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IMPORTANCE American Indian communities experience a high burden of coronary heart
disease (CHD). Strategies are needed to identify individuals at risk and implement preventive
interventions.

OBJECTIVE To investigate the association of blood DNA methylation (DNAm) with incident
CHD using a large number of methylation sites (cytosine-phosphate-guanine [CpG]) in a
single model.

DESIGN, SETTING, AND PARTICIPANTS This prospective study, including a discovery cohort (the
Strong Heart Study [SHS]) and 4 additional cohorts (the Women’s Health Initiative [WHI], the
Framingham Heart Study [FHS], the Atherosclerosis Risk in Communities Study
([ARIC]–Black, and ARIC-White), evaluated 12 American Indian communities in 4 US states;
African American women, Hispanic women, and White women throughout the US; White
men and White women from Massachusetts; and Black men and women and White men and
women from 4 US communities. A total of 2321 men and women (mean [SD] follow-up, 19.1
[9.2] years) were included in the SHS, 1874 women (mean [SD] follow-up, 15.8 [5.9] years) in
the WHI, 2128 men and women (mean [SD] follow-up, 7.7 [1.8] years) in the FHS, 2114 men
and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-Black, and 931 men and
women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-White. Data were collected from
May 1989 to December 2018 and analyzed from February 2019 to May 2021.

EXPOSURE Blood DNA methylation.

MAIN OUTCOME AND MEASURE Using a high-dimensional time-to-event elastic-net model for
the association of 407 224 CpG sites with incident CHD in the SHS (749 events), this study
selected the differentially methylated CpG positions (DMPs) selected in the SHS and
evaluated them in the WHI (531 events), FHS (143 events), ARIC-Black (350 events), and
ARIC-White (121 events) cohorts.

RESULTS The median (IQR) age of participants in SHS was 55 (49-62) years, and 1359
participants (58.6%) were women. Elastic-net models selected 505 DMPs associated with
incident CHD in the SHS beyond established risk factors, center, blood cell counts, and
genetic principal components. Among those DMPs, 33 were commonly selected in 3 or 4 of
the other cohorts and the pooled hazard ratios from the standard Cox models were
significant at P < .05 for 10 of the DMPs. For example, the hazard ratio (95% CI) for CHD
comparing the 90th and 10th percentiles of differentially methylated CpGs was 0.86
(0.78-0.95) for cg16604233 (tagged to COL11A2) and 1.23 (1.08-1.39) for cg09926486
(tagged to FRMD5). Some of the DMPs were consistent in the direction of the association;
others showed associations in opposite directions across cohorts. Untargeted independent
elastic-net models of CHD showed distinct DMPs, genes, and network of genes in the 5
cohorts.

CONCLUSIONS AND RELEVANCE In this multi-cohort study, blood-based DNAm findings
supported an association between a complex blood epigenomic signature and CHD that was
largely different across populations.
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I n the US, American Indian communities experience a dispro-
portionate burden of coronary heart disease (CHD) compared
with other racial and ethnic groups.1,2 Strategies are needed

to identify individuals who are susceptible to CHD and to im-
plement preventive interventions.2 Changes in epigenetic
marks, in particular global DNA methylation (DNAm) and site-
specific DNAm, are associated with differential risk of CHD and
atherosclerosis.3-6 Extant studies have been limited by a lack of
replication across populations, uncertain biological plausibil-
ity of the methylation sites identified (cytosine-phosphate-
guanine [CpG]), and the assessment of differentially methylated
CpG positions (DMPs) one by one or in nearby clusters without
considering the complex interassociations across signals.

We investigated the association of DMPs and differen-
tially methylated CpG regions (DMRs) from baseline blood DNA
with the incidence of CHD in the Strong Heart Study (SHS), the
largest and longest running study, to our best knowledge,
of cardiovascular disease in American Indian communities.2,7

We conducted an untargeted epigenome-wide association
study (EWAS) considering all CpGs simultaneously in a high-
dimensional model. We then evaluated DMPs associated with
CHD in the SHS in 4 other cohorts: the Women’s Health Initia-
tive (WHI), Framingham Heart Study (FHS), and Atheroscle-
rosis Risk in Communities Study (ARIC, analyzing Black par-
ticipants and White participants separately). We also conducted
an untargeted high-dimensional epigenome-wide approach in
each of the 5 cohorts. In the SHS, our cohort of interest, we con-
ducted classic EWAS analyzing DMPs and DMRs individually
as well as a targeted analysis of DMPs associated with cardio-
vascular outcomes in previous studies.3,6

Methods
From1989to1991,4549menandwomenaged45to74yearswho
were members of 1 of 13 American Indian tribes from the North-
ernPlains(NorthandSouthDakota),SouthernPlains(Oklahoma),
and Southwest (Arizona) consented to participate in the SHS. For
the present study, 1 of the tribes declined, leaving 3517 potential
participants.Afterapplyingeligibilitycriteria(eMethodsandeFig-
ure 1 in Supplement 1), a total of 2321 participants who were free
of cardiovascular disease at baseline, not missing urinary metal
data, and not missing data on factors associated with risk of car-
diovascular disease were included (eTable 1 in Supplement 1). We
compared the findings in SHS with data on blood DNAm and in-
cident CHD from 1874 individuals in the WHI, 2128 individuals
in the FHS, 2114 individuals in the ARIC-Black, and 931 individu-
als in the ARIC-White (eMethods in Supplement 1).

Protocols for collecting data in the SHS,7 WHI,8 FHS,9,10 and
ARIC11 were similar across cohorts. Race and ethnicity were self-
identified in all studies. In the SHS, all participants had a tribal
affiliation with 1 of the 12 American Indian tribes participating
in the study. In the ARIC and FHS, race and ethnicity were self-
selected from the following options: Black/African American,
White/Caucasian, American Indian/Alaska Native, and Asian/
Pacific Islander. In the WHI, race and ethnicity were self-
selected from the following options: American Indian/Alaskan
Native, Asian/Pacific Islander, Black, Hispanic/Latina, White, and

other. No specific analyses by race and ethnicity were con-
ducted, although several cohorts included only 1 race or ethnic-
ity. The studies were reviewed and approved by institutional re-
view boards at their respective institutions. In addition, the SHS
and the present study were approved by tribal research review
boards and the Indian Health Service institutional review boards.
All participants provided written informed consent.

Cardiovascular Incidence Follow-up
The end points were fatal and nonfatal CHD. The follow-up was
from the time of blood drawn for DNAm measurement (1989
to 1991 for SHS, 1993 to 1998 for WHI, 2005 to 2008 for FHS,
and 1990 to 1995 for ARIC) to the time of CHD event (2017 for
SHS, 2016 for WHI, 2014 for FHS, and 2018 for ARIC). Fol-
low-up was censored at the time of non-CHD death, loss to fol-
low-up, or the last day of follow-up. The mean (SD) follow-up
time among participants without a cardiovascular event was
19.1 (9.2) years in the SHS, 15.8 (5.9) years in the WHI, 7.7 (1.8)
years in the FHS, 20.9 (7.2) years in the ARIC-Black, and 20.9
(7.2) years in the ARIC-White. All cohorts used a central adju-
dication system with 2 or more physicians to classify CHD
events7,9,10 and included myocardial infarction and coronary
deaths in their definition (eMethods in Supplement 1).

Microarray DNAm Measurement
Details of microarray DNAm measurements are in the eMethods
in Supplement 1. In the SHS, bisulfite-converted blood DNA was
measured using the MethylationEPIC BeadChip (Illumina
850K). We performed quality checks, data normalization, sta-
tistical preprocessing, and β-value calculations (methylation
proportion at a given CpG), corrected batch effects, and esti-
mated Houseman cell proportions (CD8T, CD4T, NK, B cells,
monocytes, and granulocytes).12,13 The WHI, FHS, and ARIC
used the Illumina Infinium HumanMethylation450K Bead-
Chip array. After preprocessing, the number of CpGs was
788 368 in the SHS, 434 113 in the WHI, 408 254 in the FHS,
483 525 in the ARIC-Black, and 482 815 in the ARIC-White.

Statistical Analysis
Traditionally, the association of blood DNAm with health out-
comes is analyzed in models for individual CpG sites. Account-
ing for the interassociations of CpG sites with the elastic-net

Key Points
Question Is blood DNA methylation (DNAm) associated with the
development of coronary heart disease (CHD)?

Findings In this multi-cohort study, a high-dimensional
multi-adjusted model assessing blood DNAm in 2321 American Indian
adults selected 505 differentially methylated positions (DMPs)
associated with incident CHD in the Strong Heart Study. These DMPs
were evaluated in the Women’s Health Initiative, the Framingham
Heart Study, and the Atherosclerosis Risk in Communities Study, and
several DMPs common across cohorts tagged genes with established
associations with cardiovascular disease.

Meaning In this study, blood DNAm was associated with CHD
beyond traditional factors associated with cardiovascular disease,
with a complex epigenomic signature across populations.
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tool might be more appropriate in addressing confounding and
the complex associations across DMPs. We used GLMnet pe-
nalized regression (elastic-net) applied to survival time (R pack-
age glmnet [the R Foundation]) with α = .05 to account for com-
plex interassociations and with the regularization parameter
λ14 to achieve the minimum mean squared error, selected using
10-fold cross-validation (eMethods in Supplement 1). Our pri-
mary analysis was in the SHS. We compared DMPs selected in
an elastic-net model with factors traditionally associated with
risk and center (Table 1) with the elastic-net model further add-
ing the 407 224 CpGs available from the 450 000 array, as well
as blood cell counts and 5 genetic principle components (PCs).
We annotated the DMPs to the nearest gene.15 To assess the
relevance of the DMPs selected, we ran 2 sets of analyses in
the other cohorts. First, we ran a targeted elastic-net model
with the DMPs selected by the SHS in each of the other co-
horts. Second, we ran untargeted elastic-net models in each
of the other cohorts using all CpGs available, similar to our ini-
tial elastic-net SHS model. We also ran a targeted elastic-net
model in the SHS and the 4 other cohorts introducing 248 DMPs
that have been associated with incident CHD or atherosclero-

sis in previous studies3,6 to assess their replication in the popu-
lations in this study.

Elastic-net is an excellent tool to select DMPs associated
with disease. However, it does not allow comparing effect es-
timates across studies. For DMPs selected by elastic-net in all
the cohorts or in at least in 4 of the 5 cohorts, we calculated
individual hazard ratios (HRs) and 95% CIs for their associa-
tion with incident CHD using Cox regression adjusted as the
elastic-net models. We then pooled the HRs for the common
DMPs across cohorts using a random-effects meta-analysis (R
package meta [the R Foundation]).16 In a sensitivity analysis,
we restricted the follow-up to 10 years for the SHS (1989 to
1999) and ran elastic-net models in the FHS, WHI, and ARIC
with the same follow-up for the SHS-selected DMPs.

In the SHS, we ran traditional EWAS using Cox regression
for individual CpGs using all CpGs in the 850 000 array (un-
targeted analysis) and using DMPs associated with cardiovas-
cular disease in previous studies (targeted analysis).3,6 We also
tested differential methylation at the regional level using
DMRcate. DMRs were annotated to the closest gene.17 All tests
were 2-tailed, and significance was set at P < .05, accounting

Table 1. Elastic-Net Models With Traditional Factors Associated With Risk of Coronary Heart Disease
and the Same Models With Multiple Cytosine-Phosphate-Guanine Sites (CpGs)

Modela

Parameters included
in the model, No.

Parameters selected
by the model, No.

Factors associated
with risk CpGs

Factors associated
with risk CpGs

Strong Heart Study

Model 1 11 NA 11 NA

Model 2 21 NA 21 NA

Model 2 and 450 000 array 21 407 224 10 505

Model 2 850 000 array 21 788 368 10 635

Model 2 and targeted CpGsb 21 248 18 86

Women’s Health Initiative

Model 1 9 NA 9 NA

Model 2 14 NA 10 NA

Model 2 and 450 000 array 14 434 113 6 398

Model 2 and 505 CpGsc 14 505 7 108

Model 2 and targeted CpGsb 14 248 11 56

Framingham Heart Study

Model 1 11 NA 9 NA

Model 2 16 NA 14 NA

Model 2 and 450 000 array 16 408 254 2 698

Model 2 and 505 CpGsc 16 492 6 111

Model 2 and targeted CpGsb 16 245 9 73

ARIC-Black

Model 1 10 NA 10 NA

Model 2 20 NA 19 NA

Model 2 and 450 000 array 20 483 525 7 1273

Model 2 and 505 CpGsc 20 503 13 219

Model 2 and targeted CpGsb 20 247 15 56

ARIC-White

Model 1 11 NA 10 NA

Model 2 21 NA 19 NA

Model 2 and 450 000 array 21 482 815 4 819

Model 2 + and 505 CpGsc 21 503 12 109

Model 2 and targeted CpGsb 21 248 15 146

Abbreviations: ARIC, Atherosclerosis
Risk in Communities Study;
FHS, Framingham Heart Study;
NA, not applicable; SHS, Strong Heart
Study; WHI, Women’s Health
Initiative.
a Model 1 included traditional factors

associated with risk, including age;
smoking status (never, former,
current); body mass index (calculated
as weight in kilograms divided by
height in meters squared);
low-density lipoprotein cholesterol;
high-density lipoprotein cholesterol;
hypertension treatment (yes/no);
type 2 diabetes (yes/no); and systolic
blood pressure. All studies except the
WHI further included sex. The SHS
and the FHS further included
albuminuria status
(microalbuminuria, normal,
macroalbuminuria). SHS and ARIC
further included study center. FHS
further included pedigree number.
WHI further included race. Model 2
further included genetic principal
components and blood cell counts
for SHS and ARIC, only blood cell
counts for WHI, and cell counts and
plate number for FHS. ARIC further
included 5 methylation batch effect
principal components calculated
using functional normalization.

b This model includes 248 CpGs
associated with atherosclerotic
cardiovascular disease in previous
studies.

c CpGs included in the 450 000,
selected by the elastic-net model
using 450 000 data in the SHS
(n = 505), and available in WHI,
FHS, and ARIC. In some studies,
some CpGs were not available and
the number is lower than 505.
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for multiple comparisons using the false discovery test (FDR)
when indicated.

Protein-Protein Interaction Network
From the 450 000 DMPs reported in the SHS elastic-net model,
we created a list of unique protein-coding genes. Protein in-
teraction data were obtained from the STRING database v11.0,18

which estimates the likelihood the annotated interaction
between a pair of proteins is biologically meaningful and re-
producible. The network was analyzed using Cytoscape
version 3.7.1 (Cytoscape Consortium).19 We kept connections
obtained from experimental studies, public databases, and text
mining with a minimum confidence score of 0.5. Uncon-
nected nodes were excluded. We indicated which of the pro-
tein-coding genes were replicated in the targeted elastic-net
model in the other cohorts. We also ran networks with the
protein-coding genes identified by the untargeted elastic-net
models in each cohort, and a network with the common pro-
tein-coding genes across all cohorts.

Results
The median (IQR) age of participants in SHS was 55 (49-62)
years, and 1359 participants (58.6%) were women. A total of
749 participants (383 women) developed incident CHD over a

mean (SD) of 11.7 (9.2 person-years of follow-up). Traditional
factors associated with risk of CHD were observed (eTable 2
in Supplement 1).

Elastic-Net Model in the SHS and Replication in Other Cohorts
The elastic-net model, including 407 224 CpGs in the SHS to-
gether with factors traditionally associated with risk, blood cell
counts, and genetic PCs, selected 505 DMPs associated with
incident CHD (Table 1; eTable in Supplement 2). In the stan-
dard model, all factors associated with risk remained; in the
model with the 505 DMPs, smoking and body mass index (BMI,
calculated as weight in kilograms divided by height in meters
squared) were no longer selected.

Inelastic-netmodelsimplementedwiththese505DMPs,108
were selected as associated with incident CHD in the WHI, 111
in the FHS, 219 in the ARIC-Black, and 109 in the ARIC-White.
Four DMPs were common in all cohorts (cg02628823 [annotated
to MGAT4D], cg04250451 [RUNX3], cg08178991 [ITGAX],
cg16604233 [COL11A2]), and 29 were common in at least 4 co-
horts. The pooled HRs from the standard Cox models were sig-
nificant at P < .05 for 10 of these 33 DMPs (eg, the hazard ratio
[95% CI] for CHD comparing the 90th and 10th percentiles of dif-
ferentiallymethylatedCpGswas0.86[0.78-0.95]forcg16604233
[tagged to COL11A2] and 1.23 [1.08-1.39] for cg09926486 [tagged
to FRMD5]) (Table 2). These 10 DMPs generally showed HRs in
the same direction of the association (inverse or positive) in all

Table 2. Hazard Ratios (HRs) and 95% CIs of Coronary Heart Disease by Differentially Methylated
Cytosine-Phosphate-Guanine Sites (CpGs) Initially Identified in the Strong Heart Study (SHS)

CpGa Chr Gene

HR (95% CI)b Meta-analysis

SHS WHI FHS ARIC-Black ARIC-White
Pooled HR
(95% CI) P value

cg01620164 2 FIGN 0.89
(0.69-1.13)

0.90
(0.70-1.16)

1.17
(0.63-2.16)

0.60 (0.410.87) 0.66
(0.35-1.21)

0.82
(0.68-0.98)

.03

cg12479512 3 RBSN 0.76
(0.64-0.91)

0.86
(0.69-1.06)

0.95
(0.61-1.49)

0.67
(0.53-0.83)

0.90
(0.78-1.03)

0.85
(0.75-0.95)

.007

cg16604233 6 COL11A2c 0.89
(0.74-1.06)

0.86
(0.67-1.10)

0.54
(0.29-1.00)

0.83
(0.65-1.07)

0.71
(0.46-1.10)

0.86
(0.78-0.95)

.002

cg07964553 4 NEUROG2 1.14
(1.05-1.25)

1.18
(1.01-1.38)

1.18
(0.92-1.51)

1.11
(0.91-1.36)

1.21
(0.92-1.60)

1.11
(1.06-1.17)

<.001

cg22293458 3 VPS8 1.22
(1.06-1.40)

1.09
(0.88-1.34)

0.82
(0.49-1.38)

1.17
(0.99-1.38)

1.38
(0.96-1.97)

1.11
(1.02-1.21)

.01

cg26955383 10 CALHM1 1.22
(1.01-1.47)

1.12
(0.91-1.38)

1.26
(0.81-1.95)

1.13
(0.91-1.41)

1.31
(0.71-2.42)

1.17
(1.05-1.30)

.006

cg02628823 4 MGAT4Dc 1.23
(1.06-1.43)

0.92
(0.74-1.15)

1.21
(0.94-1.57)

1.11
(0.91-1.35)

1.60
(1.22-2.11)

1.17
(1.01-1.36)

.04

cg01297357 12 ASIC1 1.27
(1.08-1.49)

1.02
(0.83-1.26)

1.17
(0.87-1.57)

1.61
(1.25-2.08)

1.50
(0.88-2.54)

1.21
(1.04-1.40)

.01

cg09926486 15 FRMD5 1.29
(1.08-1.53)

1.11
(0.90-1.38)

0.88
(0.56-1.39)

1.39
(1.12-1.73)

1.24
(0.84-1.82)

1.23
(1.08-1.39)

.001

cg08622677 12 PRMT8 1.25
(1.03-1.51)

1.06
(0.86-1.32)

1.23
(0.77-1.97)

1.32
(1.07-1.63)

1.76
(1.10-2.82)

1.23
(1.07-1.42)

.005

Abbreviations: ARIC, the Atherosclerosis Risk in Communities Study;
Chr, chromosome; FHS, the Framingham Heart Study; WHI, the Women’s Health
Initiative.
a The CpGs are ordered based on the pooled HRs.
b HRs and 95% CIs comparing the 90th and 10th percentiles of differentially

methylated CpGs. HRs correspond to those estimated by Cox regression with
that CpG entered in the model together with traditional factors associated
with risk but without adjustment for other CpGs. Model 1 included traditional
factors associated with risk, including age; smoking status (never, former,
current); body mass index (calculated as weight in kilograms divided by height
in meters squared); low-density lipoprotein cholesterol; high-density
lipoprotein cholesterol; hypertension treatment (yes/no); type 2 diabetes

(yes/no); and systolic blood pressure. All studies except the WHI further
included sex. The SHS and the FHS further included albuminuria status
(microalbuminuria, normal, macroalbuminuria). SHS and ARIC further included
study center. FHS further included pedigree number. WHI further included
race. Model 2 further included genetic principle components and blood cell
counts for SHS and ARIC, only blood cell counts for WHI, and cell counts and
plate number for FHS. ARIC further included 5 methylation batch effect
principle components calculated using functional normalization.

c These differentially methylated positions were selected as associated with
incident coronary heart disease in the untargeted elastic-net in SHS and
subsequently by targeted elastic-net models in the other 4 cohorts; all other
differentially methylated positions were selected in SHS and in 3 other cohorts.
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cohorts. The pooled HRs for the remaining 23 DMPs were not sig-
nificant at P < .05, although some were borderline (eTable 3 in
Supplement 1). Several HRs, including those for cg02628823
(MGAT4D), cg04250451 (RUNX3), and cg08178991 (ITGAX),
showed inconsistent association across cohorts.

In the protein-protein interaction analysis, 466 unique genes
associated with the 505 DMPs identified by the SHS elastic-net
models were included. We discarded 235 noncoding RNA genes
or unconnected nodes. From 231 nodes in the network (Figure),
3 were common for the 5 cohorts, 14 were common for 4 cohorts,
66 were common for 3 cohorts, 78 were common for the SHS with
anothercohort(18withFHS,9withWHI,43withARIC-Black,and
8 with ARIC-White), and 70 were selected by SHS only. The EGFR
gene was a hub with 35 interactions, followed by SMAD3 with 13
interactions and ADCY3 with 12 interactions.

Independent Untargeted Elastic-Net Models in All Cohorts
In the untargeted elastic-net models implemented with all
450 000 CpGs available in each cohort, 188 DMPs were se-
lected as associated with incident CHD in the WHI, 235 in the
FHS, 1273 in the ARIC-Black, and 819 in the ARIC-White (eTable
in Supplement 2), in addition to the 505 DMPs previously de-
scribed for SHS. Running ad hoc targeted elastic-net models
with the DMPs selected in each of the other cohorts resulted
in 141 DMPs selected by 4 or 5 cohorts, including 14 selected
by all 5 (Table 3). When we estimated the pooled HRs for those
141 DMPs using Cox models, 35 were significant at P < .05, most
of them with consistent direction of the association across co-
horts, including CpGs annotated to AHRR and MTHFR (HR
[95% CI] comparing 90th to 10th percentile of differentially
methylated cg05575921, 0.68 [0.54-0.85]; for cg05228408,
0.77 [0.65-0.91]) (eTable 4 in Supplement 1).

In the protein-protein interaction analysis for these un-
targeted elastic-net models, each cohort showed a largely
distinct network of genes, with the number of nodes (most-
connected gene) being 231 (EGFR) in the SHS, 133 (MAPK8) in
the WHI, 293 (FN1) in the FHS, 732 (SRC) in the ARIC-Black,
and 441 (CDC42) in the ARIC-White. The network of com-
monly annotated genes across 2 or more cohorts had 139 nodes
(eFigure 2 in Supplement 1). The most connected node (se-
lected by SHS, FHS, ARIC-Black, and ARIC-White) was HDAC4,
a histone deacetylase with strong evidence that it regulates
vascular inflammation via autophagy.20

Targeted Models With DMPs From Previous Studies
In a targeted analysis of 248 DMPs associated with cardio-
vascular disease in previous studies, 16 were associated with
incident CHD in the SHS at P < .05 (eTable 5 in Supplement 1),
none of them included in the 505 DMPs selected by elastic-
net in the SHS. Using these 248 DMPs in targeted elastic-net
models in each cohort, the number of DMPs associated with
CHD ranged from 56 in the WHI and ARIC-Black to 146 in the
ARIC-White (Table 1).

Traditional EWAS With CpGs Analyzed Individually (DMPs)
or in Nearby Regions (DMRs)
In an untargeted EWAS with 850 000 CpG analyzed individu-
ally in the SHS, no DMPs were associated with incident CHD

at FDR P < .05, 11 DMPs showed FDR P < .10 (eg, the HR [95%
CI] for cg10812236 [tagged to PLEK] was 2.24 [1.66-3.02])
(eTable 6 in Supplement 1), and 69 866 DMPs showed P < .05.
Five of the 11 DMPs were present in the 450 000, but none were
associated with incident CHD in the other cohorts. The most fre-
quent gene among the top untargeted DMPs in the SHS was PLEK
(pleckstrin). Four DMPs in PLEK had FDR P < .10 (eFigure 3 in
Supplement 1); of these, the untargeted SHS elastic-net model
selected cg04872689. In the protein-protein network, a PLEK
node was found with 6 interactions (Figure).

No DMRs passed the Stouffer P < .05 cutoff in the SHS, al-
though 1 was .05 and 4 ranged from .08 to .09 (eTable 7 in Supple-
ment1).ThetopDMRwasannotatedtoLINGO1.ADMPannotated
to this gene was selected by the SHS elastic-net model and re-
mained selected by ARIC-Black and ARIC-White in the targeted
elastic-net. LINGO1 was also a node linked to EGFR in the protein-
proteininteractionnetwork.AnotherLINGO1-annotatedDMPwas
selected in the untargeted ARIC-White elastic-net.

Sensitivity Analysis by Length of Follow-up
The SHS elastic-net model, including all 450 000 CpGs re-
stricted to 10-year follow-up, selected 625 DMPs. Introducing
these DMPs in the other cohorts with a 10-year follow-up se-
lected 99 DMPs for WHI, 122 for FHS, 266 for ARIC-Black, and
188 for ARIC-White.

Discussion
This high-dimensional EWAS of blood DNA methylation in
American Indian adults identified a complex blood epigen-
omic signature associated with CHD, including shared DMPs
in other populations. From more than 400 000 CpGs intro-
duced with risk factors traditionally associated with CHD in
the SHS, elastic-net models selected 505 DMPs associated with
incident CHD. When these DMPs were modeled in the WHI,
FHS, ARIC-Black, and ARIC-White using elastic-net, 33 DMPs
were selected in 3 or 4 cohorts, some of them with consistent
direction of association across cohorts and others inconsis-
tent. In protein-protein interaction analyses, many genes were
connected with a large hub for EGFR based on SHS, FHS, and
ARIC-Black signals and with a hub for ITGAX based on the 5
cohorts. The targeted protein-protein network analysis sup-
ported overlap in interconnected biological pathways among
the cohorts despite multiple DMPs unique to the SHS (eg,
PLEK). The complex blood epigenomic signature of cardio-
vascular disease across populations was further revealed by
the distinct DMPs, genes, and network of genes identified
by untargeted elastic-net models of CHD in the 5 cohorts, al-
though ad hoc targeted analyses suggest it is possible to iden-
tify common DMPs relevant for multiple populations.

Among the 33 DMPs common in 4 or 5 cohorts, the pooled
HR was significant for 10, and most HRs were in the same di-
rection across cohorts. Several of these DMPs were annotated
to genes with a possible association with CHD. COL11A2 (col-
lagen type XI α 2 chain) encodes a constituent of the extracel-
lular matrix, and SNPs have been associated with coronary ar-
tery lesions.21 Several collagen-related DMPs were nodes in the
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protein-network analyses. MGAT4D is involved in the biosyn-
thesis of n-glycan, a biomarker of cardiometabolic risk,22 and
SNPs have been shown to be associated with blood pressure.23

ASIC1 is involved in calcium activation in vascular smooth
muscle cells and has been shown to be associated with pul-
monary hypertension and stroke.24,25 FRMD5 (FERN-kinase
domain containing 5) SNPs are associated with lipids levels,26,27

and FERN is involved in cell adhesion.28 Less is known about
cardiovascular associations with genes such as NEUROG2,
encoding a transcription factor expressed in neural progeni-
tor cells,29 or PRMT8, a methyltransferase expressed in the
brain30 but with SNPs associated with lipids and CHD.31

Among 23 DMPs selected as associated with CHD in 4 or 5
cohorts but with nonsignificant pooled HRs, DMPs were posi-
tive in some but inverse in others, except for those annotated
to PLA2G6, MMEL1, and GPR155, which were inverse in all co-
horts and borderline significant. Many of the inconsistent DMPs
were annotated to cardiovascular disease-relevant genes, such
as IL1B, encoding interleukin-1β, a cytokine associated with ath-
erosclerosis in the vasculature and systemically.32-35 In the pro-

tein network, IL1B interacted with ITGAX, which encodes a fi-
brinogen receptor that mediates cell-cell interactions and has
been associated with hyperlipidemia and atherosclerosis.36,37

Other genes included SPPL2B, encoding a protease that cleaves
the intracellular domain of tumor necrosis factor α, with roles
in inflammation, cell survival, growth, and apoptosis38,39;
RUNX3, involved in endothelial-mesenchymal transition
and endothelial function40,41; PPRGC1A, encoding peroxi-
some proliferator-activated receptor γ coactivator 1-α, in-
volved in energy and metabolism processes, including cardiac
metabolism42,43; and PCDHGA4, part of the protocadherin γ gene
subcluster. Exposure to diabetes in utero has been associated
with PCDHGA4 hypomethylation in 388 Pima Indian People44

in one of the few epigenetic studies in American Indian popu-
lations beyond the SHS.

It is unclear why some DMPs show different directions in
the association with CHD across cohorts. The biological plau-
sibility for the DMPs annotated to IL1B, RUNX3, ITGAX, and
PPRGC1A is even stronger than for the DMPs with consistent
associations across cohorts. This inconsistency, also ob-

Table 3. Hazard Ratios (HRs) and 95% CIs of Coronary Heart Disease by Differentially Methylated
Cytosine-Phosphate-Guanine Sites (CpGs) Initially Selected in All 5 Cohorts

CpGa Chr Gene

HR (95% CI)b Meta-analysis

SHS WHI FHS ARIC-Black ARIC-White
Pooled HR
(95% CI) P value

cg03068497 7 GARS1 0.90
(0.74-1.11)

0.84
(0.66-1.06)

0.58
(0.34-0.99)

0.83
(0.63-1.09)

0.45
(0.28-0.75)

0.70
(0.53-0.93)

.01

cg05228408 1 MTHFR 0.88
(0.72-1.09)

0.84
(0.67-1.06)

0.59
(0.33-1.06)

0.67
(0.50-0.91)

0.63
(0.39-1.03)

0.77
(0.65-0.91)

.003

cg23933602 10 RSU1 0.84
(0.70-1.00)

0.73
(0.57-0.95)

0.44
(0.23-0.84)

0.79
(0.65-0.96)

0.73
(0.43-1.22)

0.81
(0.74-0.89)

E-05

cg05823563 9 C9orf125 1.08
(0.9-1.29)

0.87
(0.69-1.1)

0.37
(0.21-0.66)

1.06
(0.79-1.42)

0.72
(0.54-0.97)

0.83
(0.64-1.07)

.16

cg16604233 6 COL11A2 0.89
(0.74-1.06)

0.86
(0.67-1.10)

0.54
(0.29-1.00)

0.83
(0.65-1.07)

0.71
(0.46-1.10)

0.86
(0.78-0.95)

.002

cg10574494 4 SPATA18 1.12
(0.93-1.35)

0.85
(0.68-1.08)

0.40
(0.22-0.73)

1.37
(1.07-1.76)

0.68
(0.41-1.12)

0.88
(0.64-1.22)

.45

cg08447739 10 HTRA1 0.89
(0.74-1.07)

0.69
(0.54-0.88)

1.28
(0.84-1.97)

0.94
(0.72-1.23)

0.84
(0.52-1.37)

0.89
(0.77-1.03)

.11

cg04250451 1 RUNX3 1.38
(1.15-1.65)

0.97
(0.88-1.07)

0.66
(0.42-1.03)

0.99
(0.73-1.34)

1.88
(1.08-3.27)

1.04
(0.95-1.15)

.39

cg08178991 16 ITGAX 1.44
(1.2-1.74)

1.10
(0.9-1.34)

1.56
(0.89-2.72)

0.86
(0.77-0.96)

1.25
(0.75-2.07)

1.07
(0.95-1.2)

.24

cg02628823 4 MGAT4D 1.23
(1.06-1.43)

0.92
(0.74-1.15)

1.21
(0.94-1.57)

1.11
(0.91-1.35)

1.60
(1.22-2.11)

1.17
(1.01-1.36)

.04

cg22454769 2 FHL2 1.00
(0.81-1.23)

1.17
(0.89-1.53)

1.73
(0.90-3.33)

1.41
(1.04-1.92)

1.24
(0.73-2.12)

1.17
(1.01-1.36)

.04

cg05190790 11 SOX1 1.05
(0.89-1.25)

1.29
(1.02-1.63)

1.27
(0.78-2.09)

1.58
(1.19-2.10)

1.23
(0.77-1.95)

1.26
(1.06-1.49)

.008

cg09476997 16 SLC9A3R2 1.39
(1.13-1.70)

1.16
(0.92-1.45)

1.93
(1.05-3.54)

1.41
(1.03-1.93)

1.56
(0.96-2.52)

1.28
(1.14-1.44)

2.8E-05

cg13543355 14 LRRC74A 1.13
(0.95-1.35)

1.17
(0.95-1.44)

1.16
(0.74-1.83)

1.97
(1.60-2.43)

1.94
(1.01-3.73)

1.28
(1.05-1.57)

.02

Abbreviations: ARIC, the Atherosclerosis Risk in Communities Study;
Chr, chromosome; FHS, the Framingham Heart Study; SHS, the Strong Heart
Study; WHI, the Women’s Health Initiative.
a The CpGs are ordered based on the pooled HRs.
b HRs correspond to those estimated by Cox regression with that CpG entered

in the model together with traditional risk factors but without adjustment for
other CpGs and ordered based on the pooled HR in the meta-analysis. HRs and
95% CIs comparing the 90th and 10th percentiles of differentially methylated
CpGs. HRs correspond to those estimated by Cox regression with that CpG
entered in the model together with traditional factors associated with risk but
without adjustment for other CpGs. Model 1 included traditional factors
associated with risk, including age; smoking status (never, former, current);

body mass index (calculated as weight in kilograms divided by height in
meters squared); low-density lipoprotein cholesterol; high-density lipoprotein
cholesterol; hypertension treatment (yes/no); type 2 diabetes (yes/no); and
systolic blood pressure. All studies except the Women’s Health Initiative (WHI)
further included sex. The Strong Heart Study (SHS) and the Framingham Heart
Study (FHS) further included albuminuria status (microalbuminuria, normal,
macroalbuminuria). SHS and ARIC further included study center. FHS further
included pedigree number. WHI further included race. Model 2 further
included genetic principle components and blood cell counts for SHS and
ARIC, only blood cell counts for WHI, and cell counts and plate number for
FHS. ARIC further included 5 methylation batch effect principle components
calculated using functional normalization.
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served in previous EWAS,3,6 could be related to the plasticity
and adaptability of epigenetic response during pathophysi-
ological processes,45 and to differences in times of assess-
ment, treatments, other factors associated with risk, and
complex signatures and dynamics across cohorts. If these in-
consistent DMPs reflect a biologically relevant phenomenon,
pooling HRs across cohorts, as is traditionally done in EWAS,
would miss many relevant DMPs. The inconsistencies could
also reflect confounded associations by methylation in other
DMPs not included in Cox models. Elastic-net coefficients,
however, cannot be compared across cohorts as the model
forces less-associated variables to have zero coefficients. In-
deed, elastic-net allows identifying common DMPs associ-
ated with CHD across populations, but not comparing the
effect estimates.

Some of the methylation sites associated with CHD might
not be independent of traditional factors associated with risk.
DNAm is strongly associated with obesity and smoking, in-
cluding in the SHS.46,47 For smoking, DNAm sites might be more
objective than self-reports. For example, cg1439173, associ-
ated with smoking and annotated to PRSS23, was selected by
the SHS elastic-net as associated with CHD. The elastic-net
model with the 505 CpGs no longer included smoking and obe-
sity in the SHS, smoking in the FHS and ARIC-Black, or BMI in
the WHI and ARIC-White.

EWAS of clinical cardiovascular outcomes have been chal-
lenging, which is expected to be because of the intricate patho-
physiology of cardiovascular outcomes, including inflammation,
oxidative stress, endothelial function, and thrombosis, among
other pathways, and the numerous cells and tissues involved,
includingsystemiceffects.Whileouruntargetedelastic-netmod-
els across cohorts provide a glimpse of these complexities, the
common DMPs identified by the ad hoc targeted elastic-net mod-
els and protein-protein interaction network may contribute to
identifying relevant signatures across populations. We identified
asubstantialnumberofconsistentDMPsinsubsequentCoxmod-
els. These DMPs included cg05575921 (annotated to AHRR), a
smoking related DMP associated with cardiovascular disease in
previous studies,48-51 and cg05228408 (annotated to MTHFR,
involved in the regulation of homocysteine and with SNPs pos-
sibly associated with cardiovascular risk).52 Additional research
can evaluate the usefulness of these DMPs for CHD and of the
untargeted-targetedelastic-netstrategyforidentifyingadditional
relevant DMPs in the future.

Our primary cohort was the SHS and our findings may be
relevant for American Indian populations. American Indian in-
dividuals are at higher risk of CHD compared with other race
and ethnicity groups in the US. There is need for improved iden-
tification of individuals at risk and for improved treatment and
prevention strategies. We have focused this discussion on DMPs
that overlap with WHI, FHS, and ARIC. Among DMPs that do
not overlap, some may be of interest for American Indian in-

dividuals. Replication of these DMPs in other American In-
dian populations is needed, although there are currently few
studies and their sample sizes are small.44,53

None of the DMPs selected by the elastic-net model coin-
cided with the top signals in the regular EWAS in the SHS ex-
cept for PLEK. This is possibly because of limited power, need
to account for multiple comparisons, and lack of accounting
for interassociations across CpGs in the traditional EWAS. Elas-
tic-net minimizes multiple comparisons and genomic infla-
tion, as one single model is run. Additionally, many of the DMPs
selected by elastic-net had biological relevance, adding value
to the findings and potential use. PLEK, for instance, encodes
a protein involved in calcium signaling and it was differen-
tially expressed in abdominal aortic aneurysms compared with
aorta tissue from control individuals.54 Many DMPs were an-
notated to genes whose function is presently unknown. Ex-
perimental research in these genetic regions may contribute
to discovering new pathways relevant for CHD.

Limitations
Our study has important limitations. Power was limited for
some cohorts, and we could not replicate the findings in other
American Indian populations. Using these data for risk pre-
diction is premature given their complexity. For instance, as-
sessing predictive ability is problematic as training a new model
different from that of the discovery set might overestimate it
in replication sets.55 Elastic-net does not allow modeling DMRs.
We annotated each CpG to the nearest gene, but this annota-
tion can be uncertain. Additionally, although the use of Cox
regression following elastic-net to obtain hazard ratios for each
DMP and pool across cohorts is not standard, we used this strat-
egy to compare effect estimates across cohorts. Strengths of
our study include the high-quality outcome ascertainment and
quality control procedures in all the cohorts and the diverse
race and ethnicity composition.

Conclusions
In this multi-cohort study, we found that the blood epigen-
omic signature of cardiovascular disease is complex and dis-
tinct across populations. However, key findings from the SHS
were generalized to the WHI, FHS, and ARIC, indicating that
DNAm may help identify individuals at higher risk of devel-
oping CHD if methods that account for high-dimensionality of
the data are used. We identified DMPs with relevant biologi-
cal associations with atherosclerosis. The different direction
of the association across studies for some DMPs could be bio-
logically relevant and needs to be further investigated. Our
blood-based DNAm findings open opportunities for identify-
ing individuals at risk of CHD beyond risk factors tradition-
ally associated with cardiovascular disease.
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