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ABSTRACT 43 

Background 44 

 45 

Mitochondrial DNA copy number (mtDNA-CN) can be used as a proxy for mitochondrial function and is 46 

associated with a number of aging-related diseases. However, it is unclear how mtDNA-CN measured in 47 

blood can reflect risk for diseases that primarily manifest in other tissues. Using the Genotype-Tissue 48 

Expression Project, we interrogated the relationships between mtDNA-CN measured in whole blood and 49 

gene expression from whole blood as well as 47 additional tissues. 50 

Results 51 

We evaluated associations between blood-derived mtDNA-CN and gene expression in whole blood for 52 

418 individuals, correcting for known confounders and surrogate variables derived from RNA-53 

sequencing. Using a permutation-derived cutoff (p<2.70e-6), mtDNA-CN was significantly associated 54 

with expression for 721 genes in whole blood, including nuclear genes that are required for 55 

mitochondrial DNA replication. Significantly enriched pathways included splicing (p=1.03e-8) and 56 

ubiquitin-mediated proteolysis (p=2.4e-10). Genes with target sequences for the mitochondrial 57 

transcription factor NRF1 were also enriched (p=1.76e-35). 58 

In non-blood tissues, there were more significantly associated genes than expected in 30 out of 47 59 

tested tissues, suggesting that global gene expression in those tissues is correlated with mtDNA-CN. 60 

Pathways that were associated in multiple tissues included RNA-binding, catalysis, and 61 

neurodegenerative disease. We evaluated the association between mtDNA-CN and incident 62 

neurodegenerative disease in an independent dataset, the UK Biobank, using a Cox proportional-hazards 63 

model. Higher mtDNA-CN was significantly associated with lower risk for incident neurodegenerative 64 

disease (HR=0.73, 95% CI= 0.66;0.90).  65 

Conclusions 66 
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 3 

The observation that mtDNA-CN measured in whole blood is associated with gene expression in other 67 

tissues suggests that blood-derived mtDNA-CN can reflect metabolic health across multiple tissues. Key 68 

pathways in maintaining cellular homeostasis, including splicing, RNA binding, and catalytic genes were 69 

significantly associated with mtDNA-CN, reinforcing the importance of mitochondria in aging-related 70 

disease. As a specific example, genes involved in neurodegenerative disease were significantly enriched 71 

in multiple tissues. This finding, validated in a large independent cohort study showing an inverse 72 

association between mtDNA-CN and neurodegenerative disease, solidifies the link between blood-73 

derived mtDNA-CN, altered gene expression in both blood and non-blood tissues, and aging-related 74 

disease.  75 

 76 

 77 

 78 

 79 

 80 

 81 
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 84 

 85 
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BACKGROUND 87 

Mitochondria perform multiple essential metabolic functions including energy production, lipid 88 

metabolism, and signaling for apoptosis. Mitochondria possess circular genomes (mtDNA) that are 89 

distinct from the nuclear genome. While cells typically only possess two copies of the nuclear genome, 90 

they contain 100s to 1000s of mitochondria, and each individual mitochondrion can hold 2-10 copies of 91 

mtDNA resulting in wide variation in mtDNA copy number (mtDNA-CN) [1]. The amount of mtDNA-CN 92 

also varies widely across cell types, with higher energy demand cell types typically possessing higher 93 

levels of mtDNA-CN [1–3]. Due to the importance of mitochondria in metabolism and energy 94 

production, mitochondrial dysfunction plays a role in the etiology of many human diseases [4]. mtDNA-95 

CN has been shown to be a proxy for mitochondrial function, and is consequently an attractive 96 

biomarker due to its ease of measurement [5,6]. Indeed, low levels of mtDNA-CN in peripheral blood 97 

have been associated with an increased risk for a number of chronic aging-related diseases including 98 

frailty, kidney disease, cardiovascular disease, heart failure, and overall mortality [7–10].  99 

Crosstalk between the mitochondrial and nuclear genomes is essential for maintaining cellular 100 

homeostasis. Many essential mitochondrial proteins are encoded by the nuclear genome, and 101 

expression of these nuclear genes must be modified to match mitochondrial activity. Likewise, 102 

mitochondrial activity must respond to cellular energy demands. Polymorphisms in the nuclear genome 103 

have been associated with changes in mitochondrial gene expression, and mitochondrial genome 104 

variation has been associated with changes in nuclear gene expression, suggesting interplay between 105 

the two genomes [11,12].  106 

 In cancer cells, mtDNA-CN alters gene expression through modifying DNA methylation [13,14]. Recent 107 

work from our lab has shown that mtDNA-CN is also associated with nuclear DNA methylation in 108 

noncancer settings [15]. Given that DNA methylation can modify gene expression, the current study 109 

seeks to explore the potential association between blood-derived mtDNA-CN and gene expression. Past 110 
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work has shown that mtDNA-CN is associated with gene expression of nuclear-encoded genes in 111 

lymphoblast cell lines, but this may not reflect biological processes occurring in other tissues, especially 112 

after an extended culturing period [16]. Therefore, we leveraged data from the Genotype-Tissue 113 

Expression Project (GTEx), a cross-sectional study with gene expression data from multiple non-diseased 114 

postmortem tissues, to examine associations between mtDNA-CN and expression of both nuclear and 115 

mitochondrially-encoded genes [17]. We found that blood-derived mtDNA-CN was globally associated 116 

with increased gene expression in whole blood. Additionally, blood-derived mtDNA-CN was associated 117 

with gene expression in other, non-blood tissues across the body. Specifically, genes annotated with 118 

neurodegenerative disease pathways were significantly enriched, leading to a follow-up analysis that 119 

uncovered a novel association between blood-derived mtDNA-CN and incident neurodegenerative 120 

disease.  121 

 122 

RESULTS  123 

Determination and validation of mtDNA-CN metric 124 

mtDNA-CN estimates were generated from whole genome sequences performed on DNA derived from 125 

whole blood using the ratio of mitochondrial reads to total aligned reads. As mtDNA-CN is known to be 126 

affected by cell type composition, cell counts for samples with available RNA-sequencing data were 127 

deconvoluted using gene expression measured in whole blood [18,19]. We identified a batch effect that 128 

resulted in significantly altered mtDNA-CN for individuals sequenced prior to January 2013. Therefore, 129 

only individuals sequenced after January 2013 were retained for analysis (Supp. Fig. 1). After quality 130 

control, outlier filtering, and normalization of the RNA-sequencing data, 418 individuals remained for 131 

analyses (see Methods). 132 

To validate mtDNA-CN measurements in the filtered GTEx data, we determined the association between 133 

mtDNA-CN and known correlated measures, including age, sex, and neutrophil count [18,20,21]. We 134 
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observed a significant association with neutrophil count (p=5e-05), with higher neutrophil count 135 

associated with lower mtDNA-CN. While not statistically significant, effect size estimates between 136 

mtDNA-CN and age (p=0.19) and sex (p=0.17) were also in the expected direction.  Effect sizes estimates 137 

for age and neutrophils were also consistent with prior literature [22] (Supp. Table 1). Based on variance 138 

explained from previous studies, the current study was only powered to detect a significant effect for 139 

neutrophil count. For all downstream analyses, mtDNA-CN was the standardized residual from a linear 140 

regression model adjusted for age, sex, cell counts, ischemic time, and cohort (see Methods).  141 

 142 

Association of mtDNA-CN derived from whole blood with gene expression in blood 143 

A priori, we expect that mitochondrially encoded gene expression would be positively correlated with 144 

mtDNA-CN. Likewise, multiple nuclear encoded genes are involved in the regulation of mtDNA 145 

replication, and thus, expression levels of these genes are expected to be correlated with mtDNA-CN 146 

[23,24]. We therefore evaluated the associations between mtDNA-CN and expression of these two 147 

classes of genes, correcting for cohort, sample ischemic time, genotyping PCs, age, race, and surrogate 148 

variables derived from RNA-sequencing data to capture known and hidden confounders (Supp. Fig. 2) 149 

[25]. 150 

To minimize the potential impact of outliers, we performed an inverse normal transformation on both 151 

the mtDNA-CN metric and the gene expression values. To evaluate the association between mtDNA-CN 152 

and mitochondrial RNA (mtRNA) levels, we used the median gene expression value calculated from 153 

scaled expression values across 36 mtDNA-encoded genes that passed expression thresholds (see 154 

Methods). 155 
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We observed a highly significant association between mtDNA-CN and overall mtRNA expression 156 

(p=9.10e-9) (Table 1), with 33 out of 36 individual mtDNA-encoded genes nominally significant (p<0.05) 157 

(Supp. Fig. 3).  158 

 159 

Table 1. Blood-derived mtDNA-CN is positively associated with gene expression for mitochondrially 160 

encoded genes and nuclear encoded genes required for mtDNA replication.  161 

 Gene    Effect size estimate  Standard error  P-value  
 Scaled mtRNA median 0.15 0.03 9.10e-09 
mtDNA replication machinery 
   POLG 0.02 0.01 0.025 
   POLG2 0.06 0.02 4.08e-04 
   TWNK 0.03 0.02 0.11 
   SSBP1 0.06 0.01 1.38e-04 
   PRIMPOL 0.04 0.02 0.020 
   DNA2 0.05 0.02 0.010 
   MGME1 0.04 0.02 0.048 
   RNASEH1 0.06 0.02 2.51e-04 
mtDNA transcription machinery 
   TFAM 0.06 0.01 1.83e-04 
   TEFM 0.03 0.02 0.05 
   TFB2M 0.03 0.02 0.028 
   POLRMT 0.01 0.01 0.19 
Nucleotide metabolism genes 
   TK2 0.02 0.02 0.11 
   DGUOK 0.06 0.02 6.39e-04 
   RRM2B 0.04 0.01 0.006 
   TYMP 0.02 0.02 0.29 
 SLC25A4 0.08 0.03 0.003 

† Genes from Rusecka et al. 
Effect size estimates represent the change in gene expression, in standard deviation units, associated 162 

with a 1 standard deviation increase in blood-derived mtDNA-CN. Mitochondrially encoded genes are 163 

represented as the median of the scaled mtRNA expression of the 36 genes with detectable 164 

expression. Genes required for mtDNA replication were obtained from Rusecka et al [24].  165 

 166 

In addition to genes coding directly for mtDNA replication machinery, genes involved in mtDNA 167 

transcription and nucleotide metabolism are also required for mtDNA replication. The mtDNA 168 

transcription machinery provides the RNA primers used in mtDNA replication and nucleotides are 169 
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needed to synthesize new mtDNA molecules. Of the 17 mtDNA major replication genes tested [24], all 170 

were positively associated with mtDNA-CN, as would be expected based on gene function; 8 of them 171 

were nominally significant (p<0.05), and were 4 significant after Bonferroni correction (p<2.94e-3) for 172 

multiple testing (Table 1).  173 

To identify additional genes and pathways associated with mtDNA-CN, we performed a transcriptome-174 

wide analysis. There was an overall inflation of test statistics, which we quantified using the genomic 175 

inflation factor (lambda = 4.71) [26]. Two-stage permutation testing demonstrated no inflation in null 176 

datasets, suggesting that this inflation represents a true global association between blood-derived 177 

mtDNA-CN and gene expression (Supp. Fig. 4).  178 

When stratified by gene functional categories [27], all categories showed elevated test statistics, but 179 

protein-coding genes were the most enriched (lambda=7.44) (Fig. 1). Gene expression levels of most of 180 

the nominally significant genes were positively correlated with mtDNA-CN (7769 genes with positive t-181 

values vs. 285 genes with negative t-values). While much of this positive skewing is due to correlated 182 

gene expression, permuted datasets demonstrate that this positive shift is significant (P<0.001, Supp. 183 

Fig. 5), perhaps reflecting a more active transcriptional state associated with higher mtDNA-CN. Only 184 

two negatively associated genes passed permutation cutoff (p=2.7e-6), CAMP (p=1.58e-8) and PGLYRP1 185 

(p=1.78e-7), both of which are involved in innate immunity.  186 

 187 

Gene set enrichment analysis uncovers gene regulatory networks in whole blood 188 

To identify specific molecular pathways, transcription factors, and gene ontologies associated with 189 

mtDNA-CN in whole blood, we performed gene set enrichment analyses [28] using gene sets obtained 190 

from the Molecular Signatures database (MSigDB) [29–33]. Previous studies have shown that cross-191 

mappability can lead to false pseudogene positives in eQTL association studies [34]; we therefore 192 
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 9 

excluded pseudogenes from subsequent analyses. Significantly associated KEGG pathways included 193 

“Spliceosome” (p=1.03e-8) and “Ubiquitin-mediated proteolysis” (p=2.4e-10) (Table 2).   194 

 195 

Table 2. Top 5 genes that were most significantly associated with mtDNA-CN within the “Spliceosome” 196 

and “Ubiquitin-mediated proteolysis” KEGG pathways. 197 

 Gene    Effect size estimate  Standard error  P-value  

Spliceosome genes 
   TRA2A 0.11 0.01 2.99e-14 
   LSM6 0.11 0.02 3.75e-10 
   HNRNPA1L2 0.12 0.02 2.07e-08 
   SRSF8 0.10 0.02 2.24e-07 
   NCBP2 0.06 0.01 6.60e-07 
Ubiquitin-mediated proteolysis genes 
   UBE2B 0.12 0.02 1.20e-13 
   ELOC 0.08 0.01 2.02e-08 
   UBE2I 0.09 0.02 6.26e-08 
   CUL1 0.07 0.01 9.73e-08 
   UBE2K 0.07 0.01 1.32e-07 

Effect size estimates represent the change in gene expression, in standard deviation units, associated 198 

with a 1 standard deviation increase in blood-derived mtDNA-CN.  199 

 200 

A number of transcription factor target sequences were also significantly enriched, including those for 201 

ELK1 (p=8.58e-66), NRF1 (p=1.76e-35), GABPB (p=3.54e-21), YY1 (p=3.14e-19), and E4F1 (p=3.98e-15). 202 

All of these transcription factors regulate genes that play a role in mitochondrial function [35–39]. Gene 203 

expression levels of these transcription factors were all positively correlated with mtDNA-CN, with 5 out 204 

of 6 nominally significant, and 3 remaining significant after Bonferroni correction (p<8.33e-3) (Table 3).  205 

 206 

Table 3. Transcription factors whose targets are enriched for association with blood-derived mtDNA-207 

CN are nearly all nominally significantly associated with blood-derived mtDNA-CN.  208 

Gene 
Effect size estimate  

(gene expression)  

Standard error  

(gene expression)  

P-value   

(gene expression)  

P-value   

(enriched target sequences)  

NRF1 0.03 0.02 0.07 1.76e-35 
YY1 0.07 0.01 1.78e-06 3.14e-19 
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Gene 
Effect size estimate  

(gene expression)  

Standard error  

(gene expression)  

P-value   

(gene expression)  

P-value   

(enriched target sequences)  

GABPB2 0.09 0.02 1.51e-09 3.54e-21 
GABPB1 0.03 0.01 0.048 3.54e-21 

E4F1 0.05 0.01 2.01e-04 3.98e-15 
ELK1 0.04 0.02 0.021 8.58e-66 

Effect size estimates, standard errors, and p-values from a linear regression between transcription 209 

factor gene expression and blood-derived mtDNA-CN. Transcription factors shown are those whose 210 

targets were significantly enriched for association with blood-derived mtDNA-CN.  211 

 212 

Many mitochondrially-related cellular component gene ontology (GO) terms were significant, including 213 

“Mitochondrion” (p=7.77e-23), “Mitochondrial part” (p=2.79e-15), and “Mitochondrion organization” 214 

(p=2.87e-14) (Fig. 2) [40]. Additional significantly associated GO terms included “ubiquitin ligase 215 

complex” (p=6.6e-18) and “spliceosomal complex” (p=4.46e-14), supporting the KEGG pathway findings. 216 

Genes with substantial evidence of mitochondrial localization, determined through integration of 217 

several genome-scale datasets, were obtained from MitoCarta2.0 and demonstrated significant 218 

enrichment (p=8.22e-21) [41].  219 

 220 

Cross-tissue analysis reveals associations between gene expression in multiple tissues and blood-221 

derived mtDNA-CN 222 

mtDNA-CN measured in blood has been associated with a number of aging-related diseases including 223 

chronic kidney disease, heart failure, and diabetes [10,42,43]. Given that these diseases primarily 224 

manifest in non-blood tissues, we evaluated associations between blood-derived mtDNA-CN and gene 225 

expression measured from 47 additional tissues that had greater than 50 samples after filtering.  226 

Though blood-derived mtDNA-CN appears to be associated with gene expression in other tissues, we did 227 

not observe a significant association between blood-derived mtDNA-CN and scaled mtRNA gene 228 

expression in any tissue other than blood, and only 2 out of 47 tested tissues had nominally significant 229 

associations between tissue-specific scaled mtRNA expression and blood-derived mtDNA-CN (Uterus [p 230 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.17.209023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.209023


 11 

= 0.004], Heart – Left Ventricle [p = 0.017]). (Supp. Table 2). However, mtRNA expression for 35/47 non-231 

blood tissues was positively associated with blood mtDNA-CN, which is more than what would be 232 

expected by chance (p<0.001). This suggests that while our study may be underpowered to detect a 233 

significant association in individual tissues due to small sample sizes, mtDNA-CN measured in blood is 234 

broadly correlated with mtDNA-CN in other tissues.  235 

We calculated genomic inflation factors for each tissue to quantify test statistic inflation. Genomic 236 

inflation factors were elevated across multiple non-blood tissues, suggesting that blood-derived mtDNA-237 

CN was broadly associated with gene expression in other tissues (Fig. 3). To determine true signal from 238 

noise, we performed 100 two-stage permutations for each tissue and obtained a genomic inflation 239 

factor lambda cutoff of >1.20 representing a significant elevation of lambda (study-wide p<0.05). Using 240 

this cutoff, we identified 30 non-blood tissues with a global inflation of test statistics [Supp. Table 3]. 241 

Other than blood, the most strongly enriched tissue was the putamen region of the brain, with a lambda 242 

of 3.27. We note that the two cell lines, EBV transformed lymphocytes (lambda=0.84) and cultured 243 

fibroblasts (lambda=0.84), showed no global inflation of test statistics, suggesting that blood-derived 244 

mtDNA-CN loses its association with gene expression after the cell-culturing process. 245 

To examine the similarity of associations of mtDNA-CN observed in blood with other tissues, we 246 

calculated Spearman’s rank correlation coefficients between effect estimates for blood-derived mtDNA-247 

CN on blood gene expression (βblood) and effect estimates for blood-derived mtDNA-CN on gene 248 

expression in other tissues (βtissue). All genes that passed a permutation cutoff for significance in blood 249 

(p=2.7e-6, 721 genes total) were included. To distinguish tissues with correlations more extreme than 250 

baseline, we calculated reference correlations between blood and other tissues for randomly selected 251 

sets of genes.  26 tissues had observed values that were more extreme than the random gene sets 252 

(Supp. Table 4). Of these 26 tissues, 20 were among the 30 tissues with significantly inflated lambdas.  253 
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To identify pathways associated with mtDNA-CN across multiple tissues, we performed gene set 254 

enrichment analysis in each of the 30 tissues with a significant genomic inflation factor. Multiple terms 255 

were significant in greater than one tissue (Table 4), including terms related to oxidative 256 

phosphorylation and mitochondria, suggesting that mtDNA-CN derived from blood can reflect 257 

mitochondrial function occurring in other tissues. 258 

 259 

Table 4. Pathways, transcription factor targets, and GO terms significantly enriched in multiple tissues. 260 

 Pathway     Number of significant tissues  

Transcription factors 
   SCGGAAGY_ELK1_02 18 
   RCGCANGCGY_NRF1_Q6 12 
   GCCATNTTG_YY1_Q6 8 
   TGCGCANK_UNKNOWN 8 
   MGGAAGTG_GABP_B 7 
GO terms 
   GO_RNA_BINDING 16 
   GO_CATALYTIC_COMPLEX 14 
   GO_CELLULAR_MACROMOLECULE_LOCALIZATION 13 
   GO_INTRACELLULAR_TRANSPORT 13 
   GO_MACROMOLECULE_CATABOLIC_PROCESS 12 
KEGG terms 
   KEGG_RIBOSOME 8 
   KEGG_HUNTINGTONS_DISEASE 4 
   KEGG_OXIDATIVE_PHOSPHORYLATION 4 
   KEGG_ALZHEIMERS_DISEASE 3 
   KEGG_PARKINSONS_DISEASE 3 
Mitochondrial terms 
   GO_MITOCHONDRIAL_ENVELOPE 8 
   GO_MITOCHONDRIAL_PART 8 
   GO_MITOCHONDRION 7 
   GO_MITOCHONDRION_ORGANIZATION 4 
   GO_MITOCHONDRIAL_PROTEIN_COMPLEX 3 

The top 5 terms for each category that were significantly enriched in multiple tissues are shown.  261 

ELK1 transcription factor binding sites were significantly enriched in 17 of the 30 significant tissues, and 262 

were also significant in whole blood, suggesting that mtDNA-CN may regulate ELK1 or vice versa. We 263 

note that gene expression for ELK1 was nominally significantly associated (p<0.05) with blood-derived 264 
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mtDNA-CN in 12 of the 18 tissues for which ELK1 targets were significantly enriched (Supp. Fig. 6). Effect 265 

estimates for ELK1 targets were generally consistent with the directionality of ELK1 effect estimates. For 266 

example, in blood, where ELK1 expression is positively associated with mtDNA-CN, 747/750 (99.6%) 267 

nominally significant ELK1 target genes were positively associated. On the other hand, mtDNA-CN was 268 

negatively associated with nerve ELK1 gene expression, and 204/306 (66.67%) nominally significant ELK1 269 

target genes were also negatively associated. Of note, nearly all the noted transcription factors were 270 

ubiquitously expressed throughout the body, except for ELK1, which is not expressed in Brain Putamen 271 

or Spinal Cord (Supp. Fig. 7).  272 

To identify genes driving enrichment of significant pathways in multiple tissues, we performed a random 273 

effects meta-analysis for all expressed genes using effect size estimates from all 47 non-blood tissues. 274 

Strikingly, genes encoding both the large and small ribosomal subunits were negatively associated with 275 

blood-derived mtDNA-CN across all tested tissues, implying an inverse relationship between ribosomal 276 

abundance and mitochondrial DNA quantity (Table 5).   277 

 278 

Table 5. Random-effects meta-analysis for genes driving the enrichment of pathways in multiple 279 

tissues. 280 

 Gene   Meta effect size estimate  Meta standard error Meta p-value 

ELK1 targets 
   STARD3 0.05 0.00 1.49e-17 
   EIF5A 0.08 0.01 4.97e-17 
   ERH 0.07 0.01 8.82e-17 
RNA-binding genes 
   SUZ12 0.06 0.00 4.49e-18 
   C1D 0.11 0.01 8.03e-18 
   MRPL23 -0.09 0.01 8.37e-18 
Ribosome genes 
   RPL34 -0.07 0.01 8.57e-16 
   RPS27 -0.08 0.01 1.35e-15 
   RPL39 -0.08 0.01 1.16e-14 
Mitochondrial part genes 
   MRPL23 -0.09 0.01 8.37e-18 
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 Gene   Meta effect size estimate  Meta standard error Meta p-value 

   MTERF3 -0.06 0.00 3.12e-17 
   MICU3 0.09 0.01 3.34e-17 

Meta-analysis results are from all 47 tested tissues, excluding effects from whole blood. Top 3 most 281 

significant genes for each pathway are shown. 282 

 283 

Huntington’s disease (HD), Parkinson’s disease (PD), and Alzheimer’s disease (AD) were among the most 284 

significantly associated KEGG pathways that appear in multiple tissues (Table 5). This is an intriguing 285 

finding, given the known role of mitochondria in neurodegenerative disease [44].  286 

While neurodegenerative disorders primarily manifest in nervous tissues [45], we observed significant 287 

enrichment of disease pathways in colon, pancreas, and testis tissues. When limiting our query to brain 288 

tissues, HD and PD were nominally significantly enriched in cerebellum, caudate (basal ganglia), and 289 

cortex, while AD was nominally significantly enriched in cerebellum and spinal cord (Supp. Fig 8).  290 

 291 

mtDNA-CN is associated with incident neurodegenerative disease in the UKBiobank 292 

To examine the association between mtDNA-CN and neurodegenerative disease risk, we used the UK 293 

Biobank (UKB) [46], a prospective cohort study with whole exome sequencing for ~50,000 individuals. 294 

mtDNA-CN was derived from whole exome sequencing and adjusted for sequencing artifacts, age, and 295 

sex. Analysis was restricted to individuals of European descent, and individuals with blood cell type 296 

count outliers were excluded. Using a Cox proportional-hazards model and adjusting for age and sex, we 297 

evaluated the relative risk of neurodegenerative disease associated with mtDNA-CN. Median follow-up 298 

time was approximately 10 years. Although the number of incident events was small, mtDNA-CN was 299 

significantly associated with Parkinson’s disease (HR=0.75, CI=0.60;0.99) and Alzheimer’s disease 300 

(HR=0.59, CI=0.44;0.81), and approached significance for non-Alzheimer’s dementia (HR=0.81, 301 

CI=0.65;1.02). Consistent with other aging-related diseases [7,9], higher mtDNA-CN was associated with 302 

lower risk for developing incident neurodegenerative disease (Table 6). A combined analysis for all 303 
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individuals with incident neurodegenerative disease revealed a consistent strongly significant 304 

association (HR=0.73, CI=0.66;0.90).  305 

 306 

Table 6. mtDNA-CN is associated with incident neurodegenerative disease. 307 

 Disease  Hazard ratio   Confidence interval  
 Number of 

cases/controls  
 P-value  

 Parkinson's disease 0.75 0.60;0.99 63/39,044 0.030 
 Alzheimer's disease 0.59 0.44;0.81 41/39,100 0.001 
 Dementia (excluding AD) 0.81 0.65,1.02 74/39,048 0.074 
 Combined neurodegenerative disease 0.73 0.66;0.90 161/39,030 0.001 

Hazard ratios for incident neurodegenerative disease associate with a 1 standard deviation increase in 308 

whole blood mtDNA-CN estimated from Cox proportional-hazards models in the UKBiobank. Analysis 309 

was restricted to individuals of European descent, and individuals who were outliers for cell counts 310 

were excluded from analysis. 311 

 312 

DISCUSSION 313 

In this study, blood-derived mtDNA-CN was significantly associated with a host of blood-expressed 314 

genes. As expected, nearly all genes involved in mtDNA replication were significantly associated with 315 

mtDNA-CN in a positive direction. There was also a clear overall shift towards significant positive 316 

estimates, possibly indicating that increased mtDNA-CN is reflective of a more active transcriptional 317 

state. This finding is consistent with previous literature demonstrating that higher mitochondrial content 318 

is correlated with increased transcriptional activity [47,48]. Strikingly, the two negatively associated 319 

genes both play roles in innate immune function [41,42], suggesting that higher mtDNA-CN levels are 320 

correlated with decreased immune response. Mitochondria play a role in immune responses to 321 

pathogens in several ways; for example, mitochondrial DNA release from compromised mitochondria 322 

can trigger an intracellular antiviral response through the cGAS/STING pathway [51], binding of viral 323 

dsRNA to the mitochondrial antiviral signaling complex (MAVS) can trigger an interferon responses 324 

through STAT6 activation [52], and release of mitochondrial components from cells can bind to damage-325 
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associated molecular pattern (DAMP) receptors to trigger innate immune responses [53].  These novel 326 

findings correlating expression of mtDNA-CN with specific immune response genes in tissues represent 327 

an area for further investigation.  328 

Gene set enrichment analyses revealed pathways potentially involved in mitochondrial DNA control, 329 

including ubiquitin-mediated proteolysis and splicing. Supporting this finding, Guantes et. al 330 

demonstrated that mitochondrial content modulates alternative splicing [47]. Additionally, we found 331 

that genes expressed in whole blood that were associated with blood-derived mtDNA-CN were enriched 332 

for target sequences for the ELK1, NRF1, YY1, GABPB, and E4F1 transcription factors. All of these 333 

transcription factors have been implicated in mitochondrial pathways, as ELK1 is associated with the 334 

mitochondrial permeability transition pore complex in neurons, NRF1 regulates expression of the 335 

mitochondrial translocase TOMM34, YY1 binds to and represses mitochondrial gene expression in 336 

skeletal muscle, GABPB is required for mitochondrial biogenesis, and E4F1 controls mitochondrial 337 

homeostasis [35–39]. Additionally, we found significant enrichment of signal for genes implicated in 338 

ubiquitin-mediated proteolysis and splicing. Given that mitochondrial quality control is regulated 339 

through ubiquitination, and that nuclear-encoded spliceosomes are involved in mtRNA splicing, our 340 

results likely implicate processes involved in mitochondrial DNA regulatory networks [54,55]. 341 

mtDNA-CN measured in one tissue has previously been found to be uncorrelated with mtDNA-CN in 342 

another tissue from the same individual [56]. We found that while mtRNA transcription in individual 343 

tissues was not significantly correlated with blood-derived mtDNA-CN, across all tissues, there was a 344 

significant enrichment for positive associations, suggesting a weak positive correlation between blood-345 

derived mtDNA-CN and mtDNA-CN in other tissues. Moreover, we found that blood-derived mtDNA-CN 346 

was associated with various biological pathways in non-blood tissues (including mitochondrial function), 347 

providing a possible explanation as to why blood-derived mtDNA-CN is associated with aging-related 348 

diseases that primarily manifest in non-blood tissues. Further examination of pathways significant in 349 
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multiple tissues revealed that ribosomal subunit genes were significantly negatively associated with 350 

mtDNA-CN. While there has been conflicting evidence on the relationship between mtDNA-CN and 351 

ribosomal content, our study revealed a strong inverse relationship between ribosomal DNA dosage and 352 

mtDNA-CN [16,47]. Importantly, since these are statistical associations, causal directionality cannot be 353 

determined between gene expression and blood-derived mtDNA-CN. Future follow-up studies are 354 

needed to determine functional causality for mtDNA-CN and gene expression.  355 

Strikingly, KEGG pathways that were significantly enriched in multiple tissues included Huntington’s 356 

disease, Alzheimer’s disease, and Parkinson’s disease. These aging-related neurodegenerative diseases 357 

have all underlying mitochondrial pathologies [57–60] and dysregulated ubiquitination pathways [61]. In 358 

particular, mtDNA-CN has been implicated in Alzheimer’s disease [62–64] and cognitive function [65,66]. 359 

Further, the ELK1 transcription factor, whose target sequences were significantly enriched in 18 tissues, 360 

plays a role in multiple neurodegenerative diseases [67]. Finally, after finding that blood-derived 361 

mtDNA-CN was associated with expression of neurodegenerative disease genes, we used an 362 

independent dataset, the UK Biobank, and found that mtDNA-CN was significantly associated with 363 

incident neurodegenerative disease risk. Notably, the population of individuals used for the UK Biobank 364 

analyses is biased towards fewer smokers and fewer prevalent Parkinson’s events [68], which may 365 

impact the generalizability of our results. Despite this caveat, we show that blood-derived mtDNA-CN is 366 

significantly associated with gene expression from tissues across the body, and that higher mtDNA-CN is 367 

associated with decreased incident neurodegenerative disease risk.  368 

 369 

METHODS 370 

GTEx Sample acquisition 371 

Whole genome sequences were downloaded from the GTEx version 8 cloud repository on 11/18/2020. 372 

RNA-sequencing data used for analyses was downloaded from the GTEx portal 373 
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(http://gtexportal.org/home/datasets) on 06/18/2019 and phenotypes were obtained from dbGaP 374 

(phs000424.v8.p2). 375 

Estimation of mtDNA-CN  376 

Samtools version 1.9 [69] was used to count the number of mitochondrial, unaligned, and total reads for 377 

each whole genome sequence. mtDNA-CN was estimated as the number of mitochondrial reads divided 378 

by the difference between the number of total reads and the number of unaligned reads to obtain a 379 

ratio of mtDNA to nuclear DNA. Whole genome is a highly accurate method for estimation of mtDNA-CN 380 

[22,56].  381 

Correcting mtDNA-CN for covariates 382 

All statistical analyses were performed with R version 3.6.1. Cell type composition for whole blood 383 

samples was determined from RNA-sequencing using xCell [19], only allowing for deconvolution of cell 384 

types found in blood. A stepwise regression in both directions was used to select appropriate cell types 385 

to correct mtDNA-CN. To avoid model overfitting, correlated cell types (R>0.8) were removed. The final 386 

model used to adjust mtDNA-CN included neutrophils, hematopoietic stem cells, megakaryocytes, 387 

subject cohort, ischemic time, age, and sex. Power calculations were performed using R2 values from 388 

previous studies using the pwr package [22].  389 

Filtering pipeline 390 

A batch effect due to sample collection and/or sequencing methods resulted in significantly altered 391 

mtDNA-CN for individuals who were sequenced prior to January 2013. To keep this from confounding 392 

the analysis, we excluded subjects with whole genome sequencing prior to January 2013 (Supp. Fig. 1). 393 

Individuals who had greater than 5x107 unaligned whole genome sequence reads were also omitted 394 

from the analysis. Cell type outliers who were greater than 3 standard deviations (SDs) from the mean 395 

were excluded as well. Only one individual remained from the surgical cohort after filtering and 396 

therefore was also removed (Supp. Fig. 9).  397 
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RNA-sequencing pipeline 398 

GTEx version 8 RNA-sequencing data was downloaded from the GTEx website in transcripts per million 399 

(TPMs) and normalized using the trimmed mean of M-values method prior to analyses [70,71]. Genes 400 

with expression greater than 0.1 TPMs for at least 20% of samples were retained for analysis. To identify 401 

potential hidden confounders, we used surrogate variable analysis (SVA), protecting mtDNA-CN from SV 402 

generation [25]. SVs were associated with known covariates in the data, such as whether individuals 403 

were in the postmortem or the organ donor cohorts (Supp. Fig. 2). Individuals who were greater than 3 404 

standard deviations from the mean for the first ten SVs were omitted from analysis. SV generation was 405 

performed iteratively 3 times.  406 

Linear model for evaluating associations 407 

To reduce the influence of outliers, both the gene expression metric and the mtDNA-CN metric were 408 

inverse normal transformed prior to linear regression. We then tested for association using multiple 409 

linear regression, with mtDNA-CN as the predictor and gene expression as the outcome, correcting for 410 

SVs, sex, cohort, race, ischemic time, and the first three genotyping principal components.  411 

Genomic inflation factor calculation 412 

Genomic inflation factors were calculated by squaring z-scores to obtain chi-squared values. The median 413 

observed chi-squared value was divided by the expected median to obtain lambda [26]. 414 

Two-stage permutations 415 

To determine an appropriate p-value cutoff, we created null datasets for permutation testing. First, a 416 

multiple linear regression model for the alternate hypothesis was used to obtain gene expression 417 

residuals. Second, a multiple linear regression model for the null hypothesis was used to obtain 418 

estimates for each gene. Residuals from the alternate model were than permuted and added to effect 419 

estimates from the null model to create null datasets. Permuted gene expression data was then tested 420 

for association with mtDNA-CN. Unless otherwise stated, permutations were performed 100 times. 421 
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Minimum p-values from each permuted dataset were obtained, and the 5th lowest p-value was utilized 422 

as a permutation cutoff. 423 

Annotation of gene categories 424 

Gene annotations were downloaded from Gencode [27]. Test statistics were then stratified by gene type 425 

and observed and expected distributions were generated for each category.   426 

Overrepresentation of positive beta estimates 427 

Percentage of positive effect estimates was calculated using all nominally significant genes in blood, 428 

dividing the number of nominally significant genes with positive effect estimates by the total number of 429 

nominally significant genes. Percentages for null distributions were calculated using 1000 permutations 430 

generated using the two-stage permutation method described above.   431 

Gene set enrichment analysis 432 

To examine enrichment for genes in specific pathways, gene sets for KEGG pathways, transcription 433 

factor target sequences, and gene ontologies were downloaded from the Molecular Signatures database 434 

[25,27,49]. Then, using the absolute value of the t-scores from the regression model with mtDNA-CN, 435 

we performed a t-test of t-scores for genes in a specific pathway versus genes that were not contained 436 

in the pathway. Permutations using randomized t-scores were used to determine appropriate cutoffs for 437 

significance. To confirm that results were not driven by individual genes in a pathway with very large t-438 

scores, we also performed t-tests using ranked t-scores as opposed to absolute value t-scores.  439 

REVIGO trimming and visualization of GO terms 440 

For visualization of significantly enriched GO terms and elimination of redundant GO terms, REVIGO 441 

(http://revigo.irb.hr/ ) was used with the default settings except for the allowed similarity, which was 442 

set to medium (0.7) [40].  443 

Testing for associations between blood-derived mtDNA-CN and gene expression in other tissues 444 
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Filtering parameters and models for testing the association of blood-derived mtDNA-CN with gene 445 

expression in other tissues were identical to the pipeline used in whole blood. Only tissues with greater 446 

than 50 observations after filtering were tested. For tissues that had no variation in covariates, 447 

covariates were dropped from the linear model (i.e. sex was not used in the model for testing gene 448 

expression in reproductive organs and cohort was not used in the model for brain tissues).  449 

Spearman correlations for effect estimates with whole blood 450 

All significant genes in whole blood that passed the permutation cutoff (p=2.7x10-6) were used for 451 

testing. Spearman correlations between effect estimates in blood and effect estimates in other tissues 452 

were calculated. To compare correlations for genes significant in blood with baseline correlation, we 453 

randomly selected 100 random genes and calculated correlations between blood estimates and specific 454 

tissue estimates for those genes. We repeated this random selection 100 times to generate multiple 455 

baseline correlation measures.  456 

Meta-analysis of genes driving specific ontologies 457 

To calculate meta-analysis effect estimates and p-values, the R ‘meta’ package [73] was used to perform 458 

a random-effects meta-analysis using all effect estimates and p-values for all tissues, excluding results 459 

from whole blood.   460 

Association of mtDNA-CN with neurodegenerative disease in UKB  461 

Samtools version 1.9 was used to extract read summary statistics from 49,997 UK biobank whole exome 462 

sequences. An in-house perl script was then used to aggregate summary statistics into the number of 463 

total, mapped, unmapped, autosomal, chromosome X, chromosome Y, mitochondrial, random, 464 

unknown, decoy1, and decoy2 reads. 10-fold cross validation was used to select linear regression 465 

covariates to adjust the number of mitochondrial reads for. After correcting for these potential technical 466 

artifacts, this metric was then adjusted for age and sex. Cell type outliers were excluded from the 467 

dataset, and subsequent analyses were restricted to individuals of European descent. A Cox 468 
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proportional-hazards model was used to evaluate the association between mtDNA-CN and time to 469 

incident neurodegenerative disease, adjusting for age and sex.  470 

 471 
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Figure 1. Global inflation of test statistics from linear regressions between blood-derived mtDNA-CN and gene expression in blood. After 

stratification by gene category, protein-coding genes have the most inflation, suggesting that mtDNA-CN is strongly associated with genes 

that code for proteins.  
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Figure 2. REVIGO visualization of GO Cellular Component terms significantly associated with mtDNA-CN after removal of redundant GO terms. 

Size of the circle represents the relative number of genes in each gene set, color represents significance. Axis represent semantic similarities 

between GO terms; GO terms that are more similar will cluster with one another. 
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Figure 3.  Observed genomic inflation factors are significantly different from permuted genomic inflation factors for certain tissues. Higher 

genomic inflation factor represents increased global associations between blood-derived mtDNA-CN and gene expression in a specific tissue. 

Permuted genomic inflation factors were obtained using two-stage permutation testing.  
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