
in BBB permeability (Donato et al., 2007; Bake et al., 2009; Lee
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et al., 2012; Elahy et al., 2015; Cai W. et al., 2017). In addition,
the activity of caspase 3/7 in the aged brain increases, which
causes the suppression of cell viability and the upregulation
of apoptosis in pericytes (Schultz et al., 2018), resulting in
the reduction of the number of pericytes in the BBB (Bell
et al., 2010). The senile pericytes produce NO and react with
O2, causing increased oxidative stress and compromised BBB
integrity (Hughes et al., 2006; Sweeney et al., 2016; Cai W. et al.,
2017). Similarly, in aging, oxidative stress enhances astrocytes
to upregulate the expression of cytokines and chemokines,
such as matrix metalloproteinase 3 (MMP3) and p16INK4A
[senescence-associated secretory phenotype (SASP)], that induce
BBB disruption, neuroinflammation, and cognitive impairments
(Simpson et al., 2010; Salminen et al., 2011; Cai Z. et al., 2017;
Bussian et al., 2018). In aging, oxidative stress also activates
the microglia to release cytokines, chemokines IL-6, IL1ß,
and TNF-α, which results in the elevation of reactive oxygen
and nitrogen species; this ultimately causes the breakdown of
the BBB (Gredilla et al., 2010; Choi et al., 2014; Fivenson
et al., 2017). With age, oxidative stress causes the production
of reactive oxygen species (ROS) to elevate in the CNS, but
the capability of neurons to clear ROS decreases, resulting
in neurodegeneration (Nicholls and Budd, 2000; Mattson and
Magnus, 2006). Furthermore, with age, calcium dysregulation
in neurons occurs, which represses calcium-binding proteins
correlated with the elevation of ROS. This results in BBB
degradation and neuronal loss (He et al., 1997) as shown
(Figure 2).

Once the BBB integrity becomes compromised, blood-
derived proteins such as fibrinogen and plasminogen cross
the BBB, and the pro-inflammatory fibrin aggregates in
the brain (Cortes-Canteli et al., 2015). A study using a
mouse model showed that accumulated fibrin bind with
CD11b/CD18 and activate microglia, which then triggers
a decline in cognition (Merlini et al., 2019). Accumulated
fibrin in brain also induce increased ROS level and activates
nicotinamide adenine dinucleotide phosphate (NADPH
oxidase), which upregulates pro-inflammatory gene expression
and causes damage to neuronal axons (Ryu et al., 2018;
Merlini et al., 2019). In addition, fibrinogen phosphorylates
Smad 1/5/8 represses oligodendrocyte progenitor cells
(OPCs) (Ryu et al., 2015). Furthermore, the complex of
Aβ-fibrinogen activates microglia via CD11b/CD18, which
inhibits the breakdown of fibrinogen and promotes neuronal
degeneration (Cortes-Canteli et al., 2010; Zhao et al., 2017) as
shown (Figure 3A).

The tissue-type plasminogen activator (tPA) binds and
activates low-density lipoprotein receptor-related protein-1
(LRP-1) on ECs. In run, these ECs produce pro-MMPs (MMP-
2, MMP-3, and MMP-9) (Wang et al., 2003; Cheng et al., 2006;
Suzuki et al., 2009). Subsequently, tPA converts the surface-
bound inactive plasminogen (Plg) into active plasmin (Plm)
(Doeuvre et al., 2010; Yepes et al., 2021). Plasmin, in turn,
activates the MMPs, leading to the degradation of TJs and basal
lamina (Mazzieri et al., 1997; Ramos-DeSimone et al., 1999;
Monea et al., 2002; Rosenberg and Yang, 2007; Yang Y. et al.,
2011). Furthermore, tPA also binds with LRP-1 on astrocytes,

which induces plasmin-mediated activation of Rho kinases and
retracts the endfeet of the astrocytes from the blood vessel
wall, thus resulting in BBB dysfunction (Niego et al., 2012).
In addition, a study suggested that plasminogen might regulate
brain inflammation during AD (Baker et al., 2018) as shown
(Figure 3B).

Human brain ECs continuously produce complement
regulatory proteins and components (Wu et al., 2016), which are
elevated by CNS injury or infiltration into the brain when the
BBB is dysfunctional. However, at a young age or in a normal
state, complement proteins mostly do not cross the BBB (Hoarau
et al., 2011; Veerhuis et al., 2011). Once the complement proteins
cross the compromised BBB, they could alter the functions of the
microglia, oligodendrocytes, and neurons (Orsini et al., 2014).
Complement activation produces C3a and C5a that interact
with C3aR and C5aR1, respectively, which play a significant
role in the infiltration of inflammatory cells into the brain
and the induction of cytokine cascades (IL-1, TNF-α, IL-6,
IL-8, IL-17) subsequently leading to neurodegeneration (Jacob
and Alexander, 2014; Alexander, 2018). In AD, amyloid-beta
(Aβ) activates the complement signaling by binding to C1q.
Inhibition of the C5/C5aR1 pathway was also reported to be
a protective therapeutic target in AD (Fonseca et al., 2009) as
shown (Figure 3C).

BBB BREAKDOWN IN DEMENTIA
(INCLUDING AD AND VASCULAR
DEMENTIA)

Dementia is a group of conditions or disorders that affect the
functions of the brain. It is a progressive neurological disease
associated with impairments in cognition and deterioration
of the everyday life activities of an affected individual (Mills
et al., 2007; Kirshner, 2009). In dementia, BBB breakdown and
cerebral hypoperfusion cause brain damage and a decline in
cognition (Nation et al., 2019; Tayler et al., 2021). Dementia is
a considerable health complication affecting millions of people
worldwide. In developed countries, AD and VaD are two
significant types of dementia with a prevalence of about 4.4
and 1–2%, respectively (Ray et al., 2013), with AD being the
most common type of dementia in aged people (Ballaed et al.,
2011; Hyman et al., 2012). The World Alzheimer Report 2018
estimated that approximately 50 million people of the global
population suffer from dementia, which can increased to 82
million in 2030 and triple to 152 million by 2050 (Patterson,
2018). Alzheimer’s is considered to account for 60–70% of all
dementia cases worldwide (Leng and Edison, 2020). As the BBB
has vital contributions to maintaining the microenvironment
of the CNS, any impairment in the cellular or molecular
components of the BBB can cause various neurodegenerative
diseases, including AD (Zlokovic, 2005; Erickson and Banks,
2013; Zenaro et al., 2017). After AD, VaD is the second
most common type of dementia, accounting for 15% of all
dementia cases worldwide (O’Brien and Thomas, 2015). Vascular
dementia is a type of neurological disease with a defect in
cognition caused by impairment in the vascular system, such
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FIGURE 2 | Schematic diagram shows the mechanisms of blood–brain barrier (BBB) breakdown in normal aging. (1) Oxidative stress increases with age. (2) Oxidative

stress triggers endothelial cells ECs to release tumor necrosis factor-α (TNF-α) and consume more ATP. (3) Oxidative stress induces pericytes to release nitric oxides

that react with reactive oxygen to further upregulate the oxidative stress causing pericytes apoptosis associated with loss in BBB integrity. (4) During aging, oxidative

stress stimulates and activates astrocytes to release cytokines and chemokines that degrade the basement membrane and tight junction leading to BBB impairment.

(5) Oxidative stress also activates the microglia to secrete cytokines, chemokines, reactive oxygen, and nitrogen species, causing degradation in BBB integrity. (6)

Oxidative stress also induces neurons to release reactive oxygen species (ROS) and calcium ions accumulation that cause to degrade the neurovascular unit (NVU).

(7) Toxins freely diffuse to and from the brain, causing neurodegeneration and decline in cognition.

as a reduction in CBF (Sabayan et al., 2012). Various vascular
pathologies are associated with VaD, such as infarcts and
white matter (WM) alterations (O’Brien and Thomas, 2015). In
addition, brain hemorrhage, ischemia, and hypoxia may be the
causing factors of VaD (Kirshner, 2009; Grinberg and Heinsen,
2010).

BBB Breakdown in AD
Pathophysiology of AD

Aging is responsible for pathophysiological changes that
aggravate neurological diseases. It causes the thickening of the
wall of the blood vessel and increases blood vessel tortuosity,
which may lead to BBB disruption (Rosenberg, 2012). The
BBB breakdown in AD results in the accumulation of insoluble
extracellular plaques of β-amyloid (Aβ) along the walls of
blood vessels and causes inflammation in the NVU (Kinnecom
et al., 2007; Kang et al., 2017). In neuronal cytoplasms, the
accumulation of neurofibrillary tangles (NFT) of P-tau is also
associated with AD (Kang et al., 2017). It has been observed that,
in AD, the reduction of Aβ clearance is correlated with declines
in CBF and cognitive impairment (Sagare et al., 2012). These

pathological markers are associated with BBB impairment, which
causes microglial activation, neuroinflammation, degeneration
of neurons, and cognitive impairment (Bhaskar et al., 2010;
Iadecola, 2013). As pericytes have a crucial role in the
development and maintenance of BBB, their number and density
decreased in the cortex and hippocampus of AD patients
(Sengillo et al., 2013), subsequently leading to the upregulation
of the expression of Aβ and p-tau protein (Sagare et al.,
2013).

Vascular (stroke, hypertension, diabetes, etc.) and genetic
factors (APOE4) are two pathways that cause BBB impairment
and oligemia (reduced CBF) that result in dementia. In the
Aβ-independent pathway (blue), the BBB breakdown causes
a release of neurotoxins from one side and leads to CBF
reduction on another side. In the Aβ-dependent pathway (green),
the BBB breakdown impairs the clearance of Aβ and APP
(amyloid precursor protein), leading to the aggregation of Aβ

in the brain. The accumulated Aβ and vascular hypoperfusion
phosphorylate tau, leading to the formation of NFTs. In addition,
the deposited Aβ also cause inflammation in the brain. In
conclusion, both factors and pathways cause neurodegeneration
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FIGURE 3 | Diagram that shows fibrinogen, tissue-type plasminogen activator (tPA), plasmin, and complement proteins/cytokines/Aβ cross compromised the

blood–brain barrier (BBB), causing neuronal loss and decline in cognition. (A) (1) Fibrinogen activates the microglia via CD11b/CD18, which releases

inflammatory/toxic molecules causing neurodegeneration and cognitive impairment. (2) Fibrinogen induces reactive oxygen species (ROS), activates nicotinamide

adenine dinucleotide phosphate (NADPH oxidase), and upregulates proinflammatory genes causing axonal retraction and cognitive impairment. (3) Fibrinogen

phosphorylates SMAD 1/5/8 and represses oligodendrocyte progenitor cells (OPCs) leading to oligodendrocyte loss. (B) (1) tPA binds with low-density lipoprotein

receptor-related protein-1 (LRP-1) of endothelial cells (ECs), which secretes pro-matrix metalloproteinases (MMPs). tPA activates plasminogen into plasmin, which

further activates pro-MMPs that degrade tight junctions (TJs) and basal lamina. (2) tPA also binds with the LRP-1 of astrocytes, induces plasmin mediated activation of

Rho kinase, and results in astrocyte retraction leading to BBB impairment. (C) During aging and dementia such as Alzheimer’s disease (AD), complement proteins,

oxidative stress, and the aggregated amyloid-beta (Aβ) activate the astrocytes and microglia, leading to neuroinflammation. The C3aR and C5aR1 signalings on

activated microglia cause the release of cytokines [IL-1, IL-6, tumor necrosis factor-α (TNF-α), and toll-like receptor 4 (TLR-4)] and result in neurodegeneration. To

aggravate neuronal apoptosis, C5a as a neuronal-derived signal that interacts with C5aR1 on neurons in an autocrine way. Furthermore, C3a as an astrocytic-derived

signal binds to C3aR on neurons to exacerbate neuronal morphology. During neuroinflammation, microglia-derived C5b binds with the membrane attack complex

(MAC) that enhances neuronal loss.

leading to dementia (AD) (Iadecola and Davisson, 2008; Jack,
2010;Winkler et al., 2011; Sagare et al., 2013; Edwards et al., 2019)
as shown (Figure 4).

Phenotypes of BBB Breakdown in AD

In AD patients, the BBB is shown as leakages in brain vasculature,
the perivascular aggregation of fibrinogen, albumin, thrombin,
and immunoglobulin (IgG), the loss of TJs, and the degeneration
of ECs and pericytes (Nelson et al., 2016). Furthermore, identical
phenotypes were also observed in Apoe−/− mice due to BBB
impairment (Nishitsuji et al., 2011; Bell et al., 2012; Hammer
et al., 2014; Soto et al., 2015; Castillo-Gomez et al., 2016; Di
Cataldo et al., 2016), indicating that ApoE is vital for maintaining
BBB integrity.

As pericytes are crucial for maintaining the BBB, any
dysfunction in the signaling pathways of pericytes results in
the breakdown of BBB, which causes dementia and other
neurodegenerative diseases (Sagare et al., 2013; Nikolakopoulou
et al., 2019). Brain microvascular endothelial cells (BMEC)
secrete platelet-derived growth factor BB (PDGF-BB)
and activate PDGFRβ signaling, which is essential for the
proliferation, migration, and survival of pericytes (Stratman
et al., 2010). An impairment in PDGFRβ signaling leads to
pericyte degeneration (Stratman et al., 2010; Nation et al.,
2019). According to a previous study, PDGFRβ signaling was
decreased in adult Foxf2 deficient mice, thus resulting in high

BBB permeability (Reyahi et al., 2015). Impairment in the BBB
was also reported in Pdgfrβ+/− pericyte-deficient mice, which
subsequently caused neuronal degeneration (Bell et al., 2010). In
the AD murine model (APPsw/0), the deterioration of pericytes
results in the dysfunction of the BBB, leading to amyloid β

accumulation and tau protein (p-tau) phosphorylation (Sagare
et al., 2013). The breakdown of the BBB was also reported in AD
patients associated with the reduction in pericytes (Sengillo et al.,
2013). Studies also showed that the leakage of the BBB in AD
patients starts at the hippocampus, resulting in an increase of
soluble PDGFRβ (sPDGFRβ) in the CSF (Montagne et al., 2015;
Miners et al., 2019). Additionally, the level of sPDGFRβ in the
CSF can be used as a biomarker to predict dementia and other
neurodegenerative diseases such as AD (Nation et al., 2019).

Astrocytes are one of the main components of the NVU and
are essential for the integrity of the BBB. In an in vitro study,
it was observed that Sonic hedgehog (Shh) signaling released
from astrocytes plays a vital role in the maintenance of BBB
integrity by upregulation of CLDN5 and OCLN (Alvarez et al.,
2011; Wang et al., 2014). Recently, it was also reported that,
in the stroke mouse model, ischemia-induced astrogliosis led to
the downregulation of the expression of TJ protein claudin-5
and occludin (Matthes et al., 2021), suggesting that astrocytes
have a role in the regulation of TJ proteins. Another recent
study reported that, in the tamoxifen-induced astrocyte ablation
adult mouse model, the expression of TJ protein ZO-1 was
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FIGURE 4 | Schematic diagram shows two pathways that cause dementia [specifically Alzheimer’s disease (AD)]. Vascular factors (stroke, hypertension, diabetes,

etc.) and genetic factors (such as APOE4) cause defects in the vascular system leading to blood–brain barrier (BBB) impairment and oligemia (reduced cerebral blood

flow), which finally correlate with dementia and neuronal degeneration. In the amyloid-beta (Aβ)-independent pathway (blue), vascular and genetic factors cause BBB

breakdown and the secretion of neurotoxins from one side and oligemia from the other side. While in the Aβ-dependent pathway (green), the first BBB breakage

impairs Aβ clearance and the amyloid precursor protein (APP), resulting in the accumulation of Aβ in the brain. Vascular hypoperfusion and Aβ phosphorylate tau (p-tau)

that forms neurofibrillary tangles (NFTs). Finally, both pathways cause neurodegeneration/synaptic impairment/neuronal damage leading to dementia (specifically AD).

downregulated in vessel regions where astrocyte loss occurred,
which may show the role of astrocytes in maintaining the
integrity of the BBB in adult brains (Heithoff et al., 2021). A
conditional knockout mouse study also showed that the deletion
of laminins in astrocytes caused a decline in astrocytic AQP4
(Aquaporin4) expression, thus leading to a loss of TJ in ECs (Yao
et al., 2014). In the AD brain, various changes in the morphology
of astrocytes have been reported to cause BBB breakdown (Cai
Z. et al., 2017). The depolarization of astrocyte endfeet may
diminish the integrity of BBB, which was reported in the tg-
ArcSwe mouse model of AD(Yang J. et al., 2011). In AD models,
researchers also identified several changes in the morphology of
astrocytes endfeet near aggregated vascular Aβ (Kimbrough et al.,
2015).

A mouse study showed that microglia stimulate TJ protein
claudin-5 expression and maintain BBB integrity (Haruwaka
et al., 2019). However, the BBB integrity becomes compromised
with prolonged inflammation through the changing of the
morphology of microglia (Lassman et al., 2012; Haruwaka et al.,
2019). In the AD brain, due to the accumulation of Aβ, microglia

activate and secret inflammatory cytokines, such as interleukins
(IL-1 and IL-6) and tumor necrosis factor (TNF-α, and TNF-
β) (Zhou et al., 2012) that cause BBB impairment (Wang et al.,
2014). As a result, the trafficking of neutrophils through the BBB
becomes elevated due to BBB breakdown (Allen et al., 2012;
Wang et al., 2014; Zenaro et al., 2015). Furthermore, it has
been observed that, in the tamoxifen-induced astrocyte knockout
adult mouse model, the loss of astrocytes causes the activation of
microglia (Heithoff et al., 2021); in turn, the activated microglia
produce reactive oxygen and reactive nitrogen species (RNS),
leading to BBB dysfunction and neurodegeneration (Block, 2008;
Sumi et al., 2010).

In the physiological state, perivascular macrophages (PVMs)
have a significant role in the maintenance of TJs between ECs.
They also decrease vessel leakage, degrade pathogens, and limit
inflammation (Lapenna et al., 2018) while contributing to BBB
breakdown in the disease state (Boyle et al., 2018). These PVMs
are enriched with scavenger receptors, might be involved in the
clearance of toxin products from the brain parenchyma (Faraco
et al., 2017), and have a diverse role in disease states such
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FIGURE 5 | Schematic diagram shows the mechanisms of blood–brain barrier (BBB) breakdown in a normal brain and one with Alzheimer’s disease (AD). (A) Normal

brain (1) Astrocytes release ApoE2/3, (2) bind with the low-density lipoprotein receptor-related protein-1 (LRP-1) on pericytes and repress CypA-NFkB, which, in turn,

stops matrix metalloproteinase 9 (MMP9) secretion in pericytes; (3) hence, maintaining BM and BBB integrity, with (4) LRP-1 and P-gp on endothelial cells (ECs) also

helping in amyloid-beta (Aβ) clearance. (5) Receptor for advanced glycosylation end products (RAGE) expression is repressed to stop the transport of Aβ into the

brain. (B) AD brain (1) Astrocytes secret ApoE4, (2) weakly interact with LRP-1 on pericytes which activates the cyclophilin-A nuclear factor kβ matrix

metalloproteinase 9 (CypA-NFkB-MMP9 pathways), (3) and result in BM and tight junctions (TJs) degradation leading to BBB breakdown, (4) associated with

neurodegeneration and dementia. (5) ApoE4 also weakly interacts with LRP-1 on ECs that cannot significantly clear Aβ from the brain; hence, Aβ accumulates in the

brain, causing neuronal damage. (6) Also, RAGE expression is upregulated, which promotes the transport of Aβ from blood to brain. (7) Blood cells and neurotoxins

diffuse into the brain and cause neuronal loss and dementia.

as AD (Lapenna et al., 2018). Perivascular macrophages have
been shown to phagocytose and alleviate Aβ plaques, and the
PVM-deficient mouse model showed an increased aggregation of
Aβ42 and cerebral amyloid angiopathy (CAA) related with AD
(Yang et al., 2019). Another study showed that PVMs that are
deficient in CD36 and Nox2 abrogated the production of ROS
and Aβ cerebrovascular impairment compared with wild-type
mice (Park et al., 2017).

In addition, perivascular fibroblasts (FBs) express the ECM
genes col1a2 and col5a1 and are considered to mediate
blood vessel integrity. Zebrafish deficient with col5a1 showed
spontaneous hemorrhage in the presence of the additional
genetic ablation of the col1a2 gene, suggesting the role of
perivascular FBs in stabilizing vascular integrity (Rajan et al.,
2020). Perivascular FBs also express Lama2, Lamb1, and
Lamc1, which encode laminin 211 that interacts with astrocytic
dystrophin, resulting in the regulation of AQP4 in astrocytic
endfeet. This study suggests that any impairment in perivascular
FBs result in the dysregulation of AQP4, which may cause
Aβ aggregation and AD as reviewed by Lendahl et al. (2019).
Furthermore, it has been reported that alteration in the activity
of perivascular FBs also leads to other neurological disorders
(Månberg et al., 2021).

Mechanisms of BBB Breakdown in AD

Various pathological and aberrant events such as oxidative stress,
inflammation, and the ApoE4 genotype cause BBB breakdown
associated with AD. Research has shown that, in AD, the
activation of the inflammatory and oxidative stress signaling
pathways is the primary event that causes BBB disruption (Perry
et al., 2002; Candore et al., 2010; Eikelenboom et al., 2012).
Cytokines (Pan et al., 2011), Aβ (Gonzalez-Velasquez et al., 2008;
Deli et al., 2010; Carrano et al., 2011), LPS (Bannerman and
Goldblum, 1999; Verma et al., 2006), and p-tau proteins (Kovac
et al., 2009) are the stimulus of inflammation for the activation
of inflammatory pathways in BBB ECs. Hence, increases of
the pro-inflammatory mediators and ROS/RNS in BBB ECs,
astrocytes (Tada et al., 1994), and pericytes (Kovac et al., 2011;
Takata et al., 2011) ultimately cause BBB breakdown. Recently we
reviewed the role of peripheral inflammation in BBB breakdown
(Huang et al., 2021). Glucose transporter protein (GLUT1) is
repressed in the endothelium of AD, which causes a decline in
the glucose level of the CNS (Mooradian et al., 1997; Winkler
et al., 2015). In human AD, LRP1, which is a primary receptor
for the clearance of amyloid-β, is downregulated with an increase
in oxidative stress (Deane et al., 2004; Donahue et al., 2006;
Sagare et al., 2007; Miller et al., 2008; Owen et al., 2010;
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Halliday et al., 2016); as a result, the transport of Aβ from the
brain becomes reduced and leads to amyloid-β accumulation
in the brain (Deane et al., 2004, 2008; Storck et al., 2016). In
mice, systemic inflammation with LPS has been observed to
downregulate both LRP-1 and P-gp efflux transporters and block
the Aβ clearance from the brain (Jaeger et al., 2011; Erickson
et al., 2012). Furthermore, it has been reported that the expression
levels of the receptor for advanced glycosylation end products
(RAGE) in both mural cells and brain endothelium were elevated
(Deane et al., 2003; Donahue et al., 2006; Miller et al., 2008). The
function of the RAGE is to transfer Aβ from blood to the brain
(opposite to LRP1), which enhances neuronal inflammation. In
AD patients, the RAGE is observed as a significant therapeutic
target (Bell et al., 2012). A transgenic mouse with overexpressed
APP (amyloid precursor protein) has been reported to show
vascular impairment due to the elevation of Aβ40 (Niwa et al.,
2000).

Aquaporin-4 (AQP4) is the prime water channel expressed in
the CNS and is primarily expressed in astrocytes, thus playing a
vital role in normal brain homeostasis and various neurological
diseases (Lan et al., 2016b). Specifically, AQP4 facilitates the
clearance of Aβ, and alteration in AQP4 expression leads to the
accumulation of amyloid-β in the brain (Hoshi et al., 2012; Yang
et al., 2012). Furthermore astrocytic AQP4-deficient animals
cannot efficiently remove Aβ from the brain (Iliff et al., 2012).
A study showed that AQP4 is crucial to regulate fluid flow in the
brain interstitial required to maintain the microenvironment for
neurons to function properly. The perturbed AQP4 expression
has been observed to cause Aβ deposition and inflammation in
the human brain, which leads to AD (Rasmussen et al., 2018). In
AD patients and animal models, the expression and distribution
of AQP4 were altered, leading to amyloid-β accumulation, which
plays a vital role in the pathogenesis of AD as reviewed by
Yang et al. (2016). Furthermore, it has been observed that, in
AD patients, the localization of AQP4 in the perivascular space
was reduced and is associated with an increase in neurofibrillary
and amyloid-β pathology (Zeppenfeld et al., 2017). In addition,
AQP4 facilitates the transport of potassium and calcium ions,
which plays an essential role in the pathogenesis of AD as
reviewed by Lan et al. (2016a). In AD, the chronic activation
of microglia leads to the release of abundant pro-inflammatory
cytokines and abolishes phagocytosis, thus causing the deposition
of Aβ and neuroinflammation (Krabbe et al., 2013; Heneka
et al., 2015) and subsequently producing ROS that causes BBB
dysfunction and neurotoxicity (Block, 2008; Sumi et al., 2010).
The activated microglia also release IL-1β (a pro-inflammatory
cytokine) that amplify the BBB leakage and diminish the ability of
the astrocytes to maintain the BBB (Wang et al., 2014). Therefore,
AQP4 can be a fascinating therapeutic target for AD and other
CNS diseases.

Apolipoprotein E (ApoE) is a protein encoded by the APOE
gene, located on chromosome 9 and associated with lipid
transport. APOE consists of three alleles, namely, ε2, ε3, and ε4,
translated to ApoE2, ApoE3, and ApoE4 isoforms. The APOE
isoform distributed as APOE3 is the most abundant in humans
at approximately 77.9%, while APOE4 and APOE2 distributions
are 13.7 and 8.4%, respectively (Farrer et al., 1997). In the CNS,

astrocytes produce ApoE, whereas, in peripheral tissue, ApoE
production occurs in the liver (Liu et al., 2013).

Studies reported that ApoE plays an essential role in
maintaining BBB integrity (Nishitsuji et al., 2011). An in vivo
study showed that ApoE2/3 induces BBB integrity by interacting
with LRP-1 on pericytes to block the cyclophilin-A nuclear factor
kβ matrix metalloproteinase 9 (CypA-NF-kβ-MMP-9) pathway,
thus resulting in the inhibition of MMPs (Bell et al., 2012).
Researchers also observed that the APOE4 isoform is a major
risk factor for AD, and that the binding of Aβ with apoE4
shifts fast clearance of soluble Aβ40/42 from LRP1 to VLDLR;
hence, Aβ-apoE4 complexes at the BBB are cleared with a slower
rate than LRP1 (Deane et al., 2008; Tachibana et al., 2019).
The expression of APOE4 causes a reduction in BBB integrity
by promoting pericyte degeneration in AD (Bell et al., 2012),
which is correlated with high BBB permeability to IgG and
fibrin (Halliday et al., 2016). In a transgenic mouse study, the
mice that had Apoe replaced with human APOE (TR-APOE)
showed astrocytes that secreted ApoE4 blocks pericytic LRP-1,
resulting in the activation of the proinflammatory CypA-NF-kB
MMP9 pathway, BBB disruption, and brain hemorrhage through
the enzymatic breakdown of the TJ and basement membrane
(Nishitsuji et al., 2011; Bell et al., 2012). A study showed that an
LRP1 endothelial knockout caused the activation of the CypA–
MMP9 pathway in the endothelium, which led to damage to
TJs and BBB breakdown (Nikolakopoulou et al., 2021). In TR-
APOE4mice, the repression of Glut1 and upregulation of RAGE
expression were also observed compared with TR-APOE3 or TR-
APOE2 (Alata et al., 2015). It has been reported that humans
carrying APOE4 are more prone to breakdown in the BBB
and loss of pericytes than non-APOE4 carriers (Hultman et al.,
2013; Zonneveld et al., 2014; Halliday et al., 2016). Furthermore,
CypA and MMP-9 levels increase in APOE4 carriers, leading
to the elevation of IgG and fibrinogen leakages (Halliday et al.,
2016). Overall, these results suggest that ApoE2/3 represses
inflammation by interacting with pericyte LRP-1, subsequently
inducing BBB integrity. In contrast, the ApoE4 might have
BBB impairment properties or cause a higher risk of BBB
breakdown. The repression of ApoE4 or inhibition of the CypA–
MMP9 pathway in humans with AD might be an exciting topic
in the future for the reduction the neurodegenerative process
(Figure 5).

BBB Breakdown in VaD
Vascular dementia is a neurodegenerative disease caused by
reduced CBF to the brain resulting in cognitive dysfunction.
After AD, VaD is considered the secondmost common dementia,
accounting for ∼15–30% of all dementia (Sloane et al., 2002;
Abou-Saleh et al., 2011; Gorelick et al., 2011; Goodman et al.,
2017).

Pathophysiology of VaD

Chronic hypoperfusion and thrombosis are the main factors
in VaD that cause reduced CBF and promote oxidative
stress, hypoxia, and inflammatory molecule expression
(cytokines/chemokines). These chronic events cause damage
to the periventricular WM, basal ganglia, and hippocampus.

Frontiers in Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 688090

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. BBB in Aging and Dementia

Cerebrovascular pathology has a significant contribution to
the pathogenesis of VaD by damaging the brain. Vascular
impairments include large vessel atherosclerosis (AS), small
vessel AS, and CAA. These cerebrovascular pathologies cause
microinfarcts in gray matter, WM lesions, and microbleeds (Thal
et al., 2012). These vascular abnormalities can occur throughout
the brain, resulting in VaD (Grinberg and Heinsen, 2010).

Phenotypes of BBB Breakdown in VaD

Hypertension is one of the factors that cause BBB breakdown
in VaD with the accumulation of perivascular collagen in
the hippocampus and WM lesions (Verhaaren et al., 2013).
Toxic molecules or high blood pressure cause damage to the
BBB endothelium. Hypertension also causes a reduction in the
integrity of ECs and pericytes, astrocytes endfeet swelling, and
retraction from the vessel wall, which results in BBB breakdown
and subsequently leading to a reduction in CBF (Wardlaw
et al., 2003). Studies reported that acute ischemia induces BBB
permeability by the secretion of ROS (Abboud et al., 2007;
Simpkins et al., 2016). A study also showed that, during vascular
pathology, chronic hypoperfusion causes BBB disruption in WM
lesions (Tomimoto et al., 1996). Another study showed that
BBB disruption due to the degeneration of pericytes results in
the disruption of WM circulation, deposition of fibrinogen, and
reduction of CBF that further induces damage to the myelin,
axons, and oligodendrocytes (Montagne et al., 2018) (Figure 6).
Furthermore, animal experiments showed that chronic cerebral
hypoperfusion (CCH) increases BBB leakage to intravenously
injected horseradish peroxidase (HRP) in the corpus callosum. In
animals, perivascular collagenwas also accumulated in the corpus
callosum associated with WM lesion formation and elevated
BBB permeability (Ueno et al., 2002). In VaD, PVMs have been
reported to induce oxidative stress leading to hypertension (Yang
et al., 2019).

Mechanisms of BBB Breakdown in VaD

Hypoxia upregulates oxidative stress, which produces NO, ROS,
and free radicals (Li et al., 2013; Ma et al., 2013; Zhang
et al., 2014). In addition, oxidative stress disrupts the ratio
of antioxidants, NO, and ROS and causes damage to the
endothelial, glial, and neuronal cells, resulting in the impairment
of the NVU, BBB disruption, and mediation of a reduction
in CBF (Liu and Zhang, 2012). In particular, ROS can further
lead to mitochondrial dysfunction resulting in cerebral hypoxia
that induces oxidative stress (Zhang et al., 2014). Cerebral
vascular hypoxia produces inflammatory molecules that cause
apoptosis and impairments in the function of microvessels. The
cytokines/chemokines cause damage to the endothelium, glial,
and neurons cells and, hence, enhance BBB permeability (Gill
et al., 2010). The inflammatory molecules such as IL-1, IL-6,
MMPs (MMP-2, MMP-9), TNFα, and TLR4 (toll-like receptor 4)
infiltrate the brain (Li and Lai, 2007; Gill et al., 2010; Candelario-
Jalil et al., 2011; Reuter et al., 2015), cause demyelination, and
damage the axons and oligodendrocytes associated with the
hippocampus and WM lesions (Chen et al., 2011).

Damage to oligodendrocytes represses remyelination (Ihara
et al., 2010), and demyelination retains the transmission of

neural signals, thus resulting in cognitive impairment. Overall,
hypoxia, oxidative stress, and inflammation cause defects in
neurogenesis, impairment in the proliferation of neuronal
progenitor cell, synaptic plasticity, and reduced spine density
in the hippocampus, thus resulting in cognitive impairment
(Stranahan et al., 2008; Park et al., 2010) (Figure 6). Furthermore,
several studies reported that CCH causes AD and VaD (Du
et al., 2017). It has also been reported that intercellular adhesion
molecule 1 (ICAM-1) and vascular adhesionmolecule 1 (VCAM-
1) were significantly upregulated in the vascular ECs of the CCH
animal model associated with cognitive impairment (Won et al.,
2013; Khan et al., 2015).

Overlap Between Alzheimer’s and Vascular
Dementia
As discussed above and in other studies, significant clinical
heterogeneity has been shown between AD and VaD (Sachdev
et al., 2014; Chui and Ramirez-Gomez, 2015); however, recent
studies reported that these two diseases co-occur in what is
called mixed dementia (Emrani et al., 2020). In mixed dementia,
vascular pathology not only mediates AD progression, but
the pathology of AD also potentiates vascular impairments,
suggesting that pure AD or VaD rarely occur (Emrani et al.,
2020). In addition, another study reported that, in aged
individuals, there is genetic overlap between vascular dysfunction
and AD that is primarily associated with apolipoprotein E (Lin
et al., 2019).

Community and epidemiological studies reported the mixed
neuropathology that is quite common in both AD and
VaD (Schneider et al., 2009; Wharton et al., 2011). The
clinical study observed that only 9% of 1,000 patients with
cognitive impairments have pure AD pathology; however, AD
pathology is mainly associated with vascular dysfunction or other
neurodegenerative diseases (Boyle et al., 2018). Another clinical
study examined 63 patients with mild cognitive impairment
(MCI), in which only 28% were reported as pure AD and
approximately 24% were diagnosed with mixed dementia (AD
and VaD) (Silbert et al., 2012). Researchers observed that
frontal lobe lesions and vascular pathology, e.g., white matter
hyperintensities (WMH), are associated with neuropsychiatric
symptoms and are common in both AD and VaD (Anor
et al., 2017). Alzheimer’s disease and VaD share many
similar clinical pathologies that lead to cognitive impairment
and neuropsychiatric symptoms associated with behavioral
alterations (Kalaria, 2002) as shown in Table 2. Hence, these
studies suggest that there might be considerable overlaps between
AD and VaD, and comprehensive studies should be considered
to understand the pathophysiology of dementia instead of
segregating AD from VaD.

BIOMARKERS ASSOCIATED WITH BBB
BREAKDOWN

Various imaging techniques and other methods are currently
being used to identify biomarkers associated with BBB
breakdown in different neurological disorders, which are
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FIGURE 6 | Diagram that shows the molecular mechanism of blood–brain barrier (BBB) breakdown in vascular dementia. (1) Hypoperfusion and thrombosis cause

reduced cerebral blood flow (CBF), thus generating oxidative stress and hypoxia (2), which upregulate nitric oxide and reactive oxygen species (ROS) that stimulate

the endothelial (ICAM-1, VCAM-1 upregulated), glial, and neuronal cells to release inflammatory factors that cause neurovascular unit (NVU) impairment and reduce

CBF and BBB disruption. (3) ROS damage mitochondria of the BBB cells that will further upregulate oxidative stress, resulting in BBB impairments. (4) Cytokines,

chemokines, toxins, and other inflammatory molecules infiltrate the brain and cause damage to the hippocampus and white matter (5) associated with neuronal loss,

vascular dementia, and cognitive impairments.

TABLE 2 | Pathologies associated to both Alzheimer’s disease and vascular

dementia.

Clinical pathologies Alzheimer’s disease (%) Vascular dementia (%)

Cerebral amyloid angiopathy 98 30

Microvascular degeneration 100 30

Total infarctions 36 100

Micro-infarcts 31 65

Intracerebral hemorrhage 7 15

White matter lesions 35 70

Loss of cholinergic neurones 70 40

Cardiovascular disease 77 60

helpful in healthcare decisions. However, during the acute phase
of BBB disruption, some of the clinical care places may lack the
facilities to perform MRIs; hence, the detection of peripheral
blood biomarkers is the best approach to identifying the status
of BBB.

Studies showed that, while the blood/CSF albumin ratio can
be used as a biomarker to detect BBB permeability, it cannot
distinguish BBB and blood-CSF permeability nor locate leakage

as reviewed by Farrall and Wardlaw (2009). Hence, nowadays,
the dynamic contrast-enhanced MRI (DCE-MRI) technique is
used to directly identify and localize these elusive permeability
values (Raja et al., 2018). A study in healthy, aged individuals
using DCE-MRI with a gadolinium-based contrast agent injected
intravenously identified that BBB leakage was high and localized
in the brain regions most vulnerable to damage from aging
(Verheggen et al., 2020). It has been observed that, by using
DCE-MRI, the BBB permeability index Ktrans was increased in
the hippocampus and some of its sub-regions, CA1 and dentate
gyrus (DG), but not in CA3. This study showed that, in the
hippocampus, the BBB integrity was lost progressively with age.
Still, no significant BBB leakage was observed in the cortical and
sub-cortical regions (Montagne et al., 2015), suggesting that, in
terms of aging, the BBB breakdown starts in the hippocampus.
A study using CSF biomarkers and the DCE-MRI technique
reported that aged people with prior cognitive impairment had
higher BBB permeability than healthy individuals (Nation et al.,
2019). These studies suggest that it is possible to detect and
localize BBB leakage by using DCE-MRI.

It has been observed that, in epileptic patients, the levels of
serum Visinin-like protein 1 (sVILIP-1) and serum caveolin 1
(sCAV-1) are higher, which may be used as biomarkers for the

Frontiers in Neuroscience | www.frontiersin.org 12 August 2021 | Volume 15 | Article 688090

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. BBB in Aging and Dementia

diagnosis of BBB breakdown (Tan et al., 2020). Another protein
biomarker is s100β, which is produced by astrocyte endfeet; when
the BBB becomes compromised, s100β is immediately released
into the peripheral blood (Kadry et al., 2020). Furthermore,
a study identified that the expression levels of A-kinase
anchoring protein 7 (AKAP7) were high in the peripheral blood
(lymphocyte), and thus might be considered to identify BBB
breakdown during ischemic stroke or post-stroke (O’Connell
et al., 2017). Neuron-specific enolase (NSE) and GFAP are also
promising biomarkers that can be detected in the CSF to identify
BBB breakdown (Kadry et al., 2020). A study reported that the
elevated level of sPDGFRβ is associated with damage to the
pericytes and BBB disruption leading to a decline in cognition
(Sweeney et al., 2020). Soluble PDGFRβ as a biomarker was
also observed in VaD (Iadecola, 2017; Sweeney et al., 2019a)
and various other neurological diseases (Sweeney et al., 2018a,
2019b). Soluble cell adhesion molecules (CAMS), zonulin, and
soluble 4-1BBL (transmembrane protein receptor) have also been
identified to be associated with BBB damage. PECAM-1, P-
selectin, and E-selectin are soluble adhesion molecules reported
to be upregulated in individuals with compromised BBB and
can be used as biomarkers for BBB breakdown (D’Ambrosio
et al., 2015). Increased leakage of gadolinium (DCE-MRI;
Ktrans), microbleeds (T2∗-weighted and SWI-MRI), reduced
glucose transport (FDG-PET), diminished P-glycoprotein 1
function (verapamil-PET), and CNS leukocyte infiltration (MMP
inhibitor-PET) are some of the techniques that can be used to
identify biomarkers associated with BBB damages in various CNS
diseases (Sweeney et al., 2018b).

CONCLUSIONS AND FUTURE
DIRECTIONS

The BBB consists of a set of physiological properties that
tightly regulate the normal microenvironment essential for
proper neuronal activities. Any impairment in these properties
either at the cellular or molecular level causes BBB breakdown.
Aging is one of the factors that contribute to BBB disruption.
During aging, the various physiological properties of the BBB
are impaired, leading to BBB dysfunction. The neurotoxins
infiltrating the brain can also cause cognitive impairments
and neurodegeneration. Furthermore, BBB breakdown also
contributes to dementia that includes ADs and VaD. In AD
with disruption of BBB, Aβ and NFT of p-tau accumulate in
the blood vessel, causing further inflammation in the NVU that,
in turn, induces the release inflammatory factors to degenerate
neurons associated with a decline in cognition. Another factor
that degrades the integrity of BBB associated with AD is
APOE4. In dementia, VaD accounts for the most cases next to
AD caused by BBB breakdown. In VaD, the CBF is reduced
and inflammatory molecules infiltrate the brain due to BBB
impairment, subsequently causing neuronal loss and, thus,
cognitive impairment. Hence, BBB breakdown can be used as a
novel biomarker to study various neurological impairments such
as AD, VaD, and other associated declines in cognition.

Recently, RepSox was identified to inhibit TGF-B, VEGFA,
and inflammatory gene networks (Roudnicky et al., 2020).
Furthermore, RepSox significantly elevated BBB resistance,
induced TJs and transporters, reduced paracellular permeability
by activating Notch and Wnt pathways, and, thus, might be
used as an emerging BBB therapeutics to treat neurological
diseases such as AD (Roudnicky et al., 2020). In addition, secreted
protein acidic and rich in cysteine (SPARC) was identified to
decrease transendothelial electrical resistance (TEER) and TJ
proteins (ZO-1, OCLN) and increase paracellular permeability
by regulating the tyrosine kinase pathway (Alkabie et al., 2016).
Hence, the SPARC–collagen binding domainmight be a potential
therapeutic target to treat AD (Pilozzi et al., 2020). Furthermore,
SPARC/Hevin normalization may also be considered as a novel
therapeutic target for the modulation of AD progression (Strunz
et al., 2019).

Although researchers have reported the contributions of
BBB disruption to the pathogenesis of cognitive impairment
associated with normal aging and dementia, more research
is needed to elucidate the precisely causing factors and the
cellular and molecular mechanisms of BBB maintenance,
breakdown, and repair correlated with neurodegeneration
and cognition decline. In the future, how aging and dementia
affect BBB function in health and disease state, thus leading
to neurodegeneration and cognitive impairment, should be
explored in living organisms. Clinical research pertaining to
this will boost our knowledge and help us better understand
the association between BBB breakdown and cognitive decline.
Such studies pave the way for the use of the BBB as a novel
biomarker and therapeutic target to treat dementia and other
neurological diseases associated with cognitive impairment.
Furthermore, these studies suggest that amelioration in the
cerebrovascular pathways (particularly BBB breakdown)
can alleviate neurodegeneration in dementia (particularly
AD) associated with cognitive impairment. Hence, the
characterization of the cellular and molecular constituents of the
cerebrovascular systems that contribute to the pathophysiology
of dementia will provide a systematic methodology of dementia
diagnosis. More profound knowledge of the vascular system
will also help design emerging efficient strategies that can be
used for the therapeutic interventions of cognitive impairment
and dementia.
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