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Abstract

In this narrative review, a theoretical framework on the crosstalk between physical exercise and blood-brain barrier
(BBB) permeability is presented. We discuss the influence of physical activity on the factors affecting BBB permeability
such as systemic inflammation, the brain renin-angiotensin and noradrenergic systems, central autonomic function and
the kynurenine pathway. The positive role of exercise in multiple sclerosis and Alzheimer’s disease is described. Finally,
the potential role of conditioning as well as the effect of exercise on BBB tight junctions is outlined. There is a body of
evidence that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces
oxidative stress and has anti-inflammatory effects. It improves endothelial function and might increase the density of
brain capillaries. Thus, physical training can be emphasised as a component of prevention programs developed for
patients to minimise the risk of the onset of neuroinflammatory diseases as well as an augmentation of existing
treatment. Unfortunately, despite a sound theoretical background, it remains unclear as to whether exercise training is
effective in modulating BBB permeability in several specific diseases. Further research is needed as the impact of
exercise is yet to be fully elucidated.
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Introduction
The blood-brain barrier (BBB) separates the central ner-
vous system (CNS) from the peripheral tissues. In order to
maintain homeostasis in the CNS, the BBB controls mater-
ial, nutrients and cell transfer from the blood to the brain
and from the brain to the blood. The BBB restricts the
entry of peripheral inflammatory mediators (e.g. cytokines,
antibodies, etc.), which can impair neurotransmission [1].
The BBB also participates in the clearance of cellular me-
tabolites and toxins from the brain to the blood [2, 3] and
regulates the composition and volume of the cerebrospinal
fluid. The BBB is a complex structure consisting of endo-
thelial cells, pericytes, vascular smooth muscle cells, astro-
cytes, microglia and neurons [2, 4–7] as is located between
the brain parenchyma and the vascular system. Interactions
between these components have led to the concept of the

neurovascular unit, where each cell type contributes to BBB
function [8]. The main structures responsible for the barrier
properties of the BBB are tight junctions (TJs) [9–15]. The
maintenance of adherence, gap and tight junctions between
different cell types within the neurovascular unit of the
BBB is essential for CNS homeostasis [2, 16]. BBB distur-
bances commonly occur in neuronal dysfunction, neuroin-
flammation and neurodegeneration [2].
Numerous pathologic states can cause disturbances in

the BBB, including trauma, hypoxia, infection, activation of
the clotting system, inflammation, dietary components, en-
vironmental toxins and genetic factors [17]. The association
between high-grade inflammatory responses such as men-
ingitis, encephalitis, sepsis, local and systemic infections
and increased permeability of the BBB for many substances
and immune cells has been widely acknowledged [18]. Re-
cently, it became apparent that low-grade systemic inflam-
mation also substantially affects the BBB [19]. Low-grade
inflammation affects about 40% of the population in
Western countries, as it occurs due to metabolic syndrome,
insulin resistance, type 2 diabetes, arterial hypertension,
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dyslipidaemia and obesity [20–22]. BBB disruption refers to
a reduction in barrier tightness and an increase in leakiness.
Loss of BBB integrity allows for the entrance of cytokines
and immune cells into the CNS, which activates glial cells
and causes the alterations in the extracellular environment.
Moreover, these changes lead to secondary inflammation
and further damage to the BBB, with the leakage of plasma
proteins and neurotoxic substances [23, 24].
CNS inflammation determines the severity and disease

course of numerous psychiatric and neurological disor-
ders and can be both caused by and result from BBB
dysfunction; an inflammatory response in the brain
might lead to endothelial cell damage and increased BBB
permeability [25]. The permeability of the BBB is altered
in many CNS pathologies, including brain injury, ische-
mic stroke, multiple sclerosis (MS), epilepsy, Parkinson’s
disease, Alzheimer’s disease and major depression. A
connection has also been reported between BBB impair-
ment and psychiatric disorders such as mood disorders,
psychosis, autism spectrum disorder and even chronic
sleep disorder [1, 26–29].
It has been well discussed in the literature that inflam-

matory mechanisms are related to the physiopathology of
neuropsychiatric disorders through several mechanisms.
Among them are glial activation [30], neuronal damage
and degeneration [31], increased oxidative stress [32], re-
duced neurotrophic support [33], altered neurotransmitter
metabolism [34] and BBB disruption [35].
Exercise training is an important behavioural interven-

tion that has numerous beneficial health effects. Epi-
demiological studies indicate that physical activity leads
to systemic adaptations and an elongated health-span,
thus time of life in good health, in different human co-
horts [36, 37]. Ample evidence suggests that the practice
of physical exercise improves some cardiovascular risk
factors, such as the percentage of body fat, insulin resist-
ance and high blood pressure, which are associated with
increased stiffening of the arteries [38]. Moreover, it has
been shown that physical exercise has an impact on
inflammation and improved endothelial function by
increasing blood flow, which leads to increased shear
stress, stimulating the release of nitric oxide.
In this narrative review, we aim to provide a state-of-

the-art summary of the influence of exercise on BBB in-
tegrity. Consequently, we discuss the influence of phys-
ical activity on systemic inflammation, the brain renin-
angiotensin and noradrenergic systems and central auto-
nomic function, as well as the kynurenine pathway.
There are numerous mechanisms through which long-
term physical activity affects the BBB and CNS. It can
either diminish inflammation on the peripheral level,
thereby reducing the risk of CNS infiltration of immune
cells, or protect the BBB through the constitution of its
tight junctions.

Exercise and systemic inflammation
Diabetes mellitus and obesity are exemplar diseases
characterised by low-grade inflammation [39, 40]. Notably,
inflammation and metabolic dysfunction are frequently
associated with oxidative stress in adipose depots [41–43].
Overweight and obese patients with a diagnosis of type 2
diabetes mellitus show increased blood levels of
pro-inflammatory cytokines and markers (e.g. IL-1β, IL-6
and TNF-α) [44–46]. These molecules are also increased
in the brain, cerebrospinal fluid and in the blood of pa-
tients with Alzheimer’s disease or other types of dementia
[47]; moreover, an overlap between the pathogenesis of
Alzheimer’s disease and diabetes mellitus is evident.
Pro-inflammatory cytokines can pass through the BBB
and induce stress-activated pathways, promoting brain in-
sulin resistance, mitochondrial dysfunction [19] and the
accumulation of neurotoxic beta-amyloid (Aβ) oligomers
[48] leading to synaptic loss, neuronal dysfunction and cell
death. Increased ceramide production caused by dysregu-
lated lipid metabolism also occurs with insulin resistance
[49]; these molecules can pass through the BBB, induce
pro-inflammatory reactions and disturb brain insulin
signalling [50].
Physical training may be crucial in preventing as well as

diminishing this damage. Regular physical exercise rein-
forces antioxidative capacity, reduces oxidative stress and
has anti-inflammatory effects. It improves endothelial func-
tion and might increase the density of brain capillaries.
Physical training can further counteract dyslipidaemia and
reduce increased ceramide levels [51, 52], and it may have a
suppressive effect on the BBB damage cycle. Abd El-Kader
et al. [53] presented data that both endurance and strength
training can potentially alleviate the inflammatory state due
to a reduction in TNF-α levels in type 2 diabetes mellitus
patients. De Senna et al. [54] have also demonstrated that
exercise improves the structural components of the BBB in
diabetic rats. Regular exercise training induces a reduction
in adipose tissue-derived pro-inflammatory cytokines like
IL-6, TNF-α and MCP-1[55–58], which are associated with
low-grade systemic inflammation and provides reduction in
whole-body insulin resistance [59].
Importantly, physical activity is able to decrease inflam-

mation independently from weight loss, through a reduc-
tion in inflammatory cytokines release from skeletal
muscles. Similar to adipose tissue as well as immune cells,
skeletal muscle, which is the largest organ in the human
body, produces and releases inflammatory cytokines such
as IL-4, IL-6, IL-8, IL-15 and TNF-α [60–62]. These cyto-
kines are therefore also called myokines [60, 63].
Handschin and Spiegelman [64] hypothesised that physical
activity can broadly suppress myokine expression through
the upregulation of skeletal muscle peroxisome proliferator
activated receptor 1α. The upregulation of this receptor is
induced by physical activity [65]. In a study by Aronson et
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al. [66], C-reactive protein (CRP) concentrations decreased
continuously with increasing levels of physical fitness. In-
creases in circulating IL-6 have been observed after per-
forming exercise without muscle damage; this in turn
reduces pro-inflammatory cytokines via the stimulation of
the anti-inflammatory cytokines IL-1ra and IL-10 [61].
A recent study by Chupel et al. [67] showed that physical

exercise can maintain BBB integrity. The anti-inflammatory
effect of combined exercise training and taurine supplemen-
tation on peripheral markers of BBB integrity, inflammation
and cognition in 48 elderly women was investigated. The
results showed a reduction in TNF-α and IL-6, as well as a
reduction in the IL-1β/IL-1ra, IL-6/IL-10 and TNF-α/IL-10
ratios in the combined exercise training group. Inter-
estingly, the improvement in cognitive function was
reported only in women subjected to both exercise
and taurine augmentation.

Exercise and kynurenine pathway
Brain and peripheral inflammatory states can also pro-
mote BBB failure through tryptophan (TRP) catabolism as
a consequence of kynurenine pathway activation, which is
also connected with glutamatergic excitotoxicity. Trypto-
phan is metabolised via several pathways, the main one
being through kynurenine (KYN) [68], which is involved
in several conditions including cancer, inflammatory dis-
orders, diabetes mellitus, neurological and neurodegenera-
tive diseases. Tryptophan is degraded into kynurenine by
the enzyme indoleamine 2,3-dioxygenase (IDO) [69, 70].
Kynurenine is then metabolised into neuroprotective
kynurenic acid (KYNA) by kynurenine aminotransferases
(KATs) or into neurotoxic products such as quinolinic
acid (QUIN) or anthranilic acid. QUIN is a selective agon-
ist of N-methyl-D-aspartate (NMDA) receptors, and a po-
tent neurotoxin due to its ability to induce the production
of reactive oxygen species. KYN reduces the activity of
natural killer cells, dendritic cells or proliferating T cells,
whereas KYNA promotes monocyte extravasation and
controls cytokine release. High levels of QUIN have been
associated with neuronal excitotoxicity, whereas KYNA
has been reported as a neuroprotective factor [71] through
its inhibitory action at glutamatergic excitatory synapses
[72]. Among the kynurenine pathway metabolites, QUIN
is likely to be one of the most important in terms of bio-
logical activity and toxicity [73]. Both KYNA and QUIN
have been found to be dysregulated in major depressive
disorders and schizophrenia [74]. Pro-inflammatory medi-
ators such as TNF-α can promote QUIN production [75],
while IL-1β potentiates quinolinate-mediated excitotoxi-
city [68]. This is particularly important in situations in-
volving macrophage infiltration across the BBB. In CNS
inflammatory states, IDO is mainly activated in microglial
cells, which preferentially metabolise tryptophan into the
NMDA receptor agonist QUIN. The most potent activator

of IDO is interferon gamma (IFN-γ) [70, 76]. Therefore an
imbalance in type 1/type 2 immune responses, associated
with an astrocyte/microglia imbalance, leads to serotonergic
deficiency and glutamatergic overproduction. Astrocytes
are further strongly involved in the re-uptake and metabolic
conversion of glutamate. A reduced number of astrocytes
could contribute to both diminished counter-regulation of
IDO activity in microglia and altered glutamatergic neuro-
transmission. Binding of excess glutamate to dysregulated
BBB endothelial cell ionic NMDA receptors and metab-
otropic glutamate receptors can increase intracellular
Ca2+-dependent oxidative stress and BBB permeability
by increasing Ca2+ influx and release from endoplasmic
reticulum stores, respectively.
Skeletal muscle has recently been added [77] to the list

of tissues that contribute to kynurenine pathway metab-
olism. This happens in the setting of exercise training,
which enhances KAT gene expression and the conver-
sion of toxic KYN to neuroprotective KYNA. The neuro-
protective effect of KYNA is generally attributed to its
antagonistic action on NMDA receptors.
It has been found by András and colleagues [78] that a

high glutamate level diminishes the function of the BBB
via endothelium-expressed NMDA receptor-dependent
occludin phosphorylation. KYNA is not only an endogen-
ous NMDA receptor blocker but also a non-competitive
inhibitor of the α7-nicotinic acetylcholine receptor [68,
79, 80]; through this mechanism, KYNA can decrease glu-
tamate release [81]. In this manner, KYNA can reduce
pathological glutamate levels and protect the structure of
the BBB [78]. The effect of exercise training on the BBB
highlights an important mechanism of inter-organ
cross-talk as kynurenine accumulation can be suppressed
by activating its clearance in exercised skeletal muscles.

Exercise and the renin-angiotensin-aldosterone
pathway
There is a linkage between angiotensin II (Ang II), one of
the renin-angiotensin-aldosterone factors, and the disrup-
tion of the BBB, especially in hypertension states [82–84].
Although Ang II is known as a cardiovascular mediator,
with a primary role in the regulation of blood pressure
and fluid homeostasis [85], it performs as an immune sys-
tem modulator as well. Ang II can initiate inflammation
by indirect promotion of vascular permeability and the
recruitment of inflammatory cells [86]. Ang II may also
activate both innate and adaptive immunity [86, 87].
Ang II directly modulates transcytotic and paracellular

permeability in BBB endothelial cells and could contrib-
ute to the pathophysiology of hypertensive encephalop-
athy. Both circulating Ang II via Ang II type 1 receptors
(AT1) on the endothelium and locally synthesised Ang II
can result in vascular dysfunction and microglial activa-
tion, increase the production of reactive oxygen species,
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disrupt endothelial nitric oxide synthase activity and in-
tensify pro-inflammatory cytokine synthesis, which are im-
portant factors for sympathoexcitation centres such as the
paraventricular nucleus (PVN) of the hypothalamus and
the rostral ventrolateral medulla (RVLM) in neurogenic
hypertension [88–90]. However, one study has indicated
that inhibition of AT1 blocks hypertension-related increases
in cell permeability and cerebral oedema, even in the ab-
sence of lowered blood pressure [91]. This suggests a role
for the renin-angiotensin-aldosterone system and Ang II in
modulating BBB function. BBB disruption not only facili-
tates Ang II access but also allows circulating inflammatory
cells to enter into the brain parenchyma, contributing to
further microglial activation and inflammation in auto-
nomic areas such as the PVN of the hypothalamus and the
RVLM [89, 90]. These responses alter neurovascular coup-
ling, dysregulate cerebral perfusion and markedly augment
neuronal discharge, thus exacerbating sympathoexcitation
in hypertensive animals [83, 92, 93].
Physical exercise has been shown to be highly efficient in

reducing the harmful effect of hypertension on BBB leakage
in autonomic brain areas, which strongly correlates with
the improvement of both parasympathetic and sympathetic
control of cardiovascular parameters, even in the persist-
ence of hypertension. Recent studies have established the
efficacy of aerobic training to downregulate the brain
renin-angiotensin system and correct autonomic dysfunc-
tion in spontaneously hypertensive rats [94, 95]. These rats,
after 2 weeks of physical exercise, have been reported to
maintain normal angiotensinogen expression within auto-
nomic areas, which is correlated with reduced sympathetic
outflow to the heart and vessels and precedes a partial fall
in arterial pressure [96]. Exercise training restores the bal-
ance between the excitatory and inhibitory neurotransmit-
ters as well as between pro- and anti-inflammatory cytok
ines, and attenuates oxidative stress in the PVN [97].
Trained spontaneously hypertensive rats demonstrate an
instant normalisation of the baroreceptor reflex control of
heart rate that coincides with a marked reduction in oxida-
tive stress and inflammation in the hypothalamic PVN [98].
Similar training-induced effects have also been observed in
other autonomic areas [94, 95]. It is already known that
acute physical activity induces sympathetic modulation
[99]. Conversely, regular exercise may be associated with
progressive sympathetic withdrawal and increasing para-
sympathetic dominance as a result of adaptations of the
peripheral and central regulatory systems [99]. It has been
shown that hypertension is characterised by autonomic im-
pairment, BBB leakage and Ang II-induced neuronal activa-
tion and that exercise training is highly effective at
preventing Ang II-induced effects and improving auto-
nomic function [100]. Physical training changes the tissue
Ang II content as well and suppresses microglial activation,
crucial factors for both the maintenance of BBB integrity

and the normalisation of autonomic control of the circula-
tion in hypertensive individuals. According to some au-
thors, there may be a system of global control over the
permeability of the cerebral microvasculature via the cho-
linergic nervous system [101]. Due to the fact that exercise
induces a shift toward parasympathetic dominance, this
mechanism may also be favoured.
There is an interaction between neurotransmitters,

pro-inflammatory cytokines and enhanced oxidative stress
in the PVN which play a key role in sympathetic regulation
of blood pressure [95]. In spontaneously hypertensive rats,
reactive oxygen species in the RVLM are known to enhance
glutamatergic excitatory inputs and impair GABAergic in-
hibitory inputs to the RVLM, resulting in increased sym-
pathoexcitatory input to the RVLM from the PVN [102].
Among the known pressor agents, Ang II and glutamate
play pivotal roles in the brain centres involved in blood
pressure control in both normotensive and spontaneously
hypertensive rats [103]. The link between brain angiotensi-
nergic and glutamatergic signalling has been demonstrated
by Vieira et al. [104]. The major sympathetic output path-
way for the tonic and reflex control of blood pressure,
which uses glutamate as a transmitter, arises in the RVLM
[105]. Injection of Ang II into the RVLM of unanaesthe-
tised rats exaggerates the pressor response to glutamate.
Additionally, it has been speculated that Ang II takes part
in glutamate pressor responses via a presynaptic increase in
glutamatergic input into the RVLM [106]. Referring to this,
KYNA (a glutamate antagonist) is thought to be a
hypotensive agent. Mills et al. [107] have reported that
intrathecal KYNA administration decreases blood pressure,
especially in anesthetised spontaneously hypertensive rats
and stroke-prone spontaneously hypertensive rats, with a
less noticeable effect in normotensive rats.
It can be assumed that in hypertension states, there is

an ability of physical exercise to correct sympathetic
hyperactivity, reduce Ang II availability, decrease oxida-
tive stress and inflammation in the PVN and RVLM and
restore BBB integrity.

Exercise and brain noradrenergic system
During physical exercise, it is well known that peripher-
ally circulating epinephrine and norepinephrine (NE) ac-
tivate β-adrenoceptors of the vagus nerve afferents
projecting to the locus coeruleus, which plays a pivotal
role in the regulation of autonomic activity and cognitive
functions [108–112]. The optimal stimulation of locus
coeruleus might be a crucial element of modulating cog-
nitive function with exercise [113]. Brain NE is also re-
ported to suppress the inflammatory gene transcription.
It is clear from the findings of Hetier et al. [114] and
Frohman et al. [115] that anti-inflammatory action of
NE is exerted via microglia and astrocytes β2-receptors.
Immune cells express both types of receptors, and T and
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B lymphocytes express β2-receptors almost exclusively
[116]. Engagement of β2-receptors activates a cascade of
signaling intermediates, including cyclic adenosine mono
phosphate (cAMP) and protein kinase A, which leads to
the phosphorylation of cellular proteins [116]. NE also pro-
motes a shift of Th1/Th2 balance toward Th2 response by
activating β2-receptor [117]. Other anti-inflammatory ef-
fects of NE have also been reported, including the suppres-
sion of inducible nitric oxide synthase, interleukin-1b,
tumor necrosis factor α and intercellular adhesion molec
ule-1. Attention is also devoted to the fact that NE
enhances brain-derived neurotrophic factor production,
which plays an important role in neuronal survival, neuro-
plasticity and neurogenesis [37, 118]. This interaction of
brain-derived neurotrophic factor is mediated by β1/β2,
and α2-adrenergic receptors and shares similar cellular
pathways with anti-inflammatory NE action [118–120].
Neurons metabolize glucose primarily in the pentose

phosphate pathway in order to produce adenosine triphos-
phate (ATP) to support brain functions, including glutathi-
one regeneration, which protects the neuron from reactive
oxygen species (Bélanger et al. 2011), and consequently
stands for proper BBB functioning. Apart from using glu-
cose as the first choice, lactate is also used by the brain as a
fuel for neurons [121, 122]. This process occurs in the as-
trocytes, where the recruitment of energy from their glyco-
gen stores [123] is facilitated by noradrenergic stimulation
of the astrocytes’ β-adrenoceptors signaling them to convert
glycogen to lactate [124, 125], which is then transported to
the neurons [126]. In response to physical exercise, the
lactate production by skeletal muscles increases [127, 128],
as does the expression of the lactate transporter monocar-
boxylate transporter 1 at the BBB [129–131]. Lactate pro-
duced during exercise is also reported to increase levels of
growth factors important to angiogenesis, neurogenesis,
calcium signaling, axonal myelination, synaptic plasticity
and memory formation [132–134]. Energetic insufficiency
in neurons due to inadequate lactate supply is implicated in
several neuropathologies, including attention-deficit/hyper-
activity disorder [135–137].

Exercise in multiple sclerosis
MS has recently attracted the interest of numerous re-
searchers [138] regarding the application of physical activ-
ity. In MS, there is an extrinsic BBB disruption pattern with
the initial injury in the blood vessels, allowing T and B cells
to cross the BBB [139] with the exudation of fibrin, which
causes an inflammatory reaction leading to demyelination
[140], immune cell infiltration and axonal damage. In ac-
cordance with a study by Mokhtarzade et al. [141], it has
been shown that 8 weeks of exercise training normalises
the concentration of particular BBB permeability markers
in MS patients, including S100 calcium-binding protein B
(S100B). Additionally, according to White et al. [142],

exercise is potentially able to counteract the imbalance be-
tween the pro-inflammatory Th1 cytokines and the
anti-inflammatory cytokines (for example IL-10) by enhan-
cing anti-inflammatory mechanisms in MS patients.
According to Rossi et al. [143], exercise can protect

from inflammation-induced neurodegenerative synaptic
and dendritic alterations in the experimental auto-
immune encephalomyelitis mouse model of MS. In this
study, exercise has been shown to increase synaptic
density and growth in the hippocampus [143]. In animal
model of MS, positive effects of exercise upon cognition
are also reported [144, 145]. Moreover, an increase in
neurotrophins [145] and brain-derived neurotrophic fac-
tor [146] in response to exercise has been found.
However, there is still an urge for human researches.

The analyses of studies indicate that ideally both aerobic
and resistance exercises may benefit persons with MS. A
substantial increase in hippocampal volume has been re-
ported in MS subjects randomized to an aerobic exercise
program compared with a nonaerobic-trained control
[147]. Physical fitness exercise correlates with improved
cognitive function in persons with MS [148, 149]. Another
finding indicates that cardiorespiratory fitness in patients
with MS predicts neuronal plasticity [150] and increased
gray matter volume, better white matter integrity and im-
proved performance on test of information processing
speed [151]. There is some evidence for neuroprotective
effects of exercise in humans with MS, comparing aerobic
to aerobic plus resistance exercise training resulting in
decreases in anti-inflammatory cytokines [148].
Based on these findings, it can be postulated that phys-

ical exercise reduces inflammation and, as a consequence,
BBB impairment, and thus has a protective effect on CNS
in MS patients. If physical activity is able to enhance BBB
stability in these particular patients, we can predict that it
will improve BBB function in general. Nevertheless, studies
with larger group of patients and clearly developed exercise
protocols are needed to include physical activity sessions as
a standard of care therapeutic procedures.

Exercise in Alzheimer’s disease
In Alzheimer’s disease, the integrity of BBB may be disor-
dered according to accumulation of reactive oxygen species
activating metalloproteinases which leads to breakdown of
BBB through destruction of basement membrane and tight
junctions [152], as well as due to the accumulation of chol-
esterol metabolism [152], and impaired insulin signaling
[153]. In the prevalence of BBB maintenance complications,
the amplified Aβ microvessels deposits process begins. As
Aβ fibrils accumulate, it results in a cascade of significant
brain degeneration and atrophy of hippocampal and cor-
tical structures. BBB dysfunction during Alzheimer’s disease
influences Aβ clearance and endothelial transport, impairs
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endothelial cell and pericyte functions, affects TJ integrity,
activates glial cells and facilitates the recruitment of leuko-
cytes in the brain [154–158].
Physical activity can improve Aβ clearance by upregu-

lating Aβ transporters and reduce the accumulation of
Aβ peptides in the brain parenchyma by accelerating
interstitial fluid drainage, which diminishes neuroinflam-
mation [159]. Although a direct effect on specific Alzhei-
mer’s disease pathology is still unproven [160], one
research documented a reduction in tau in cerebrospinal
fluid as a result of exercise in older adults with mild cog-
nitive impairment [161]. Exercise, primarily aerobic, im-
proves cognitive function in several patient populations,
including Alzheimer’s disease, elderly people at risk for
cognitive impairment and healthy older adults [162,
163]. In addition, both animal and humans studies sug-
gest that physical activity may have a role in modifying
the disease process and maintaining cognitive function
in Alzheimer’s disease [11]. Physical activity interven-
tions has a positive overall effect on cognitive function,
and the effect is driven by interventions that included
aerobic exercises independent of the type of dementia
[164], which has been recently proved in meta-analysis
conducted by Öhman et al. [165].
Further studies shall unveil if/how neuroinflammation

and BBB dysfunction are related to cognitive function
impairment and overall Alzheimer’s disease progression.
Then, specific physical activity protocols may be devel-
oped to support patients care.

Exercise-induced conditioning
Physical activity acutely elevates the release of adrenaline,
cortisol, growth hormone, prolactin and other factors with
immunomodulatory effects [166]. Consequently, very high
intensity exercise can trigger systemic inflammation, a sub-
sequent immunodepression and thus a higher risk of infec-
tions [167]. According to Roh et al. [168], moderate- and/
or high-intensity exercise may induce higher oxidative-
nitrosative stress than low-intensity exercise.
While acute intense exercise provokes a spike in the

activity of inflammatory cells (like leukocytes) and
plasma CRP concentrations, repeated bouts of submaxi-
mal intensity exercise induce adaptive mechanisms that
can counteract inflammation in the long term [169].
These changes are measurable as reduction in the con-
centration of inflammatory mediators such as CRP, IL-6
and TNF-α, while enhancing the productions of the
anti-inflammatory IL-10 [170].
There are some contrasting studies regarding the in-

fluence of physical exercise on BBB integrity. S100B is
considered to be the best indicator of BBB permeability
[168, 171, 172] and can even predict the severity of brain
injury [168, 173]. Elevated S100B levels have been re-
corded following exercise and are mostly attributed to

either an elevation in BBB permeability or head trauma
[174–176]. Increased serum concentrations of S100B
have therefore been used to associate CNS pathology
with BBB dysfunction. However, even in the absence of
head trauma, it appears that the BBB may be compro-
mised following exercise, with the severity dependent on
exercise intensity. According to Sharma et al. [177],
short-term forced swimming exercise increases the per-
meability of the BBB in specific brain regions in rats,
likely mediated through serotonin via 5-HT2 receptors.
Intense exercise has the potential to increase S100B and
induce BBB functional deterioration without causing
structural brain damage subsequent to a free radical-me-
diated impairment in dynamic cerebral autoregulation
[178].
After acute exercise, high levels of myokines are secreted

by the skeletal muscle, exerting a variety of endocrine
effects. The induction of myokines like myostatin, IL-7,
decorin and leukaemia inhibitory factor is involved in the
regulation of muscle hypertrophy and may play a role in
the restructuring of skeletal muscle as a response to exer-
cise [179].
Exercise reduces the expression of Toll-like receptors at

the surface of monocytes; these receptors have been impli-
cated as mediators of systemic inflammation [180]. Muscle
function, inflammation and exercise are hence intrinsically
linked in a complex manner [64, 181]. The induction of the
beneficial versus detrimental effects of physical activity
therefore seems to be highly context-specific. For example,
IL-6 was originally classified as a prototypical pro-inflam-
matory cytokine, although anti-inflammatory properties
have also been described [182]. Some studies have provided
data showing an increase in IL-6 concentrations directly
after physical activity, suggesting that IL-6 was released
from the muscle mass and acts as a myokine, rather than a
typical pro-inflammatory cytokine [183]. Besides the
production of IL-6 in activated immune cells, the systemic
elevation of IL-6 in patients with metabolic diseases has
strengthened the link between IL-6 and inflammation. In
stark contrast, however, exercise-induced elevations in IL-6
plasma levels lead to increased circulating levels of several
potent anti-inflammatory cytokines such as IL-1ra and
IL-10, and also inhibit TNF-α production, suggesting that
IL-6 may also have anti-inflammatory properties [184, 185].
Skeletal muscle fibres also express and release IL-6 during
and after exercise [186–189]. IL-6 production is likewise
boosted in connective tissue, the brain and adipose tissue
post-exercise [60].
Thus, in the case of exercise, IL-6 exerts anti-inflamma-

tory effects [63]. This mechanism may explain why lower
baseline levels of pro-inflammatory cytokines are present in
those people who are most physically active [190]. Cells re-
spond to the stressful stimulus of exercise by activating
pathways to abolish it; in this case, by increasing the
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expression of enzymes such as superoxide dismutase and
glutathione peroxidase or by increasing levels of
anti-oxidative peroxiredoxins. A likely mediator of this re-
sponse are proteins related to the NFκB pathway, which
can activate the gene expression of anti-oxidative proteins
and show enhanced DNA binding around 2 h after acute
exercise [191, 192]. Consequently, physical activity reduces
the production of reactive oxygen species and enhances the
anti-oxidative defence [193, 194]. In skeletal muscle in
particular, repeated moderate intensity exercise improves
the anti-oxidative capacity by upregulating endogenous
anti-oxidative molecules [195, 196].
Thus, we can assume that brief, intense physical activity

increases the permeability of the BBB [177] and induces
inflammation, but long-term regular exercise may have a
protective role on BBB integrity and activate anti-inflam-
matory pathways.

Physical Exercise and BBB tight junctions
The BBB is composed of endothelial cells forming a se-
lective vascular network through the expression of tight
junction (TJs) complexes, which are defined as mole-
cules that interact in the extracellular junctional space
or as molecules that act as anchors within the endothe-
lial cell to create the BBB [174]. Tight junctions between
brain endothelial cells are constituted by three major
transmembrane proteins: occludin, claudins and junction
associated molecules, as well as several cytoplasmic pro-
teins including zonula occludens [197]. Brain endothelial
TJs express claudin-3 and -5 and possibly claudin-12
[198, 199]. Claudin-5 has been shown to actively con-
tribute to BBB integrity [200]. Many studies have indi-
cated that occludin, claudin-3 and claudin-5 are involved
in BBB genesis [199, 201] and the control of paracellular
permeability [202–205].
TJs can be regulated by the activation of various recep-

tors of vasoactive compounds (bradykinin and Ang II) as
well as adhesion molecules or reactive oxygen species.
Intercellular adhesion molecule 1 (ICAM-1), vascular cell
adhesion molecule 1 (VCAM-1) and platelet and endothe-
lial cell adhesion molecule 1 (PECAM-1), members of the
immunoglobulin superfamily, actively contribute to the
firm adhesion and/or migration of leukocytes into the
CNS through the cytokine-activated brain endothelium
[206, 207]. Agents released from most of the cells of the
neurovascular unit during pathology can modulate brain
endothelial tight junctions, with several inflammatory me-
diators exacerbating BBB permeability; only a few agents
are able to counter or reverse this course [1]. The pro-
longed presence of oxidative/inflammatory factors can re-
sult in changes to or the loss of tight junctions and
integrins (e.g. β1, αv and α6 integrins), leading to senes-
cence and detachment-mediated cell death [23, 208]. It is
known that both IFN-γ and TNF-α can alter BBB

permeability by affecting the cellular distribution of junc-
tional adhesion molecules and by crucial upregulating the
expression of ICAM-1 and VCAM-1 [209–211].
Changes in BBB permeability are connected with alter-

ations in occludin expression [212] and endothelial barrier
function [202]. The selectivity of claudin-5 expression in
brain endothelial cells suggests that it is essential for BBB
function [213], as it has been demonstrated that claudin-5
participates in modulating permeability to ions as well as
macromolecules [214]. Several studies have indicated that
altered permeability of the BBB is accompanied by
decreased claudin-5 expression [213].
Attention should be also devoted to recent research by

Souza et al. [215] regarding the impact of physical exer-
cise, which re-establishes the expression of TJ proteins
such as occludin and claudin-4 in the CNS to basal
levels and inhibits the expression of PECAM-1. This
study was based on experimental autoimmune enceph-
alomyelitis, a mouse model of MS. The study suggests
that physical exercise maintains the integrity of the BBB
by preserving tight junctions. Additionally, Schreibelt et
al. [216] demonstrated that physical exercise in MS pre-
serves the levels of claudin-4 and occludin in the spinal
cord of mice, by inhibiting the production of reactive
oxygen species and the induction of oxidative stress.
Moreover, some studies have provided data that inhibit-
ing glycogen synthase kinase-3β promotes TJ stability in
brain endothelial cells by extending the half-life of occlu-
din and claudin-5 and increasing their levels, which does
not involve their gene regulation [217]. A study by Isla
et al. [218] showed a favourable effect of voluntary exer-
cise involving a reduction in glycogen synthase
kinase-3β recruitment, resulting in protection of the
BBB through TJs.
The inhibition of glycogen synthase kinase-3β has also

anti-inflammatory effect on brain endothelial cells [219].
In addition to the barrier-enhancing role of glycogen
synthase kinase-3β inhibitors, it gives a promise to their
utility in repair and protection of the BBB.

Clinical significance of exercise
Human organism’s response to repeated high levels of
physical exercise provides an integration of cells, organs
and organ systems in order to minimize homeostatic
disruptions during and after exercise, which is a stress
stimuli. Regular moderate–high levels of exercise may be
perceived as physiological as due to the sedentary life-
style, the reduction of the maximal capacity of organ
systems is observed, leading to several pathological pro-
cesses. Therefore, individuals with high levels of exercise
capacity present decreased prevalence of pathological
chronic diseases and of mortality [36].
Physical inactivity is a primary cause of several chronic

diseases [220]. Physical exercise improves cerebrovascular,
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metabolic and endothelial function, which reduces oxida-
tive stress and neuroinflammation, contributing to im-
proved neuronal function [221–223]. Moreover, exercise
is associated with increases in levels of brain-derived neu-
rothropic factor and insulin-like growth factor 1 [160, 223,
224]. The accumulating evidence reinforces the position
that regular aerobic [225, 226] and, with less evidence of
effectiveness, resistance training [227] offer a powerful
tool to cope with biologic aging of selected central ner-
vous system functions. Figure 1 depicts the convergence
of multiple pathways, activated by exercise, on a final,
anti-inflammatory common pathway.
In the general population, exercise improves attention,

processing speed, memory and executive functioning.
Exercise also increases hippocampal volume and white
matter integrity in healthy older adults [228, 229]. It is a
behavioral intervention that shows great promise in alle-
viating symptoms of some mental disorders such as de-
pression [230] and can significantly improve positive
symptoms, negative symptoms and social functioning in
patients with schizophrenia [231–233].
Apart from playing a role in diminishing the diseases

associated with leaky BBB, physical exercise is known to
induce beneficial effects in different systems, e.g. the

cardiovascular, muscular, metabolic, neural, respiratory and
thermoregulatory [234–238]. Physical training results in an
increase in the concentration of the anti-inflammatory
cytokine IL-10 and a decrease in the pro-inflammatory cy-
tokines IL-1β and TNF-α [239]. Exercise training has also
been reported to ameliorate the inflammatory profile in
patients after a myocardial infarction by enhancing the
expression of the anti-inflammatory cytokine IL-10 [240].
According to Lin et al. [241], IL-10 improves properties of
the BBB in a rat model of severe acute pancreatitis by
attenuating the downregulation of claudin-5 expression
and the impairment of tight junctions and by anti-apop-
totic effects on brain microvascular endothelial cells. Harris
et al. [242] have shown that exercise modulates
immunological and exerts anti-inflammatory effects in the
CNS, such that depression-like symptoms are reduced.
Moreover, exercise reduces the expression of Toll-like re-
ceptors on the surface of monocytes [180, 243–245], which
may represent a beneficial effect as Toll-like receptors are
responsible for mediating the capacity of monocytes and
macrophages to produce inflammation [246–248].
The accumulating evidence reinforces the position that

regular aerobic, and possibly also resistance training,
plays an important role in maintenance of healthy

Fig. 1 A low-grade systemic inflammation observed in metabolic syndrome, insulin resistance, type 2 diabetes, arterial hypertension,
dyslipidaemia and obesity contributes to BBB damage via pro-inflammatory cytokines inducing kynurenine pathway leading to neurotoxic
process on BBB and its permeability. In inflammatory states, ROS are also produced and may impair TJs structure and function causing the direct
damage of BBB. RAA system activation due to the systemic inflammation increases the destruction of TJs and production of ROS leading to
further damage of TJs and BBB. Physical exercise counteracts obesity and diminishes the low-grade systemic inflammation, production of ROS
and changes kynurenine pathway metabolism course into neuroprotective agents as well as downregulates brain RAA system, which all leads to
BBB protection. BBB blood-brain barrier, ROS reactive oxygen species, TJs tight junctions, RAA renin-angiotensin-aldosterone
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structures and functions of the human body [37]. Being
a valuable component in the clinical management of a
variety of diseases, it is recommended for these purposes
in numerous evidence-based clinical guidelines [249,
250]. There is a current need of novel nonpharmacologi-
cal strategies such as physical exercise that can provide
valuable adjunctive treatment but further studies are
warranted to decipher the exact role physical exercise
play in some neuroinflammatory diseases.

Conclusions and future directions
In this review, a theoretical framework on the crosstalk
between physical exercise and BBB permeability is pre-
sented. In our model, physical exercise influences the BBB
through a number of anti-inflammatory effects and leads
to a reduction in lesions and vascular permeability (Fig. 1).
BBB breakdown generally culminates in neuronal

dysfunction, neuroinflammation and neurodegeneration.
The pathogenesis of numerous diseases has been recently
shown to be inflammatory in nature, and there is increas-
ing interest in non-pharmacological, alternative methods
of treatment. Regular physical exercise diminishes BBB
permeability as it reinforces anti-oxidative capacity,
reduces oxidative stress and has anti-inflammatory effects.
It improves endothelial function and might increase the
density of brain capillaries (Fig. 2).
Although physical exercise has positive effects on

brain function, there have been only a few studies asses-
sing the long-term consequences of physical activity on
BBB permeability. To our knowledge, there are only two
studies that have directly explored the nexus between
regular exercise and BBB parameters. Mokhtarzade and
colleagues [141] indicated an improvement in BBB leak-
age markers, including S100B, after 8 weeks of exercise

Fig. 2 In systemic low-grade inflammatory states, cytokines can stimulate ROS production destroying tight junctions and increasing BBB
permeability. Cytokines can also activate IDO catalyzing degradation of tryptophan into KYN. KYN can be transformed into neuroprotective KYNA
by KATs enzyme or into neurotoxic products, mainly QUIN, which stimulates NMDA receptors and leads to glutamatergic overproduction
increasing Ca2+ influx and BBB breakage. Low-grade inflammation in insulin resistance causes lipid dysregulation and increased ceramide
production and its pass through the BBB, intensifying brain inflammation and promoting Aβ production. In leaky states of BBB, TJs lose their
function and pro-inflammatory factors can easily pass through BBB leading to its further damage. The presence of inflammation and increased
oxidative stress in brain impair significantly mitochondrial and neuronal functions causing cell death. During BBB disruption, facilitated Ang II
access can initiate inflammation by promotion of vascular permeability via AT1 receptors, rising the recruitment of inflammatory cells, ROS
production, microglial activation and inflammation in autonomic areas such as the PVN and the RVLM, which potentiate glutamatergic toxicity.
Physical activity enhances KAT gene expression and the conversion of toxic KYN to neuroprotective KYNA, which protects BBB. During physical
activity, the muscles release of anti-inflammatory cytokines IL-1ra and IL-10, which can itself reduce the concentration of pro-inflammatory
cytokines (TNF-α, IL-1, IL-6, IL-17) as well as by upregulation of skeletal muscle peroxisome proliferator activated receptor 1α. NE released during
physical activity acts via microglia and astrocytes β2-receptors and lymphocytes β2-receptors reducing the neuroinflammation. Physical training
also diminishes the tissue Ang II content and can suppress microglial activation in the PVN and the RVLM. Physical exercise reinforces
antioxidative capacity by upregulating endogenous anti-oxidative molecules, reduces oxidative stress and ceramide levels with a suppressive
effect on the TJs and BBB damage cycle. Ang II angiotensin II, AT1 angiotensin II type 1, BBB blood-brain barrier, IDO indoleamine 2,3-dioxygenase,
KYN kynurenine, KYNA kynurenic acid, KATs kynurenine aminotransferases, NE norepinephrine, NMDA N-methyl-D-aspartate, PVN paraventricular
nucleus, QUIN quinolinic acid, RVLM rostral ventrolateral medulla, ROS reactive oxygen species, TJs tight junctions, TRP tryptophan
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training in MS patients. Souza and colleagues [215]
demonstrated in the experimental autoimmune enceph-
alomyelitis mouse model that a 4-week-long exercise
program resulted in immunomodulatory and antioxidant
effects as well as in the maintenance of BBB integrity by
preserving its tight junctions. Consequently, despite
sound theoretical background, it remains so far unclear
as to whether exercise training is effective in modulating
BBB permeability in specific diseases. In particular, the
potential magnitude of BBB function improvement or
restrain of disease-related BBB deterioration has to be
investigated. Moreover, the influence of different kinds
exercise and the quantity of physical activity required to
induce meaningful responses remain to be clarified.
Novel imaging modalities are available to study disrup-

tion of the BBB in humans starting from large perme-
ability leaks observed in MS to more subtle changes in
chronic vascular disease and dementia [251]. Conse-
quently, future studies should link BBB permeability
with clinical presentation of the patients. Moreover, fur-
ther research is required to determine the significance of
BBB protection with physical exercise in relation to
functional benefits for patients such as improved cogni-
tion and daily functioning. Finally, the effects of exercise
on interactions between neuroinflammatory status and
BBB permeability shall be defined in experimental
studies.
Therapeutic interventions targeting disturbances in

BBB function might therefore have a promising effect in
a broad spectrum of disorders. Physical training can be
emphasised as a component of prevention programs
developed for patients to minimise the risk of the onset
of inflammatory diseases as well to complement treat-
ment. More research is needed as the impact of exercise
on BBB function is yet to be fully elucidated.
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